Internals: Refactor AstNodeBlock representation (#6280)
AstNodeBlock now has 2 child lists: 'declsp' to hold declarations within
the block, and 'stmtsp' to hold the procedural statements.
AstBegin is then just a simple subtype of AstNodeBlock.
AstFork is a proper superset of AstNodeBlock (and also AstBegin), and
adds 'forksp' which hold the parallel statements. Having the sequential
'stmtsp' in AstFork is required to properly implement variable
initializers in fork blocks (IEEE 1800-2023 9.3.2), this makes that
clear, while also separating the non AstNodeStmt declarations
(for #6280). The actual fork branches in 'AstFork::forkps()' are all
AstBegin nodes. This is required as lowering stages will introduce
additional statements in each parallel branch. (We used to wrap AstFork
statements into AstBegin in 3 different places, now they always are
AstBegin and this is enforced via the type checker/V3Broken).
Also fixes incorrect disabling of forked processes from within the `fork`.
Remove the large variety of ways raw "text" is represented in the Ast.
Particularly, the only thing that represents a string to be emitted in
the output is AstText.
There are 5 AstNodes that can contain AstText, and V3Emit will throw an
error if an AstText is encountered anywhere else:
- AstCStmt: Internally generated procedural statements involving raw
text.
- AstCStmtUser: This is the old AstUCStmt, renamed so it sorts next to
AstCStmt, as it's largely equivalent. We should never create this
internally unless used to represent user input. It is used for $c,
statements in the input, and for some 'systemc_* blocks.
- AstCExpr: Internally generaged expression involving raw text.
- AstCExprUser: This is the old AstUCFunc, renamed so it sorts next to
AstCExpr. It is largely equivalent, but also has more optimizations
disabled. This should never be created internally, it is only used for
$c expressions in the input.
- AstTextBlock: Use by V3ProtectLib only, to generate the hierarchical
wrappers.
Text "tracking" for indentation is always on for AstCStmt, AstCExpr, and
AstTextBlock, as these are always generated by us, and should always be
well formed.
Tracking is always off for AstCStmtUser and AstCExprUser, as these
contain arbitrary user input that might not be safe to parse for
indentation.
Remove subsequently redundant AstNodeSimpleText and AstNodeText types.
This patch also fixes incorrect indentation in emitted waveform tracing
functions, and makes the output more readable for hier block SV stubs.
With that, all raw text nodes are handled as a proper AstNodeStmt or
AstNodeExpr as required for #6280.
Remove AstJumpLabel
AstJumpGo now references one if its enclosing AstJumpBlocks, and
branches straight after the referenced block.
That is:
```
JumpBlock a {
...
JumpGo(a);
...
}
// <--- the JumpGo(a) goes here
```
This is sufficient for all use cases and makes control flow much easier to
reason about. As a result, V3Const can optimize a bit more aggressively.
Second half of, and fixes#6216
Apart from the representational changes below, this patch renames
AstNodeMath to AstNodeExpr, and AstCMath to AstCExpr.
Now every expression (i.e.: those AstNodes that represent a [possibly
void] value, with value being interpreted in a very general sense) has
AstNodeExpr as a super class. This necessitates the introduction of an
AstStmtExpr, which represents an expression in statement position, e.g :
'foo();' would be represented as AstStmtExpr(AstCCall(foo)). In exchange
we can get rid of isStatement() in AstNodeStmt, which now really always
represent a statement
Peak memory consumption and verilation speed are not measurably changed.
Partial step towards #3420
- Rename `--dump-treei` option to `--dumpi-tree`, which itself is now a
special case of `--dumpi-<tag>` where tag can be a magic word, or a
filename
- Control dumping via static `dump*()` functions, analogous to `debug()`
- Make dumping independent of the value of `debug()` (so dumping always
works even without the debug flag)
- Add separate `--dumpi-graph` for dumping V3Graphs, which is again a
special case of `--dumpi-<tag>`
- Alias `--dump-<tag>` to `--dumpi-<tag> 3` as before
Adds timing support to Verilator. It makes it possible to use delays,
event controls within processes (not just at the start), wait
statements, and forks.
Building a design with those constructs requires a compiler that
supports C++20 coroutines (GCC 10, Clang 5).
The basic idea is to have processes and tasks with delays/event controls
implemented as C++20 coroutines. This allows us to suspend and resume
them at any time.
There are five main runtime classes responsible for managing suspended
coroutines:
* `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle`
with move semantics and automatic cleanup.
* `VlDelayScheduler`, for coroutines suspended by delays. It resumes
them at a proper simulation time.
* `VlTriggerScheduler`, for coroutines suspended by event controls. It
resumes them if its corresponding trigger was set.
* `VlForkSync`, used for syncing `fork..join` and `fork..join_any`
blocks.
* `VlCoroutine`, the return type of all verilated coroutines. It allows
for suspending a stack of coroutines (normally, C++ coroutines are
stackless).
There is a new visitor in `V3Timing.cpp` which:
* scales delays according to the timescale,
* simplifies intra-assignment timing controls and net delays into
regular timing controls and assignments,
* simplifies wait statements into loops with event controls,
* marks processes and tasks with timing controls in them as
suspendable,
* creates delay, trigger scheduler, and fork sync variables,
* transforms timing controls and fork joins into C++ awaits
There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`)
that integrate static scheduling with timing. This involves providing
external domains for variables, so that the necessary combinational
logic gets triggered after coroutine resumption, as well as statements
that need to be injected into the design eval function to perform this
resumption at the correct time.
There is also a function that transforms forked processes into separate
functions.
See the comments in `verilated_timing.h`, `verilated_timing.cpp`,
`V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals
documentation for more details.
Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
Associative arrays that specify a wildcard index type may be indexed by
integral expressions of any size, with leading zeros removed
automatically. A natural representation for such expressions is a
string, especially that the standard explicitly specifies automatic
casts from string indices to bit vectors of equivalent size.
The automatic cast part is done implicitly by the existing type system.
A simpler way to just make this work would be to convert wildcard index
type to a string type directly in the parser code, but several new AST
classes are needed to make sure illegal method calls are detected.
The verilated data structure implementation is reused, because there is
no need for differentiating the behavior on C++ side.
Rename AstNodeModule::hierName -> someInstanceName and explain that this
is only used for user messages.
Rename AstNode::locationStr -> instanceStr and simplify implementation.
In particular, do not report an instance if we can't find a reasonable
guess.
- Always use a fast function to replace a slow one if available
- Iterate to fixed point (i.e.: if combining made more functions
identical, combine those too). This will be more useful in the future.
- Use only single, const traversal
Introduce VNRef that can be used to wrap AstNode keys in STL
collections, resulting in equality comparisons rather than identity
comparisons. This can then replace the SenTreeSet data-structure.