Includes: Refactor verilated.h and deprecate verilated_heavy.h (#2701).
This commit is contained in:
parent
44173b40a1
commit
b90fce55f4
1
Changes
1
Changes
|
|
@ -18,6 +18,7 @@ Verilator 4.211 devel
|
|||
in order to aid incremental compilation via ccache (#3071). [Geza Lore]
|
||||
* Parameter values are now emitted as 'static constexpr' instead of enum.
|
||||
C++ direct references to parameters might require updating (#3077). [Geza Lore]
|
||||
* Refactored Verilated include files; include verilated.h not verilated_heavy.h.
|
||||
* Fix -G to treat simple integer literals as signed (#3060). [Anikin1610]
|
||||
* Fix emitted string array initializers (#2895). [Iztok Jeras]
|
||||
|
||||
|
|
|
|||
|
|
@ -11,6 +11,11 @@ C++11 compiler support
|
|||
require C++14 or newer compilers for both compiling Verilator and
|
||||
compiling Verilated models no sooner than January 2022.
|
||||
|
||||
Verilated_heavy.h
|
||||
The legacy "verilated_heavy.h" include was replaced with just including
|
||||
"verilated.h". Verilated_heavy.h is planned for removal no sooner than
|
||||
July 2022.
|
||||
|
||||
Configuration File -msg
|
||||
The :vlopt:`lint_off` "-msg" option has been replaced with the "-rule"
|
||||
option. "-msg" is planned for removal no sooner than January 2021.
|
||||
|
|
|
|||
|
|
@ -1347,7 +1347,6 @@ IData VL_FGETS_IXI(int obits, void* destp, IData fpi) VL_MT_SAFE {
|
|||
return got;
|
||||
}
|
||||
|
||||
// declared in verilated_heavy.h
|
||||
IData VL_FGETS_NI(std::string& dest, IData fpi) VL_MT_SAFE {
|
||||
return getLine(dest, fpi, std::numeric_limits<size_t>::max());
|
||||
}
|
||||
|
|
|
|||
2151
include/verilated.h
2151
include/verilated.h
File diff suppressed because it is too large
Load Diff
|
|
@ -28,7 +28,6 @@
|
|||
|
||||
#include "verilatedos.h"
|
||||
#include "verilated.h" // Also presumably included by caller
|
||||
#include "verilated_heavy.h" // Also presumably included by caller
|
||||
#include "verilated_sym_props.h"
|
||||
|
||||
#include "svdpi.h"
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load Diff
|
|
@ -12,966 +12,20 @@
|
|||
//*************************************************************************
|
||||
///
|
||||
/// \file
|
||||
/// \brief Verilated string and data-type header
|
||||
/// \brief Verilated old string and data-type header
|
||||
///
|
||||
/// This file is included automatically by Verilator at the top of
|
||||
/// all C++ files it generates. It is used when strings or other
|
||||
/// heavyweight types are required; these contents are not part of
|
||||
/// verilated.h to save compile time when such types aren't used.
|
||||
/// This file is deprecated, and provided for backwards compatibility.
|
||||
/// Include verilated.h instead.
|
||||
///
|
||||
//*************************************************************************
|
||||
|
||||
#ifndef VERILATOR_VERILATED_HEAVY_H_
|
||||
#define VERILATOR_VERILATED_HEAVY_H_
|
||||
|
||||
#ifdef VL_NO_LEGACY
|
||||
#error "Include <verilated.h> instead of <verilated_heavy.h>"
|
||||
#endif
|
||||
|
||||
#include "verilated.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <deque>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <unordered_set>
|
||||
|
||||
//===================================================================
|
||||
// String formatters (required by below containers)
|
||||
|
||||
extern std::string VL_TO_STRING(CData lhs);
|
||||
extern std::string VL_TO_STRING(SData lhs);
|
||||
extern std::string VL_TO_STRING(IData lhs);
|
||||
extern std::string VL_TO_STRING(QData lhs);
|
||||
inline std::string VL_TO_STRING(const std::string& obj) { return "\"" + obj + "\""; }
|
||||
extern std::string VL_TO_STRING_W(int words, const WDataInP obj);
|
||||
|
||||
//===================================================================
|
||||
// Shuffle RNG
|
||||
|
||||
class VlURNG final {
|
||||
public:
|
||||
using result_type = size_t;
|
||||
static constexpr size_t min() { return 0; }
|
||||
static constexpr size_t max() { return 1ULL << 31; }
|
||||
size_t operator()() { return VL_MASK_I(31) & VL_RANDOM_I(32); }
|
||||
};
|
||||
|
||||
//===================================================================
|
||||
// Readmem/Writemem operation classes
|
||||
|
||||
class VlReadMem final {
|
||||
bool m_hex; // Hex format
|
||||
int m_bits; // Bit width of values
|
||||
const std::string& m_filename; // Filename
|
||||
QData m_end; // End address (as specified by user)
|
||||
FILE* m_fp; // File handle for filename
|
||||
QData m_addr; // Next address to read
|
||||
int m_linenum; // Line number last read from file
|
||||
public:
|
||||
VlReadMem(bool hex, int bits, const std::string& filename, QData start, QData end);
|
||||
~VlReadMem();
|
||||
bool isOpen() const { return m_fp != nullptr; }
|
||||
int linenum() const { return m_linenum; }
|
||||
bool get(QData& addrr, std::string& valuer);
|
||||
void setData(void* valuep, const std::string& rhs);
|
||||
};
|
||||
|
||||
class VlWriteMem final {
|
||||
bool m_hex; // Hex format
|
||||
int m_bits; // Bit width of values
|
||||
FILE* m_fp; // File handle for filename
|
||||
QData m_addr; // Next address to write
|
||||
public:
|
||||
VlWriteMem(bool hex, int bits, const std::string& filename, QData start, QData end);
|
||||
~VlWriteMem();
|
||||
bool isOpen() const { return m_fp != nullptr; }
|
||||
void print(QData addr, bool addrstamp, const void* valuep);
|
||||
};
|
||||
|
||||
//===================================================================
|
||||
/// Verilog wide packed bit container.
|
||||
/// Similar to std::array<WData, N>, but lighter weight, only methods needed
|
||||
/// by Verilator, to help compile time.
|
||||
///
|
||||
/// A 'struct' as we want this to be an aggregate type that allows
|
||||
/// static aggregate initialization. Consider data members private.
|
||||
///
|
||||
/// For example a Verilog "bit [94:0]" will become a VlWide<3> because 3*32
|
||||
/// bits are needed to hold the 95 bits. The MSB (bit 96) must always be
|
||||
/// zero in memory, but during intermediate operations in the Verilated
|
||||
/// internals is unpredictable.
|
||||
|
||||
template <std::size_t T_Words> struct VlWide final {
|
||||
// MEMBERS
|
||||
// This should be the only data member, otherwise generated static initializers need updating
|
||||
EData m_storage[T_Words]; // Contents of the packed array
|
||||
|
||||
// CONSTRUCTORS
|
||||
// Default constructors and destructor are used. Note however that C++20 requires that
|
||||
// aggregate types do not have a user declared constructor, not even an explicitly defaulted
|
||||
// one.
|
||||
|
||||
// OPERATOR METHODS
|
||||
// Default copy assignment operators are used.
|
||||
operator WDataOutP() { return &m_storage[0]; } // This also allows []
|
||||
operator WDataInP() const { return &m_storage[0]; } // This also allows []
|
||||
|
||||
// METHODS
|
||||
const EData& at(size_t index) const { return m_storage[index]; }
|
||||
EData& at(size_t index) { return m_storage[index]; }
|
||||
WData* data() { return &m_storage[0]; }
|
||||
const WData* data() const { return &m_storage[0]; }
|
||||
bool operator<(const VlWide<T_Words>& rhs) const {
|
||||
return VL_LT_W(T_Words, data(), rhs.data());
|
||||
}
|
||||
};
|
||||
|
||||
// Convert a C array to std::array reference by pointer magic, without copy.
|
||||
// Data type (second argument) is so the function template can automatically generate.
|
||||
template <std::size_t T_Words>
|
||||
VlWide<T_Words>& VL_CVT_W_A(const WDataInP inp, const VlWide<T_Words>&) {
|
||||
return *((VlWide<T_Words>*)inp);
|
||||
}
|
||||
|
||||
template <std::size_t T_Words> std::string VL_TO_STRING(const VlWide<T_Words>& obj) {
|
||||
return VL_TO_STRING_W(T_Words, obj.data());
|
||||
}
|
||||
|
||||
//===================================================================
|
||||
// Verilog queue and dynamic array container
|
||||
// There are no multithreaded locks on this; the base variable must
|
||||
// be protected by other means
|
||||
//
|
||||
// Bound here is the maximum size() allowed, e.g. 1 + SystemVerilog bound
|
||||
// For dynamic arrays it is always zero
|
||||
template <class T_Value, size_t T_MaxSize = 0> class VlQueue final {
|
||||
private:
|
||||
// TYPES
|
||||
using Deque = std::deque<T_Value>;
|
||||
|
||||
public:
|
||||
using const_iterator = typename Deque::const_iterator;
|
||||
|
||||
private:
|
||||
// MEMBERS
|
||||
Deque m_deque; // State of the assoc array
|
||||
T_Value m_defaultValue; // Default value
|
||||
|
||||
public:
|
||||
// CONSTRUCTORS
|
||||
// m_defaultValue isn't defaulted. Caller's constructor must do it.
|
||||
VlQueue() = default;
|
||||
~VlQueue() = default;
|
||||
VlQueue(const VlQueue&) = default;
|
||||
VlQueue(VlQueue&&) = default;
|
||||
VlQueue& operator=(const VlQueue&) = default;
|
||||
VlQueue& operator=(VlQueue&&) = default;
|
||||
|
||||
// Standard copy constructor works. Verilog: assoca = assocb
|
||||
// Also must allow conversion from a different T_MaxSize queue
|
||||
template <size_t U_MaxSize = 0> VlQueue operator=(const VlQueue<T_Value, U_MaxSize>& rhs) {
|
||||
m_deque = rhs.privateDeque();
|
||||
if (VL_UNLIKELY(T_MaxSize && T_MaxSize < m_deque.size())) m_deque.resize(T_MaxSize - 1);
|
||||
return *this;
|
||||
}
|
||||
|
||||
static VlQueue cons(const T_Value& lhs) {
|
||||
VlQueue out;
|
||||
out.push_back(lhs);
|
||||
return out;
|
||||
}
|
||||
static VlQueue cons(const T_Value& lhs, const T_Value& rhs) {
|
||||
VlQueue out;
|
||||
out.push_back(rhs);
|
||||
out.push_back(lhs);
|
||||
return out;
|
||||
}
|
||||
static VlQueue cons(const VlQueue& lhs, const T_Value& rhs) {
|
||||
VlQueue out = lhs;
|
||||
out.push_front(rhs);
|
||||
return out;
|
||||
}
|
||||
static VlQueue cons(const T_Value& lhs, const VlQueue& rhs) {
|
||||
VlQueue out = rhs;
|
||||
out.push_back(lhs);
|
||||
return out;
|
||||
}
|
||||
static VlQueue cons(const VlQueue& lhs, const VlQueue& rhs) {
|
||||
VlQueue out = rhs;
|
||||
for (const auto& i : lhs.m_deque) out.push_back(i);
|
||||
return out;
|
||||
}
|
||||
|
||||
// METHODS
|
||||
T_Value& atDefault() { return m_defaultValue; }
|
||||
const T_Value& atDefault() const { return m_defaultValue; }
|
||||
const Deque& privateDeque() const { return m_deque; }
|
||||
|
||||
// Size. Verilog: function int size(), or int num()
|
||||
int size() const { return m_deque.size(); }
|
||||
// Clear array. Verilog: function void delete([input index])
|
||||
void clear() { m_deque.clear(); }
|
||||
void erase(vlsint32_t index) {
|
||||
if (VL_LIKELY(index >= 0 && index < m_deque.size()))
|
||||
m_deque.erase(m_deque.begin() + index);
|
||||
}
|
||||
|
||||
// Dynamic array new[] becomes a renew()
|
||||
void renew(size_t size) {
|
||||
clear();
|
||||
m_deque.resize(size, atDefault());
|
||||
}
|
||||
// Dynamic array new[]() becomes a renew_copy()
|
||||
void renew_copy(size_t size, const VlQueue<T_Value, T_MaxSize>& rhs) {
|
||||
if (size == 0) {
|
||||
clear();
|
||||
} else {
|
||||
*this = rhs;
|
||||
m_deque.resize(size, atDefault());
|
||||
}
|
||||
}
|
||||
|
||||
// function void q.push_front(value)
|
||||
void push_front(const T_Value& value) {
|
||||
m_deque.push_front(value);
|
||||
if (VL_UNLIKELY(T_MaxSize != 0 && m_deque.size() > T_MaxSize)) m_deque.pop_back();
|
||||
}
|
||||
// function void q.push_back(value)
|
||||
void push_back(const T_Value& value) {
|
||||
if (VL_LIKELY(T_MaxSize == 0 || m_deque.size() < T_MaxSize)) m_deque.push_back(value);
|
||||
}
|
||||
// function value_t q.pop_front();
|
||||
T_Value pop_front() {
|
||||
if (m_deque.empty()) return m_defaultValue;
|
||||
T_Value v = m_deque.front();
|
||||
m_deque.pop_front();
|
||||
return v;
|
||||
}
|
||||
// function value_t q.pop_back();
|
||||
T_Value pop_back() {
|
||||
if (m_deque.empty()) return m_defaultValue;
|
||||
T_Value v = m_deque.back();
|
||||
m_deque.pop_back();
|
||||
return v;
|
||||
}
|
||||
|
||||
// Setting. Verilog: assoc[index] = v
|
||||
// Can't just overload operator[] or provide a "at" reference to set,
|
||||
// because we need to be able to insert only when the value is set
|
||||
T_Value& at(vlsint32_t index) {
|
||||
static T_Value s_throwAway;
|
||||
// Needs to work for dynamic arrays, so does not use T_MaxSize
|
||||
if (VL_UNLIKELY(index < 0 || index >= m_deque.size())) {
|
||||
s_throwAway = atDefault();
|
||||
return s_throwAway;
|
||||
} else {
|
||||
return m_deque[index];
|
||||
}
|
||||
}
|
||||
// Accessing. Verilog: v = assoc[index]
|
||||
const T_Value& at(vlsint32_t index) const {
|
||||
static T_Value s_throwAway;
|
||||
// Needs to work for dynamic arrays, so does not use T_MaxSize
|
||||
if (VL_UNLIKELY(index < 0 || index >= m_deque.size())) {
|
||||
return atDefault();
|
||||
} else {
|
||||
return m_deque[index];
|
||||
}
|
||||
}
|
||||
// function void q.insert(index, value);
|
||||
void insert(vlsint32_t index, const T_Value& value) {
|
||||
if (VL_UNLIKELY(index < 0 || index >= m_deque.size())) return;
|
||||
m_deque.insert(m_deque.begin() + index, value);
|
||||
}
|
||||
|
||||
// Return slice q[lsb:msb]
|
||||
VlQueue slice(vlsint32_t lsb, vlsint32_t msb) const {
|
||||
VlQueue out;
|
||||
if (VL_UNLIKELY(lsb < 0)) lsb = 0;
|
||||
if (VL_UNLIKELY(lsb >= m_deque.size())) lsb = m_deque.size() - 1;
|
||||
if (VL_UNLIKELY(msb >= m_deque.size())) msb = m_deque.size() - 1;
|
||||
for (vlsint32_t i = lsb; i <= msb; ++i) out.push_back(m_deque[i]);
|
||||
return out;
|
||||
}
|
||||
|
||||
// For save/restore
|
||||
const_iterator begin() const { return m_deque.begin(); }
|
||||
const_iterator end() const { return m_deque.end(); }
|
||||
|
||||
// Methods
|
||||
void sort() { std::sort(m_deque.begin(), m_deque.end()); }
|
||||
template <typename Func> void sort(Func with_func) {
|
||||
// with_func returns arbitrary type to use for the sort comparison
|
||||
std::sort(m_deque.begin(), m_deque.end(), [=](const T_Value& a, const T_Value& b) {
|
||||
// index number is meaninless with sort, as it changes
|
||||
return with_func(0, a) < with_func(0, b);
|
||||
});
|
||||
}
|
||||
void rsort() { std::sort(m_deque.rbegin(), m_deque.rend()); }
|
||||
template <typename Func> void rsort(Func with_func) {
|
||||
// with_func returns arbitrary type to use for the sort comparison
|
||||
std::sort(m_deque.rbegin(), m_deque.rend(), [=](const T_Value& a, const T_Value& b) {
|
||||
// index number is meaninless with sort, as it changes
|
||||
return with_func(0, a) < with_func(0, b);
|
||||
});
|
||||
}
|
||||
void reverse() { std::reverse(m_deque.begin(), m_deque.end()); }
|
||||
void shuffle() { std::shuffle(m_deque.begin(), m_deque.end(), VlURNG{}); }
|
||||
VlQueue unique() const {
|
||||
VlQueue out;
|
||||
std::unordered_set<T_Value> saw;
|
||||
for (const auto& i : m_deque) {
|
||||
auto it = saw.find(i);
|
||||
if (it == saw.end()) {
|
||||
saw.insert(it, i);
|
||||
out.push_back(i);
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
VlQueue<IData> unique_index() const {
|
||||
VlQueue<IData> out;
|
||||
IData index = 0;
|
||||
std::unordered_set<T_Value> saw;
|
||||
for (const auto& i : m_deque) {
|
||||
auto it = saw.find(i);
|
||||
if (it == saw.end()) {
|
||||
saw.insert(it, i);
|
||||
out.push_back(index);
|
||||
}
|
||||
++index;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
template <typename Func> VlQueue find(Func with_func) const {
|
||||
VlQueue out;
|
||||
IData index = 0;
|
||||
for (const auto& i : m_deque) {
|
||||
if (with_func(index, i)) out.push_back(i);
|
||||
++index;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
template <typename Func> VlQueue<IData> find_index(Func with_func) const {
|
||||
VlQueue<IData> out;
|
||||
IData index = 0;
|
||||
for (const auto& i : m_deque) {
|
||||
if (with_func(index, i)) out.push_back(index);
|
||||
++index;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
template <typename Func> VlQueue find_first(Func with_func) const {
|
||||
// Can't use std::find_if as need index number
|
||||
IData index = 0;
|
||||
for (const auto& i : m_deque) {
|
||||
if (with_func(index, i)) return VlQueue::cons(i);
|
||||
++index;
|
||||
}
|
||||
return VlQueue{};
|
||||
}
|
||||
template <typename Func> VlQueue<IData> find_first_index(Func with_func) const {
|
||||
IData index = 0;
|
||||
for (const auto& i : m_deque) {
|
||||
if (with_func(index, i)) return VlQueue<IData>::cons(index);
|
||||
++index;
|
||||
}
|
||||
return VlQueue<IData>{};
|
||||
}
|
||||
template <typename Func> VlQueue find_last(Func with_func) const {
|
||||
IData index = m_deque.size() - 1;
|
||||
for (auto it = m_deque.rbegin(); it != m_deque.rend(); ++it) {
|
||||
if (with_func(index, *it)) return VlQueue::cons(*it);
|
||||
--index;
|
||||
}
|
||||
return VlQueue{};
|
||||
}
|
||||
template <typename Func> VlQueue<IData> find_last_index(Func with_func) const {
|
||||
IData index = m_deque.size() - 1;
|
||||
for (auto it = m_deque.rbegin(); it != m_deque.rend(); ++it) {
|
||||
if (with_func(index, *it)) return VlQueue<IData>::cons(index);
|
||||
--index;
|
||||
}
|
||||
return VlQueue<IData>{};
|
||||
}
|
||||
|
||||
// Reduction operators
|
||||
VlQueue min() const {
|
||||
if (m_deque.empty()) return VlQueue{};
|
||||
const auto it = std::min_element(m_deque.begin(), m_deque.end());
|
||||
return VlQueue::cons(*it);
|
||||
}
|
||||
VlQueue max() const {
|
||||
if (m_deque.empty()) return VlQueue{};
|
||||
const auto it = std::max_element(m_deque.begin(), m_deque.end());
|
||||
return VlQueue::cons(*it);
|
||||
}
|
||||
|
||||
T_Value r_sum() const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_deque) out += i;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_sum(Func with_func) const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
IData index = 0;
|
||||
for (const auto& i : m_deque) out += with_func(index++, i);
|
||||
return out;
|
||||
}
|
||||
T_Value r_product() const {
|
||||
if (m_deque.empty()) return T_Value(0);
|
||||
auto it = m_deque.begin();
|
||||
T_Value out{*it};
|
||||
++it;
|
||||
for (; it != m_deque.end(); ++it) out *= *it;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_product(Func with_func) const {
|
||||
if (m_deque.empty()) return T_Value(0);
|
||||
auto it = m_deque.begin();
|
||||
IData index = 0;
|
||||
T_Value out{with_func(index, *it)};
|
||||
++it;
|
||||
++index;
|
||||
for (; it != m_deque.end(); ++it) out *= with_func(index++, *it);
|
||||
return out;
|
||||
}
|
||||
T_Value r_and() const {
|
||||
if (m_deque.empty()) return T_Value(0);
|
||||
auto it = m_deque.begin();
|
||||
T_Value out{*it};
|
||||
++it;
|
||||
for (; it != m_deque.end(); ++it) out &= *it;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_and(Func with_func) const {
|
||||
if (m_deque.empty()) return T_Value(0);
|
||||
auto it = m_deque.begin();
|
||||
IData index = 0;
|
||||
T_Value out{with_func(index, *it)};
|
||||
++it;
|
||||
++index;
|
||||
for (; it != m_deque.end(); ++it) out &= with_func(index, *it);
|
||||
return out;
|
||||
}
|
||||
T_Value r_or() const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_deque) out |= i;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_or(Func with_func) const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
IData index = 0;
|
||||
for (const auto& i : m_deque) out |= with_func(index++, i);
|
||||
return out;
|
||||
}
|
||||
T_Value r_xor() const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_deque) out ^= i;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_xor(Func with_func) const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
IData index = 0;
|
||||
for (const auto& i : m_deque) out ^= with_func(index++, i);
|
||||
return out;
|
||||
}
|
||||
|
||||
// Dumping. Verilog: str = $sformatf("%p", assoc)
|
||||
std::string to_string() const {
|
||||
if (m_deque.empty()) return "'{}"; // No trailing space
|
||||
std::string out = "'{";
|
||||
std::string comma;
|
||||
for (const auto& i : m_deque) {
|
||||
out += comma + VL_TO_STRING(i);
|
||||
comma = ", ";
|
||||
}
|
||||
return out + "} ";
|
||||
}
|
||||
};
|
||||
|
||||
template <class T_Value> std::string VL_TO_STRING(const VlQueue<T_Value>& obj) {
|
||||
return obj.to_string();
|
||||
}
|
||||
|
||||
//===================================================================
|
||||
// Verilog associative array container
|
||||
// There are no multithreaded locks on this; the base variable must
|
||||
// be protected by other means
|
||||
//
|
||||
template <class T_Key, class T_Value> class VlAssocArray final {
|
||||
private:
|
||||
// TYPES
|
||||
using Map = std::map<T_Key, T_Value>;
|
||||
|
||||
public:
|
||||
using const_iterator = typename Map::const_iterator;
|
||||
|
||||
private:
|
||||
// MEMBERS
|
||||
Map m_map; // State of the assoc array
|
||||
T_Value m_defaultValue; // Default value
|
||||
|
||||
public:
|
||||
// CONSTRUCTORS
|
||||
// m_defaultValue isn't defaulted. Caller's constructor must do it.
|
||||
VlAssocArray() = default;
|
||||
~VlAssocArray() = default;
|
||||
VlAssocArray(const VlAssocArray&) = default;
|
||||
VlAssocArray(VlAssocArray&&) = default;
|
||||
VlAssocArray& operator=(const VlAssocArray&) = default;
|
||||
VlAssocArray& operator=(VlAssocArray&&) = default;
|
||||
|
||||
// METHODS
|
||||
T_Value& atDefault() { return m_defaultValue; }
|
||||
const T_Value& atDefault() const { return m_defaultValue; }
|
||||
|
||||
// Size of array. Verilog: function int size(), or int num()
|
||||
int size() const { return m_map.size(); }
|
||||
// Clear array. Verilog: function void delete([input index])
|
||||
void clear() { m_map.clear(); }
|
||||
void erase(const T_Key& index) { m_map.erase(index); }
|
||||
// Return 0/1 if element exists. Verilog: function int exists(input index)
|
||||
int exists(const T_Key& index) const { return m_map.find(index) != m_map.end(); }
|
||||
// Return first element. Verilog: function int first(ref index);
|
||||
int first(T_Key& indexr) const {
|
||||
const auto it = m_map.cbegin();
|
||||
if (it == m_map.end()) return 0;
|
||||
indexr = it->first;
|
||||
return 1;
|
||||
}
|
||||
// Return last element. Verilog: function int last(ref index)
|
||||
int last(T_Key& indexr) const {
|
||||
const auto it = m_map.crbegin();
|
||||
if (it == m_map.rend()) return 0;
|
||||
indexr = it->first;
|
||||
return 1;
|
||||
}
|
||||
// Return next element. Verilog: function int next(ref index)
|
||||
int next(T_Key& indexr) const {
|
||||
auto it = m_map.find(indexr);
|
||||
if (VL_UNLIKELY(it == m_map.end())) return 0;
|
||||
++it;
|
||||
if (VL_UNLIKELY(it == m_map.end())) return 0;
|
||||
indexr = it->first;
|
||||
return 1;
|
||||
}
|
||||
// Return prev element. Verilog: function int prev(ref index)
|
||||
int prev(T_Key& indexr) const {
|
||||
auto it = m_map.find(indexr);
|
||||
if (VL_UNLIKELY(it == m_map.end())) return 0;
|
||||
if (VL_UNLIKELY(it == m_map.begin())) return 0;
|
||||
--it;
|
||||
indexr = it->first;
|
||||
return 1;
|
||||
}
|
||||
// Setting. Verilog: assoc[index] = v
|
||||
// Can't just overload operator[] or provide a "at" reference to set,
|
||||
// because we need to be able to insert only when the value is set
|
||||
T_Value& at(const T_Key& index) {
|
||||
const auto it = m_map.find(index);
|
||||
if (it == m_map.end()) {
|
||||
std::pair<typename Map::iterator, bool> pit = m_map.emplace(index, m_defaultValue);
|
||||
return pit.first->second;
|
||||
}
|
||||
return it->second;
|
||||
}
|
||||
// Accessing. Verilog: v = assoc[index]
|
||||
const T_Value& at(const T_Key& index) const {
|
||||
const auto it = m_map.find(index);
|
||||
if (it == m_map.end()) {
|
||||
return m_defaultValue;
|
||||
} else {
|
||||
return it->second;
|
||||
}
|
||||
}
|
||||
// Setting as a chained operation
|
||||
VlAssocArray& set(const T_Key& index, const T_Value& value) {
|
||||
at(index) = value;
|
||||
return *this;
|
||||
}
|
||||
VlAssocArray& setDefault(const T_Value& value) {
|
||||
atDefault() = value;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// For save/restore
|
||||
const_iterator begin() const { return m_map.begin(); }
|
||||
const_iterator end() const { return m_map.end(); }
|
||||
|
||||
// Methods
|
||||
VlQueue<T_Value> unique() const {
|
||||
VlQueue<T_Value> out;
|
||||
std::set<T_Value> saw;
|
||||
for (const auto& i : m_map) {
|
||||
auto it = saw.find(i.second);
|
||||
if (it == saw.end()) {
|
||||
saw.insert(it, i.second);
|
||||
out.push_back(i.second);
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
VlQueue<T_Key> unique_index() const {
|
||||
VlQueue<T_Key> out;
|
||||
std::set<T_Key> saw;
|
||||
for (const auto& i : m_map) {
|
||||
auto it = saw.find(i.second);
|
||||
if (it == saw.end()) {
|
||||
saw.insert(it, i.second);
|
||||
out.push_back(i.first);
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
template <typename Func> VlQueue<T_Value> find(Func with_func) const {
|
||||
VlQueue<T_Value> out;
|
||||
for (const auto& i : m_map)
|
||||
if (with_func(i.first, i.second)) out.push_back(i.second);
|
||||
return out;
|
||||
}
|
||||
template <typename Func> VlQueue<T_Key> find_index(Func with_func) const {
|
||||
VlQueue<T_Key> out;
|
||||
for (const auto& i : m_map)
|
||||
if (with_func(i.first, i.second)) out.push_back(i.first);
|
||||
return out;
|
||||
}
|
||||
template <typename Func> VlQueue<T_Value> find_first(Func with_func) const {
|
||||
const auto it
|
||||
= std::find_if(m_map.begin(), m_map.end(), [=](const std::pair<T_Key, T_Value>& i) {
|
||||
return with_func(i.first, i.second);
|
||||
});
|
||||
if (it == m_map.end()) return VlQueue<T_Value>{};
|
||||
return VlQueue<T_Value>::cons(it->second);
|
||||
}
|
||||
template <typename Func> VlQueue<T_Key> find_first_index(Func with_func) const {
|
||||
const auto it
|
||||
= std::find_if(m_map.begin(), m_map.end(), [=](const std::pair<T_Key, T_Value>& i) {
|
||||
return with_func(i.first, i.second);
|
||||
});
|
||||
if (it == m_map.end()) return VlQueue<T_Value>{};
|
||||
return VlQueue<T_Key>::cons(it->first);
|
||||
}
|
||||
template <typename Func> VlQueue<T_Value> find_last(Func with_func) const {
|
||||
const auto it
|
||||
= std::find_if(m_map.rbegin(), m_map.rend(), [=](const std::pair<T_Key, T_Value>& i) {
|
||||
return with_func(i.first, i.second);
|
||||
});
|
||||
if (it == m_map.rend()) return VlQueue<T_Value>{};
|
||||
return VlQueue<T_Value>::cons(it->second);
|
||||
}
|
||||
template <typename Func> VlQueue<T_Key> find_last_index(Func with_func) const {
|
||||
const auto it
|
||||
= std::find_if(m_map.rbegin(), m_map.rend(), [=](const std::pair<T_Key, T_Value>& i) {
|
||||
return with_func(i.first, i.second);
|
||||
});
|
||||
if (it == m_map.rend()) return VlQueue<T_Value>{};
|
||||
return VlQueue<T_Key>::cons(it->first);
|
||||
}
|
||||
|
||||
// Reduction operators
|
||||
VlQueue<T_Value> min() const {
|
||||
if (m_map.empty()) return VlQueue<T_Value>();
|
||||
const auto it = std::min_element(
|
||||
m_map.begin(), m_map.end(),
|
||||
[](const std::pair<T_Key, T_Value>& a, const std::pair<T_Key, T_Value>& b) {
|
||||
return a.second < b.second;
|
||||
});
|
||||
return VlQueue<T_Value>::cons(it->second);
|
||||
}
|
||||
VlQueue<T_Value> max() const {
|
||||
if (m_map.empty()) return VlQueue<T_Value>();
|
||||
const auto it = std::max_element(
|
||||
m_map.begin(), m_map.end(),
|
||||
[](const std::pair<T_Key, T_Value>& a, const std::pair<T_Key, T_Value>& b) {
|
||||
return a.second < b.second;
|
||||
});
|
||||
return VlQueue<T_Value>::cons(it->second);
|
||||
}
|
||||
|
||||
T_Value r_sum() const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_map) out += i.second;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_sum(Func with_func) const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_map) out += with_func(i.first, i.second);
|
||||
return out;
|
||||
}
|
||||
T_Value r_product() const {
|
||||
if (m_map.empty()) return T_Value(0);
|
||||
auto it = m_map.begin();
|
||||
T_Value out{it->second};
|
||||
++it;
|
||||
for (; it != m_map.end(); ++it) out *= it->second;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_product(Func with_func) const {
|
||||
if (m_map.empty()) return T_Value(0);
|
||||
auto it = m_map.begin();
|
||||
T_Value out{with_func(it->first, it->second)};
|
||||
++it;
|
||||
for (; it != m_map.end(); ++it) out *= with_func(it->first, it->second);
|
||||
return out;
|
||||
}
|
||||
T_Value r_and() const {
|
||||
if (m_map.empty()) return T_Value(0);
|
||||
auto it = m_map.begin();
|
||||
T_Value out{it->second};
|
||||
++it;
|
||||
for (; it != m_map.end(); ++it) out &= it->second;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_and(Func with_func) const {
|
||||
if (m_map.empty()) return T_Value(0);
|
||||
auto it = m_map.begin();
|
||||
T_Value out{with_func(it->first, it->second)};
|
||||
++it;
|
||||
for (; it != m_map.end(); ++it) out &= with_func(it->first, it->second);
|
||||
return out;
|
||||
}
|
||||
T_Value r_or() const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_map) out |= i.second;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_or(Func with_func) const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_map) out |= with_func(i.first, i.second);
|
||||
return out;
|
||||
}
|
||||
T_Value r_xor() const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_map) out ^= i.second;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_xor(Func with_func) const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_map) out ^= with_func(i.first, i.second);
|
||||
return out;
|
||||
}
|
||||
|
||||
// Dumping. Verilog: str = $sformatf("%p", assoc)
|
||||
std::string to_string() const {
|
||||
if (m_map.empty()) return "'{}"; // No trailing space
|
||||
std::string out = "'{";
|
||||
std::string comma;
|
||||
for (const auto& i : m_map) {
|
||||
out += comma + VL_TO_STRING(i.first) + ":" + VL_TO_STRING(i.second);
|
||||
comma = ", ";
|
||||
}
|
||||
// Default not printed - maybe random init data
|
||||
return out + "} ";
|
||||
}
|
||||
};
|
||||
|
||||
template <class T_Key, class T_Value>
|
||||
std::string VL_TO_STRING(const VlAssocArray<T_Key, T_Value>& obj) {
|
||||
return obj.to_string();
|
||||
}
|
||||
|
||||
template <class T_Key, class T_Value>
|
||||
void VL_READMEM_N(bool hex, int bits, const std::string& filename,
|
||||
VlAssocArray<T_Key, T_Value>& obj, QData start, QData end) VL_MT_SAFE {
|
||||
VlReadMem rmem{hex, bits, filename, start, end};
|
||||
if (VL_UNLIKELY(!rmem.isOpen())) return;
|
||||
while (true) {
|
||||
QData addr;
|
||||
std::string data;
|
||||
if (rmem.get(addr /*ref*/, data /*ref*/)) {
|
||||
rmem.setData(&(obj.at(addr)), data);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class T_Key, class T_Value>
|
||||
void VL_WRITEMEM_N(bool hex, int bits, const std::string& filename,
|
||||
const VlAssocArray<T_Key, T_Value>& obj, QData start, QData end) VL_MT_SAFE {
|
||||
VlWriteMem wmem{hex, bits, filename, start, end};
|
||||
if (VL_UNLIKELY(!wmem.isOpen())) return;
|
||||
for (const auto& i : obj) {
|
||||
const QData addr = i.first;
|
||||
if (addr >= start && addr <= end) wmem.print(addr, true, &(i.second));
|
||||
}
|
||||
}
|
||||
|
||||
//===================================================================
|
||||
/// Verilog unpacked array container
|
||||
/// For when a standard C++[] array is not sufficient, e.g. an
|
||||
/// array under a queue, or methods operating on the array.
|
||||
///
|
||||
/// A 'struct' as we want this to be an aggregate type that allows
|
||||
/// static aggregate initialization. Consider data members private.
|
||||
///
|
||||
/// This class may get exposed to a Verilated Model's top I/O, if the top
|
||||
/// IO has an unpacked array.
|
||||
|
||||
template <class T_Value, std::size_t T_Depth> struct VlUnpacked final {
|
||||
// MEMBERS
|
||||
// This should be the only data member, otherwise generated static initializers need updating
|
||||
T_Value m_storage[T_Depth]; // Contents of the unpacked array
|
||||
|
||||
// CONSTRUCTORS
|
||||
// Default constructors and destructor are used. Note however that C++20 requires that
|
||||
// aggregate types do not have a user declared constructor, not even an explicitly defaulted
|
||||
// one.
|
||||
|
||||
// OPERATOR METHODS
|
||||
// Default copy assignment operators are used.
|
||||
|
||||
// METHODS
|
||||
// Raw access
|
||||
WData* data() { return &m_storage[0]; }
|
||||
const WData* data() const { return &m_storage[0]; }
|
||||
|
||||
T_Value& operator[](size_t index) { return m_storage[index]; };
|
||||
const T_Value& operator[](size_t index) const { return m_storage[index]; };
|
||||
|
||||
// Dumping. Verilog: str = $sformatf("%p", assoc)
|
||||
std::string to_string() const {
|
||||
std::string out = "'{";
|
||||
std::string comma;
|
||||
for (int i = 0; i < T_Depth; ++i) {
|
||||
out += comma + VL_TO_STRING(m_storage[i]);
|
||||
comma = ", ";
|
||||
}
|
||||
return out + "} ";
|
||||
}
|
||||
};
|
||||
|
||||
template <class T_Value, std::size_t T_Depth>
|
||||
std::string VL_TO_STRING(const VlUnpacked<T_Value, T_Depth>& obj) {
|
||||
return obj.to_string();
|
||||
}
|
||||
|
||||
//===================================================================
|
||||
// Verilog class reference container
|
||||
// There are no multithreaded locks on this; the base variable must
|
||||
// be protected by other means
|
||||
|
||||
#define VlClassRef std::shared_ptr
|
||||
|
||||
template <class T> // T typically of type VlClassRef<x>
|
||||
inline T VL_NULL_CHECK(T t, const char* filename, int linenum) {
|
||||
if (VL_UNLIKELY(!t)) Verilated::nullPointerError(filename, linenum);
|
||||
return t;
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
static inline bool VL_CAST_DYNAMIC(VlClassRef<T> in, VlClassRef<U>& outr) {
|
||||
VlClassRef<U> casted = std::dynamic_pointer_cast<U>(in);
|
||||
if (VL_LIKELY(casted)) {
|
||||
outr = casted;
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
//======================================================================
|
||||
// Conversion functions
|
||||
|
||||
extern std::string VL_CVT_PACK_STR_NW(int lwords, const WDataInP lwp) VL_MT_SAFE;
|
||||
inline std::string VL_CVT_PACK_STR_NQ(QData lhs) VL_PURE {
|
||||
VlWide<VL_WQ_WORDS_E> lw;
|
||||
VL_SET_WQ(lw, lhs);
|
||||
return VL_CVT_PACK_STR_NW(VL_WQ_WORDS_E, lw);
|
||||
}
|
||||
inline std::string VL_CVT_PACK_STR_NN(const std::string& lhs) VL_PURE { return lhs; }
|
||||
inline std::string& VL_CVT_PACK_STR_NN(std::string& lhs) VL_PURE { return lhs; }
|
||||
inline std::string VL_CVT_PACK_STR_NI(IData lhs) VL_PURE {
|
||||
VlWide<VL_WQ_WORDS_E> lw;
|
||||
VL_SET_WI(lw, lhs);
|
||||
return VL_CVT_PACK_STR_NW(1, lw);
|
||||
}
|
||||
inline std::string VL_CONCATN_NNN(const std::string& lhs, const std::string& rhs) VL_PURE {
|
||||
return lhs + rhs;
|
||||
}
|
||||
inline std::string VL_REPLICATEN_NNQ(int, int, int, const std::string& lhs, IData rep) VL_PURE {
|
||||
std::string out;
|
||||
out.reserve(lhs.length() * rep);
|
||||
for (unsigned times = 0; times < rep; ++times) out += lhs;
|
||||
return out;
|
||||
}
|
||||
inline std::string VL_REPLICATEN_NNI(int obits, int lbits, int rbits, const std::string& lhs,
|
||||
IData rep) VL_PURE {
|
||||
return VL_REPLICATEN_NNQ(obits, lbits, rbits, lhs, rep);
|
||||
}
|
||||
|
||||
inline IData VL_LEN_IN(const std::string& ld) { return ld.length(); }
|
||||
extern std::string VL_TOLOWER_NN(const std::string& ld);
|
||||
extern std::string VL_TOUPPER_NN(const std::string& ld);
|
||||
|
||||
extern IData VL_FERROR_IN(IData fpi, std::string& outputr) VL_MT_SAFE;
|
||||
extern IData VL_FOPEN_NN(const std::string& filename, const std::string& mode) VL_MT_SAFE;
|
||||
extern IData VL_FOPEN_MCD_N(const std::string& filename) VL_MT_SAFE;
|
||||
extern void VL_READMEM_N(bool hex, int bits, QData depth, int array_lsb,
|
||||
const std::string& filename, void* memp, QData start,
|
||||
QData end) VL_MT_SAFE;
|
||||
extern void VL_WRITEMEM_N(bool hex, int bits, QData depth, int array_lsb,
|
||||
const std::string& filename, const void* memp, QData start,
|
||||
QData end) VL_MT_SAFE;
|
||||
extern IData VL_SSCANF_INX(int lbits, const std::string& ld, const char* formatp, ...) VL_MT_SAFE;
|
||||
extern void VL_SFORMAT_X(int obits_ignored, std::string& output, const char* formatp,
|
||||
...) VL_MT_SAFE;
|
||||
extern std::string VL_SFORMATF_NX(const char* formatp, ...) VL_MT_SAFE;
|
||||
extern void VL_TIMEFORMAT_IINI(int units, int precision, const std::string& suffix, int width,
|
||||
VerilatedContext* contextp) VL_MT_SAFE;
|
||||
extern IData VL_VALUEPLUSARGS_INW(int rbits, const std::string& ld, WDataOutP rwp) VL_MT_SAFE;
|
||||
inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, CData& rdr) VL_MT_SAFE {
|
||||
VlWide<2> rwp; // WData must always be at least 2
|
||||
IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
|
||||
if (got) rdr = rwp[0];
|
||||
return got;
|
||||
}
|
||||
inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, SData& rdr) VL_MT_SAFE {
|
||||
VlWide<2> rwp; // WData must always be at least 2
|
||||
IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
|
||||
if (got) rdr = rwp[0];
|
||||
return got;
|
||||
}
|
||||
inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, IData& rdr) VL_MT_SAFE {
|
||||
VlWide<2> rwp;
|
||||
IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
|
||||
if (got) rdr = rwp[0];
|
||||
return got;
|
||||
}
|
||||
inline IData VL_VALUEPLUSARGS_INQ(int rbits, const std::string& ld, QData& rdr) VL_MT_SAFE {
|
||||
VlWide<2> rwp;
|
||||
IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
|
||||
if (got) rdr = VL_SET_QW(rwp);
|
||||
return got;
|
||||
}
|
||||
inline IData VL_VALUEPLUSARGS_INQ(int rbits, const std::string& ld, double& rdr) VL_MT_SAFE {
|
||||
VlWide<2> rwp;
|
||||
IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
|
||||
if (got) rdr = VL_CVT_D_Q(VL_SET_QW(rwp));
|
||||
return got;
|
||||
}
|
||||
extern IData VL_VALUEPLUSARGS_INN(int, const std::string& ld, std::string& rdr) VL_MT_SAFE;
|
||||
|
||||
//======================================================================
|
||||
// Strings
|
||||
|
||||
extern std::string VL_PUTC_N(const std::string& lhs, IData rhs, CData ths) VL_PURE;
|
||||
extern CData VL_GETC_N(const std::string& lhs, IData rhs) VL_PURE;
|
||||
extern std::string VL_SUBSTR_N(const std::string& lhs, IData rhs, IData ths) VL_PURE;
|
||||
|
||||
inline IData VL_CMP_NN(const std::string& lhs, const std::string& rhs, bool ignoreCase) VL_PURE {
|
||||
// SystemVerilog does not allow a string variable to contain '\0'.
|
||||
// So C functions such as strcmp() can correctly compare strings.
|
||||
if (ignoreCase) {
|
||||
return VL_STRCASECMP(lhs.c_str(), rhs.c_str());
|
||||
} else {
|
||||
return std::strcmp(lhs.c_str(), rhs.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
extern IData VL_ATOI_N(const std::string& str, int base) VL_PURE;
|
||||
|
||||
extern IData VL_FGETS_NI(std::string& dest, IData fpi);
|
||||
|
||||
#endif // Guard
|
||||
|
|
|
|||
|
|
@ -30,7 +30,6 @@
|
|||
|
||||
#include "verilatedos.h"
|
||||
#include "verilated.h"
|
||||
#include "verilated_heavy.h"
|
||||
#include "verilated_syms.h"
|
||||
|
||||
#include <deque>
|
||||
|
|
|
|||
|
|
@ -23,7 +23,7 @@
|
|||
#define VERILATOR_VERILATED_SAVE_C_H_
|
||||
|
||||
#include "verilatedos.h"
|
||||
#include "verilated_heavy.h"
|
||||
#include "verilated.h"
|
||||
|
||||
#include <string>
|
||||
|
||||
|
|
|
|||
|
|
@ -30,7 +30,7 @@
|
|||
#define VERILATOR_VERILATED_SYMS_H_
|
||||
|
||||
#include "verilatedos.h"
|
||||
#include "verilated_heavy.h"
|
||||
#include "verilated.h"
|
||||
#include "verilated_sym_props.h"
|
||||
|
||||
#include <map>
|
||||
|
|
|
|||
|
|
@ -0,0 +1,897 @@
|
|||
// -*- mode: C++; c-file-style: "cc-mode" -*-
|
||||
//*************************************************************************
|
||||
//
|
||||
// Code available from: https://verilator.org
|
||||
//
|
||||
// Copyright 2003-2021 by Wilson Snyder. This program is free software; you can
|
||||
// redistribute it and/or modify it under the terms of either the GNU
|
||||
// Lesser General Public License Version 3 or the Perl Artistic License
|
||||
// Version 2.0.
|
||||
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
|
||||
//
|
||||
//*************************************************************************
|
||||
///
|
||||
/// \file
|
||||
/// \brief Verilated common data type containers
|
||||
///
|
||||
/// verilated.h should be included instead of this file.
|
||||
///
|
||||
/// Those macro/function/variable starting or ending in _ are internal,
|
||||
/// however many of the other function/macros here are also internal.
|
||||
///
|
||||
//*************************************************************************
|
||||
|
||||
#ifndef VERILATOR_VERILATED_TYPES_H_
|
||||
#define VERILATOR_VERILATED_TYPES_H_
|
||||
|
||||
#ifndef VERILATOR_VERILATED_H_INTERNAL_
|
||||
#error "verilated_types.h should only be included by verilated.h"
|
||||
#endif
|
||||
|
||||
//===================================================================
|
||||
// String formatters (required by below containers)
|
||||
|
||||
extern std::string VL_TO_STRING(CData lhs);
|
||||
extern std::string VL_TO_STRING(SData lhs);
|
||||
extern std::string VL_TO_STRING(IData lhs);
|
||||
extern std::string VL_TO_STRING(QData lhs);
|
||||
inline std::string VL_TO_STRING(const std::string& obj) { return "\"" + obj + "\""; }
|
||||
extern std::string VL_TO_STRING_W(int words, const WDataInP obj);
|
||||
|
||||
//=========================================================================
|
||||
// Declare net data types
|
||||
|
||||
#define VL_SIG8(name, msb, lsb) CData name ///< Declare signal, 1-8 bits
|
||||
#define VL_SIG16(name, msb, lsb) SData name ///< Declare signal, 9-16 bits
|
||||
#define VL_SIG64(name, msb, lsb) QData name ///< Declare signal, 33-64 bits
|
||||
#define VL_SIG(name, msb, lsb) IData name ///< Declare signal, 17-32 bits
|
||||
#define VL_SIGW(name, msb, lsb, words) WData name[words] ///< Declare signal, 65+ bits
|
||||
#define VL_IN8(name, msb, lsb) CData name ///< Declare input signal, 1-8 bits
|
||||
#define VL_IN16(name, msb, lsb) SData name ///< Declare input signal, 9-16 bits
|
||||
#define VL_IN64(name, msb, lsb) QData name ///< Declare input signal, 33-64 bits
|
||||
#define VL_IN(name, msb, lsb) IData name ///< Declare input signal, 17-32 bits
|
||||
#define VL_INW(name, msb, lsb, words) WData name[words] ///< Declare input signal, 65+ bits
|
||||
#define VL_INOUT8(name, msb, lsb) CData name ///< Declare bidir signal, 1-8 bits
|
||||
#define VL_INOUT16(name, msb, lsb) SData name ///< Declare bidir signal, 9-16 bits
|
||||
#define VL_INOUT64(name, msb, lsb) QData name ///< Declare bidir signal, 33-64 bits
|
||||
#define VL_INOUT(name, msb, lsb) IData name ///< Declare bidir signal, 17-32 bits
|
||||
#define VL_INOUTW(name, msb, lsb, words) WData name[words] ///< Declare bidir signal, 65+ bits
|
||||
#define VL_OUT8(name, msb, lsb) CData name ///< Declare output signal, 1-8 bits
|
||||
#define VL_OUT16(name, msb, lsb) SData name ///< Declare output signal, 9-16 bits
|
||||
#define VL_OUT64(name, msb, lsb) QData name ///< Declare output signal, 33-64bits
|
||||
#define VL_OUT(name, msb, lsb) IData name ///< Declare output signal, 17-32 bits
|
||||
#define VL_OUTW(name, msb, lsb, words) WData name[words] ///< Declare output signal, 65+ bits
|
||||
|
||||
//===================================================================
|
||||
// Shuffle RNG
|
||||
|
||||
extern vluint64_t vl_rand64() VL_MT_SAFE;
|
||||
|
||||
class VlURNG final {
|
||||
public:
|
||||
using result_type = size_t;
|
||||
static constexpr size_t min() { return 0; }
|
||||
static constexpr size_t max() { return 1ULL << 31; }
|
||||
size_t operator()() { return VL_MASK_I(31) & vl_rand64(); }
|
||||
};
|
||||
|
||||
//===================================================================
|
||||
// Readmem/Writemem operation classes
|
||||
|
||||
class VlReadMem final {
|
||||
bool m_hex; // Hex format
|
||||
int m_bits; // Bit width of values
|
||||
const std::string& m_filename; // Filename
|
||||
QData m_end; // End address (as specified by user)
|
||||
FILE* m_fp; // File handle for filename
|
||||
QData m_addr; // Next address to read
|
||||
int m_linenum; // Line number last read from file
|
||||
public:
|
||||
VlReadMem(bool hex, int bits, const std::string& filename, QData start, QData end);
|
||||
~VlReadMem();
|
||||
bool isOpen() const { return m_fp != nullptr; }
|
||||
int linenum() const { return m_linenum; }
|
||||
bool get(QData& addrr, std::string& valuer);
|
||||
void setData(void* valuep, const std::string& rhs);
|
||||
};
|
||||
|
||||
class VlWriteMem final {
|
||||
bool m_hex; // Hex format
|
||||
int m_bits; // Bit width of values
|
||||
FILE* m_fp; // File handle for filename
|
||||
QData m_addr; // Next address to write
|
||||
public:
|
||||
VlWriteMem(bool hex, int bits, const std::string& filename, QData start, QData end);
|
||||
~VlWriteMem();
|
||||
bool isOpen() const { return m_fp != nullptr; }
|
||||
void print(QData addr, bool addrstamp, const void* valuep);
|
||||
};
|
||||
|
||||
//===================================================================
|
||||
/// Verilog wide packed bit container.
|
||||
/// Similar to std::array<WData, N>, but lighter weight, only methods needed
|
||||
/// by Verilator, to help compile time.
|
||||
///
|
||||
/// A 'struct' as we want this to be an aggregate type that allows
|
||||
/// static aggregate initialization. Consider data members private.
|
||||
///
|
||||
/// For example a Verilog "bit [94:0]" will become a VlWide<3> because 3*32
|
||||
/// bits are needed to hold the 95 bits. The MSB (bit 96) must always be
|
||||
/// zero in memory, but during intermediate operations in the Verilated
|
||||
/// internals is unpredictable.
|
||||
|
||||
static int _vl_cmp_w(int words, WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE;
|
||||
|
||||
template <std::size_t T_Words> struct VlWide final {
|
||||
// MEMBERS
|
||||
// This should be the only data member, otherwise generated static initializers need updating
|
||||
EData m_storage[T_Words]; // Contents of the packed array
|
||||
|
||||
// CONSTRUCTORS
|
||||
// Default constructors and destructor are used. Note however that C++20 requires that
|
||||
// aggregate types do not have a user declared constructor, not even an explicitly defaulted
|
||||
// one.
|
||||
|
||||
// OPERATOR METHODS
|
||||
// Default copy assignment operators are used.
|
||||
operator WDataOutP() { return &m_storage[0]; } // This also allows []
|
||||
operator WDataInP() const { return &m_storage[0]; } // This also allows []
|
||||
|
||||
// METHODS
|
||||
const EData& at(size_t index) const { return m_storage[index]; }
|
||||
EData& at(size_t index) { return m_storage[index]; }
|
||||
WData* data() { return &m_storage[0]; }
|
||||
const WData* data() const { return &m_storage[0]; }
|
||||
bool operator<(const VlWide<T_Words>& rhs) const {
|
||||
return _vl_cmp_w(T_Words, data(), rhs.data()) < 0;
|
||||
}
|
||||
};
|
||||
|
||||
// Convert a C array to std::array reference by pointer magic, without copy.
|
||||
// Data type (second argument) is so the function template can automatically generate.
|
||||
template <std::size_t T_Words>
|
||||
VlWide<T_Words>& VL_CVT_W_A(const WDataInP inp, const VlWide<T_Words>&) {
|
||||
return *((VlWide<T_Words>*)inp);
|
||||
}
|
||||
|
||||
template <std::size_t T_Words> std::string VL_TO_STRING(const VlWide<T_Words>& obj) {
|
||||
return VL_TO_STRING_W(T_Words, obj.data());
|
||||
}
|
||||
|
||||
//===================================================================
|
||||
// Verilog queue and dynamic array container
|
||||
// There are no multithreaded locks on this; the base variable must
|
||||
// be protected by other means
|
||||
//
|
||||
// Bound here is the maximum size() allowed, e.g. 1 + SystemVerilog bound
|
||||
// For dynamic arrays it is always zero
|
||||
template <class T_Value, size_t T_MaxSize = 0> class VlQueue final {
|
||||
private:
|
||||
// TYPES
|
||||
using Deque = std::deque<T_Value>;
|
||||
|
||||
public:
|
||||
using const_iterator = typename Deque::const_iterator;
|
||||
|
||||
private:
|
||||
// MEMBERS
|
||||
Deque m_deque; // State of the assoc array
|
||||
T_Value m_defaultValue; // Default value
|
||||
|
||||
public:
|
||||
// CONSTRUCTORS
|
||||
// m_defaultValue isn't defaulted. Caller's constructor must do it.
|
||||
VlQueue() = default;
|
||||
~VlQueue() = default;
|
||||
VlQueue(const VlQueue&) = default;
|
||||
VlQueue(VlQueue&&) = default;
|
||||
VlQueue& operator=(const VlQueue&) = default;
|
||||
VlQueue& operator=(VlQueue&&) = default;
|
||||
|
||||
// Standard copy constructor works. Verilog: assoca = assocb
|
||||
// Also must allow conversion from a different T_MaxSize queue
|
||||
template <size_t U_MaxSize = 0> VlQueue operator=(const VlQueue<T_Value, U_MaxSize>& rhs) {
|
||||
m_deque = rhs.privateDeque();
|
||||
if (VL_UNLIKELY(T_MaxSize && T_MaxSize < m_deque.size())) m_deque.resize(T_MaxSize - 1);
|
||||
return *this;
|
||||
}
|
||||
|
||||
static VlQueue cons(const T_Value& lhs) {
|
||||
VlQueue out;
|
||||
out.push_back(lhs);
|
||||
return out;
|
||||
}
|
||||
static VlQueue cons(const T_Value& lhs, const T_Value& rhs) {
|
||||
VlQueue out;
|
||||
out.push_back(rhs);
|
||||
out.push_back(lhs);
|
||||
return out;
|
||||
}
|
||||
static VlQueue cons(const VlQueue& lhs, const T_Value& rhs) {
|
||||
VlQueue out = lhs;
|
||||
out.push_front(rhs);
|
||||
return out;
|
||||
}
|
||||
static VlQueue cons(const T_Value& lhs, const VlQueue& rhs) {
|
||||
VlQueue out = rhs;
|
||||
out.push_back(lhs);
|
||||
return out;
|
||||
}
|
||||
static VlQueue cons(const VlQueue& lhs, const VlQueue& rhs) {
|
||||
VlQueue out = rhs;
|
||||
for (const auto& i : lhs.m_deque) out.push_back(i);
|
||||
return out;
|
||||
}
|
||||
|
||||
// METHODS
|
||||
T_Value& atDefault() { return m_defaultValue; }
|
||||
const T_Value& atDefault() const { return m_defaultValue; }
|
||||
const Deque& privateDeque() const { return m_deque; }
|
||||
|
||||
// Size. Verilog: function int size(), or int num()
|
||||
int size() const { return m_deque.size(); }
|
||||
// Clear array. Verilog: function void delete([input index])
|
||||
void clear() { m_deque.clear(); }
|
||||
void erase(vlsint32_t index) {
|
||||
if (VL_LIKELY(index >= 0 && index < m_deque.size()))
|
||||
m_deque.erase(m_deque.begin() + index);
|
||||
}
|
||||
|
||||
// Dynamic array new[] becomes a renew()
|
||||
void renew(size_t size) {
|
||||
clear();
|
||||
m_deque.resize(size, atDefault());
|
||||
}
|
||||
// Dynamic array new[]() becomes a renew_copy()
|
||||
void renew_copy(size_t size, const VlQueue<T_Value, T_MaxSize>& rhs) {
|
||||
if (size == 0) {
|
||||
clear();
|
||||
} else {
|
||||
*this = rhs;
|
||||
m_deque.resize(size, atDefault());
|
||||
}
|
||||
}
|
||||
|
||||
// function void q.push_front(value)
|
||||
void push_front(const T_Value& value) {
|
||||
m_deque.push_front(value);
|
||||
if (VL_UNLIKELY(T_MaxSize != 0 && m_deque.size() > T_MaxSize)) m_deque.pop_back();
|
||||
}
|
||||
// function void q.push_back(value)
|
||||
void push_back(const T_Value& value) {
|
||||
if (VL_LIKELY(T_MaxSize == 0 || m_deque.size() < T_MaxSize)) m_deque.push_back(value);
|
||||
}
|
||||
// function value_t q.pop_front();
|
||||
T_Value pop_front() {
|
||||
if (m_deque.empty()) return m_defaultValue;
|
||||
T_Value v = m_deque.front();
|
||||
m_deque.pop_front();
|
||||
return v;
|
||||
}
|
||||
// function value_t q.pop_back();
|
||||
T_Value pop_back() {
|
||||
if (m_deque.empty()) return m_defaultValue;
|
||||
T_Value v = m_deque.back();
|
||||
m_deque.pop_back();
|
||||
return v;
|
||||
}
|
||||
|
||||
// Setting. Verilog: assoc[index] = v
|
||||
// Can't just overload operator[] or provide a "at" reference to set,
|
||||
// because we need to be able to insert only when the value is set
|
||||
T_Value& at(vlsint32_t index) {
|
||||
static T_Value s_throwAway;
|
||||
// Needs to work for dynamic arrays, so does not use T_MaxSize
|
||||
if (VL_UNLIKELY(index < 0 || index >= m_deque.size())) {
|
||||
s_throwAway = atDefault();
|
||||
return s_throwAway;
|
||||
} else {
|
||||
return m_deque[index];
|
||||
}
|
||||
}
|
||||
// Accessing. Verilog: v = assoc[index]
|
||||
const T_Value& at(vlsint32_t index) const {
|
||||
static T_Value s_throwAway;
|
||||
// Needs to work for dynamic arrays, so does not use T_MaxSize
|
||||
if (VL_UNLIKELY(index < 0 || index >= m_deque.size())) {
|
||||
return atDefault();
|
||||
} else {
|
||||
return m_deque[index];
|
||||
}
|
||||
}
|
||||
// function void q.insert(index, value);
|
||||
void insert(vlsint32_t index, const T_Value& value) {
|
||||
if (VL_UNLIKELY(index < 0 || index >= m_deque.size())) return;
|
||||
m_deque.insert(m_deque.begin() + index, value);
|
||||
}
|
||||
|
||||
// Return slice q[lsb:msb]
|
||||
VlQueue slice(vlsint32_t lsb, vlsint32_t msb) const {
|
||||
VlQueue out;
|
||||
if (VL_UNLIKELY(lsb < 0)) lsb = 0;
|
||||
if (VL_UNLIKELY(lsb >= m_deque.size())) lsb = m_deque.size() - 1;
|
||||
if (VL_UNLIKELY(msb >= m_deque.size())) msb = m_deque.size() - 1;
|
||||
for (vlsint32_t i = lsb; i <= msb; ++i) out.push_back(m_deque[i]);
|
||||
return out;
|
||||
}
|
||||
|
||||
// For save/restore
|
||||
const_iterator begin() const { return m_deque.begin(); }
|
||||
const_iterator end() const { return m_deque.end(); }
|
||||
|
||||
// Methods
|
||||
void sort() { std::sort(m_deque.begin(), m_deque.end()); }
|
||||
template <typename Func> void sort(Func with_func) {
|
||||
// with_func returns arbitrary type to use for the sort comparison
|
||||
std::sort(m_deque.begin(), m_deque.end(), [=](const T_Value& a, const T_Value& b) {
|
||||
// index number is meaninless with sort, as it changes
|
||||
return with_func(0, a) < with_func(0, b);
|
||||
});
|
||||
}
|
||||
void rsort() { std::sort(m_deque.rbegin(), m_deque.rend()); }
|
||||
template <typename Func> void rsort(Func with_func) {
|
||||
// with_func returns arbitrary type to use for the sort comparison
|
||||
std::sort(m_deque.rbegin(), m_deque.rend(), [=](const T_Value& a, const T_Value& b) {
|
||||
// index number is meaninless with sort, as it changes
|
||||
return with_func(0, a) < with_func(0, b);
|
||||
});
|
||||
}
|
||||
void reverse() { std::reverse(m_deque.begin(), m_deque.end()); }
|
||||
void shuffle() { std::shuffle(m_deque.begin(), m_deque.end(), VlURNG{}); }
|
||||
VlQueue unique() const {
|
||||
VlQueue out;
|
||||
std::unordered_set<T_Value> saw;
|
||||
for (const auto& i : m_deque) {
|
||||
auto it = saw.find(i);
|
||||
if (it == saw.end()) {
|
||||
saw.insert(it, i);
|
||||
out.push_back(i);
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
VlQueue<IData> unique_index() const {
|
||||
VlQueue<IData> out;
|
||||
IData index = 0;
|
||||
std::unordered_set<T_Value> saw;
|
||||
for (const auto& i : m_deque) {
|
||||
auto it = saw.find(i);
|
||||
if (it == saw.end()) {
|
||||
saw.insert(it, i);
|
||||
out.push_back(index);
|
||||
}
|
||||
++index;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
template <typename Func> VlQueue find(Func with_func) const {
|
||||
VlQueue out;
|
||||
IData index = 0;
|
||||
for (const auto& i : m_deque) {
|
||||
if (with_func(index, i)) out.push_back(i);
|
||||
++index;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
template <typename Func> VlQueue<IData> find_index(Func with_func) const {
|
||||
VlQueue<IData> out;
|
||||
IData index = 0;
|
||||
for (const auto& i : m_deque) {
|
||||
if (with_func(index, i)) out.push_back(index);
|
||||
++index;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
template <typename Func> VlQueue find_first(Func with_func) const {
|
||||
// Can't use std::find_if as need index number
|
||||
IData index = 0;
|
||||
for (const auto& i : m_deque) {
|
||||
if (with_func(index, i)) return VlQueue::cons(i);
|
||||
++index;
|
||||
}
|
||||
return VlQueue{};
|
||||
}
|
||||
template <typename Func> VlQueue<IData> find_first_index(Func with_func) const {
|
||||
IData index = 0;
|
||||
for (const auto& i : m_deque) {
|
||||
if (with_func(index, i)) return VlQueue<IData>::cons(index);
|
||||
++index;
|
||||
}
|
||||
return VlQueue<IData>{};
|
||||
}
|
||||
template <typename Func> VlQueue find_last(Func with_func) const {
|
||||
IData index = m_deque.size() - 1;
|
||||
for (auto it = m_deque.rbegin(); it != m_deque.rend(); ++it) {
|
||||
if (with_func(index, *it)) return VlQueue::cons(*it);
|
||||
--index;
|
||||
}
|
||||
return VlQueue{};
|
||||
}
|
||||
template <typename Func> VlQueue<IData> find_last_index(Func with_func) const {
|
||||
IData index = m_deque.size() - 1;
|
||||
for (auto it = m_deque.rbegin(); it != m_deque.rend(); ++it) {
|
||||
if (with_func(index, *it)) return VlQueue<IData>::cons(index);
|
||||
--index;
|
||||
}
|
||||
return VlQueue<IData>{};
|
||||
}
|
||||
|
||||
// Reduction operators
|
||||
VlQueue min() const {
|
||||
if (m_deque.empty()) return VlQueue{};
|
||||
const auto it = std::min_element(m_deque.begin(), m_deque.end());
|
||||
return VlQueue::cons(*it);
|
||||
}
|
||||
VlQueue max() const {
|
||||
if (m_deque.empty()) return VlQueue{};
|
||||
const auto it = std::max_element(m_deque.begin(), m_deque.end());
|
||||
return VlQueue::cons(*it);
|
||||
}
|
||||
|
||||
T_Value r_sum() const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_deque) out += i;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_sum(Func with_func) const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
IData index = 0;
|
||||
for (const auto& i : m_deque) out += with_func(index++, i);
|
||||
return out;
|
||||
}
|
||||
T_Value r_product() const {
|
||||
if (m_deque.empty()) return T_Value(0);
|
||||
auto it = m_deque.begin();
|
||||
T_Value out{*it};
|
||||
++it;
|
||||
for (; it != m_deque.end(); ++it) out *= *it;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_product(Func with_func) const {
|
||||
if (m_deque.empty()) return T_Value(0);
|
||||
auto it = m_deque.begin();
|
||||
IData index = 0;
|
||||
T_Value out{with_func(index, *it)};
|
||||
++it;
|
||||
++index;
|
||||
for (; it != m_deque.end(); ++it) out *= with_func(index++, *it);
|
||||
return out;
|
||||
}
|
||||
T_Value r_and() const {
|
||||
if (m_deque.empty()) return T_Value(0);
|
||||
auto it = m_deque.begin();
|
||||
T_Value out{*it};
|
||||
++it;
|
||||
for (; it != m_deque.end(); ++it) out &= *it;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_and(Func with_func) const {
|
||||
if (m_deque.empty()) return T_Value(0);
|
||||
auto it = m_deque.begin();
|
||||
IData index = 0;
|
||||
T_Value out{with_func(index, *it)};
|
||||
++it;
|
||||
++index;
|
||||
for (; it != m_deque.end(); ++it) out &= with_func(index, *it);
|
||||
return out;
|
||||
}
|
||||
T_Value r_or() const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_deque) out |= i;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_or(Func with_func) const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
IData index = 0;
|
||||
for (const auto& i : m_deque) out |= with_func(index++, i);
|
||||
return out;
|
||||
}
|
||||
T_Value r_xor() const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_deque) out ^= i;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_xor(Func with_func) const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
IData index = 0;
|
||||
for (const auto& i : m_deque) out ^= with_func(index++, i);
|
||||
return out;
|
||||
}
|
||||
|
||||
// Dumping. Verilog: str = $sformatf("%p", assoc)
|
||||
std::string to_string() const {
|
||||
if (m_deque.empty()) return "'{}"; // No trailing space
|
||||
std::string out = "'{";
|
||||
std::string comma;
|
||||
for (const auto& i : m_deque) {
|
||||
out += comma + VL_TO_STRING(i);
|
||||
comma = ", ";
|
||||
}
|
||||
return out + "} ";
|
||||
}
|
||||
};
|
||||
|
||||
template <class T_Value> std::string VL_TO_STRING(const VlQueue<T_Value>& obj) {
|
||||
return obj.to_string();
|
||||
}
|
||||
|
||||
//===================================================================
|
||||
// Verilog associative array container
|
||||
// There are no multithreaded locks on this; the base variable must
|
||||
// be protected by other means
|
||||
//
|
||||
template <class T_Key, class T_Value> class VlAssocArray final {
|
||||
private:
|
||||
// TYPES
|
||||
using Map = std::map<T_Key, T_Value>;
|
||||
|
||||
public:
|
||||
using const_iterator = typename Map::const_iterator;
|
||||
|
||||
private:
|
||||
// MEMBERS
|
||||
Map m_map; // State of the assoc array
|
||||
T_Value m_defaultValue; // Default value
|
||||
|
||||
public:
|
||||
// CONSTRUCTORS
|
||||
// m_defaultValue isn't defaulted. Caller's constructor must do it.
|
||||
VlAssocArray() = default;
|
||||
~VlAssocArray() = default;
|
||||
VlAssocArray(const VlAssocArray&) = default;
|
||||
VlAssocArray(VlAssocArray&&) = default;
|
||||
VlAssocArray& operator=(const VlAssocArray&) = default;
|
||||
VlAssocArray& operator=(VlAssocArray&&) = default;
|
||||
|
||||
// METHODS
|
||||
T_Value& atDefault() { return m_defaultValue; }
|
||||
const T_Value& atDefault() const { return m_defaultValue; }
|
||||
|
||||
// Size of array. Verilog: function int size(), or int num()
|
||||
int size() const { return m_map.size(); }
|
||||
// Clear array. Verilog: function void delete([input index])
|
||||
void clear() { m_map.clear(); }
|
||||
void erase(const T_Key& index) { m_map.erase(index); }
|
||||
// Return 0/1 if element exists. Verilog: function int exists(input index)
|
||||
int exists(const T_Key& index) const { return m_map.find(index) != m_map.end(); }
|
||||
// Return first element. Verilog: function int first(ref index);
|
||||
int first(T_Key& indexr) const {
|
||||
const auto it = m_map.cbegin();
|
||||
if (it == m_map.end()) return 0;
|
||||
indexr = it->first;
|
||||
return 1;
|
||||
}
|
||||
// Return last element. Verilog: function int last(ref index)
|
||||
int last(T_Key& indexr) const {
|
||||
const auto it = m_map.crbegin();
|
||||
if (it == m_map.rend()) return 0;
|
||||
indexr = it->first;
|
||||
return 1;
|
||||
}
|
||||
// Return next element. Verilog: function int next(ref index)
|
||||
int next(T_Key& indexr) const {
|
||||
auto it = m_map.find(indexr);
|
||||
if (VL_UNLIKELY(it == m_map.end())) return 0;
|
||||
++it;
|
||||
if (VL_UNLIKELY(it == m_map.end())) return 0;
|
||||
indexr = it->first;
|
||||
return 1;
|
||||
}
|
||||
// Return prev element. Verilog: function int prev(ref index)
|
||||
int prev(T_Key& indexr) const {
|
||||
auto it = m_map.find(indexr);
|
||||
if (VL_UNLIKELY(it == m_map.end())) return 0;
|
||||
if (VL_UNLIKELY(it == m_map.begin())) return 0;
|
||||
--it;
|
||||
indexr = it->first;
|
||||
return 1;
|
||||
}
|
||||
// Setting. Verilog: assoc[index] = v
|
||||
// Can't just overload operator[] or provide a "at" reference to set,
|
||||
// because we need to be able to insert only when the value is set
|
||||
T_Value& at(const T_Key& index) {
|
||||
const auto it = m_map.find(index);
|
||||
if (it == m_map.end()) {
|
||||
std::pair<typename Map::iterator, bool> pit = m_map.emplace(index, m_defaultValue);
|
||||
return pit.first->second;
|
||||
}
|
||||
return it->second;
|
||||
}
|
||||
// Accessing. Verilog: v = assoc[index]
|
||||
const T_Value& at(const T_Key& index) const {
|
||||
const auto it = m_map.find(index);
|
||||
if (it == m_map.end()) {
|
||||
return m_defaultValue;
|
||||
} else {
|
||||
return it->second;
|
||||
}
|
||||
}
|
||||
// Setting as a chained operation
|
||||
VlAssocArray& set(const T_Key& index, const T_Value& value) {
|
||||
at(index) = value;
|
||||
return *this;
|
||||
}
|
||||
VlAssocArray& setDefault(const T_Value& value) {
|
||||
atDefault() = value;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// For save/restore
|
||||
const_iterator begin() const { return m_map.begin(); }
|
||||
const_iterator end() const { return m_map.end(); }
|
||||
|
||||
// Methods
|
||||
VlQueue<T_Value> unique() const {
|
||||
VlQueue<T_Value> out;
|
||||
std::set<T_Value> saw;
|
||||
for (const auto& i : m_map) {
|
||||
auto it = saw.find(i.second);
|
||||
if (it == saw.end()) {
|
||||
saw.insert(it, i.second);
|
||||
out.push_back(i.second);
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
VlQueue<T_Key> unique_index() const {
|
||||
VlQueue<T_Key> out;
|
||||
std::set<T_Key> saw;
|
||||
for (const auto& i : m_map) {
|
||||
auto it = saw.find(i.second);
|
||||
if (it == saw.end()) {
|
||||
saw.insert(it, i.second);
|
||||
out.push_back(i.first);
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
template <typename Func> VlQueue<T_Value> find(Func with_func) const {
|
||||
VlQueue<T_Value> out;
|
||||
for (const auto& i : m_map)
|
||||
if (with_func(i.first, i.second)) out.push_back(i.second);
|
||||
return out;
|
||||
}
|
||||
template <typename Func> VlQueue<T_Key> find_index(Func with_func) const {
|
||||
VlQueue<T_Key> out;
|
||||
for (const auto& i : m_map)
|
||||
if (with_func(i.first, i.second)) out.push_back(i.first);
|
||||
return out;
|
||||
}
|
||||
template <typename Func> VlQueue<T_Value> find_first(Func with_func) const {
|
||||
const auto it
|
||||
= std::find_if(m_map.begin(), m_map.end(), [=](const std::pair<T_Key, T_Value>& i) {
|
||||
return with_func(i.first, i.second);
|
||||
});
|
||||
if (it == m_map.end()) return VlQueue<T_Value>{};
|
||||
return VlQueue<T_Value>::cons(it->second);
|
||||
}
|
||||
template <typename Func> VlQueue<T_Key> find_first_index(Func with_func) const {
|
||||
const auto it
|
||||
= std::find_if(m_map.begin(), m_map.end(), [=](const std::pair<T_Key, T_Value>& i) {
|
||||
return with_func(i.first, i.second);
|
||||
});
|
||||
if (it == m_map.end()) return VlQueue<T_Value>{};
|
||||
return VlQueue<T_Key>::cons(it->first);
|
||||
}
|
||||
template <typename Func> VlQueue<T_Value> find_last(Func with_func) const {
|
||||
const auto it
|
||||
= std::find_if(m_map.rbegin(), m_map.rend(), [=](const std::pair<T_Key, T_Value>& i) {
|
||||
return with_func(i.first, i.second);
|
||||
});
|
||||
if (it == m_map.rend()) return VlQueue<T_Value>{};
|
||||
return VlQueue<T_Value>::cons(it->second);
|
||||
}
|
||||
template <typename Func> VlQueue<T_Key> find_last_index(Func with_func) const {
|
||||
const auto it
|
||||
= std::find_if(m_map.rbegin(), m_map.rend(), [=](const std::pair<T_Key, T_Value>& i) {
|
||||
return with_func(i.first, i.second);
|
||||
});
|
||||
if (it == m_map.rend()) return VlQueue<T_Value>{};
|
||||
return VlQueue<T_Key>::cons(it->first);
|
||||
}
|
||||
|
||||
// Reduction operators
|
||||
VlQueue<T_Value> min() const {
|
||||
if (m_map.empty()) return VlQueue<T_Value>();
|
||||
const auto it = std::min_element(
|
||||
m_map.begin(), m_map.end(),
|
||||
[](const std::pair<T_Key, T_Value>& a, const std::pair<T_Key, T_Value>& b) {
|
||||
return a.second < b.second;
|
||||
});
|
||||
return VlQueue<T_Value>::cons(it->second);
|
||||
}
|
||||
VlQueue<T_Value> max() const {
|
||||
if (m_map.empty()) return VlQueue<T_Value>();
|
||||
const auto it = std::max_element(
|
||||
m_map.begin(), m_map.end(),
|
||||
[](const std::pair<T_Key, T_Value>& a, const std::pair<T_Key, T_Value>& b) {
|
||||
return a.second < b.second;
|
||||
});
|
||||
return VlQueue<T_Value>::cons(it->second);
|
||||
}
|
||||
|
||||
T_Value r_sum() const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_map) out += i.second;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_sum(Func with_func) const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_map) out += with_func(i.first, i.second);
|
||||
return out;
|
||||
}
|
||||
T_Value r_product() const {
|
||||
if (m_map.empty()) return T_Value(0);
|
||||
auto it = m_map.begin();
|
||||
T_Value out{it->second};
|
||||
++it;
|
||||
for (; it != m_map.end(); ++it) out *= it->second;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_product(Func with_func) const {
|
||||
if (m_map.empty()) return T_Value(0);
|
||||
auto it = m_map.begin();
|
||||
T_Value out{with_func(it->first, it->second)};
|
||||
++it;
|
||||
for (; it != m_map.end(); ++it) out *= with_func(it->first, it->second);
|
||||
return out;
|
||||
}
|
||||
T_Value r_and() const {
|
||||
if (m_map.empty()) return T_Value(0);
|
||||
auto it = m_map.begin();
|
||||
T_Value out{it->second};
|
||||
++it;
|
||||
for (; it != m_map.end(); ++it) out &= it->second;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_and(Func with_func) const {
|
||||
if (m_map.empty()) return T_Value(0);
|
||||
auto it = m_map.begin();
|
||||
T_Value out{with_func(it->first, it->second)};
|
||||
++it;
|
||||
for (; it != m_map.end(); ++it) out &= with_func(it->first, it->second);
|
||||
return out;
|
||||
}
|
||||
T_Value r_or() const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_map) out |= i.second;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_or(Func with_func) const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_map) out |= with_func(i.first, i.second);
|
||||
return out;
|
||||
}
|
||||
T_Value r_xor() const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_map) out ^= i.second;
|
||||
return out;
|
||||
}
|
||||
template <typename Func> T_Value r_xor(Func with_func) const {
|
||||
T_Value out(0); // Type must have assignment operator
|
||||
for (const auto& i : m_map) out ^= with_func(i.first, i.second);
|
||||
return out;
|
||||
}
|
||||
|
||||
// Dumping. Verilog: str = $sformatf("%p", assoc)
|
||||
std::string to_string() const {
|
||||
if (m_map.empty()) return "'{}"; // No trailing space
|
||||
std::string out = "'{";
|
||||
std::string comma;
|
||||
for (const auto& i : m_map) {
|
||||
out += comma + VL_TO_STRING(i.first) + ":" + VL_TO_STRING(i.second);
|
||||
comma = ", ";
|
||||
}
|
||||
// Default not printed - maybe random init data
|
||||
return out + "} ";
|
||||
}
|
||||
};
|
||||
|
||||
template <class T_Key, class T_Value>
|
||||
std::string VL_TO_STRING(const VlAssocArray<T_Key, T_Value>& obj) {
|
||||
return obj.to_string();
|
||||
}
|
||||
|
||||
template <class T_Key, class T_Value>
|
||||
void VL_READMEM_N(bool hex, int bits, const std::string& filename,
|
||||
VlAssocArray<T_Key, T_Value>& obj, QData start, QData end) VL_MT_SAFE {
|
||||
VlReadMem rmem{hex, bits, filename, start, end};
|
||||
if (VL_UNLIKELY(!rmem.isOpen())) return;
|
||||
while (true) {
|
||||
QData addr;
|
||||
std::string data;
|
||||
if (rmem.get(addr /*ref*/, data /*ref*/)) {
|
||||
rmem.setData(&(obj.at(addr)), data);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class T_Key, class T_Value>
|
||||
void VL_WRITEMEM_N(bool hex, int bits, const std::string& filename,
|
||||
const VlAssocArray<T_Key, T_Value>& obj, QData start, QData end) VL_MT_SAFE {
|
||||
VlWriteMem wmem{hex, bits, filename, start, end};
|
||||
if (VL_UNLIKELY(!wmem.isOpen())) return;
|
||||
for (const auto& i : obj) {
|
||||
const QData addr = i.first;
|
||||
if (addr >= start && addr <= end) wmem.print(addr, true, &(i.second));
|
||||
}
|
||||
}
|
||||
|
||||
//===================================================================
|
||||
/// Verilog unpacked array container
|
||||
/// For when a standard C++[] array is not sufficient, e.g. an
|
||||
/// array under a queue, or methods operating on the array.
|
||||
///
|
||||
/// A 'struct' as we want this to be an aggregate type that allows
|
||||
/// static aggregate initialization. Consider data members private.
|
||||
///
|
||||
/// This class may get exposed to a Verilated Model's top I/O, if the top
|
||||
/// IO has an unpacked array.
|
||||
|
||||
template <class T_Value, std::size_t T_Depth> struct VlUnpacked final {
|
||||
// MEMBERS
|
||||
// This should be the only data member, otherwise generated static initializers need updating
|
||||
T_Value m_storage[T_Depth]; // Contents of the unpacked array
|
||||
|
||||
// CONSTRUCTORS
|
||||
// Default constructors and destructor are used. Note however that C++20 requires that
|
||||
// aggregate types do not have a user declared constructor, not even an explicitly defaulted
|
||||
// one.
|
||||
|
||||
// OPERATOR METHODS
|
||||
// Default copy assignment operators are used.
|
||||
|
||||
// METHODS
|
||||
// Raw access
|
||||
WData* data() { return &m_storage[0]; }
|
||||
const WData* data() const { return &m_storage[0]; }
|
||||
|
||||
T_Value& operator[](size_t index) { return m_storage[index]; };
|
||||
const T_Value& operator[](size_t index) const { return m_storage[index]; };
|
||||
|
||||
// Dumping. Verilog: str = $sformatf("%p", assoc)
|
||||
std::string to_string() const {
|
||||
std::string out = "'{";
|
||||
std::string comma;
|
||||
for (int i = 0; i < T_Depth; ++i) {
|
||||
out += comma + VL_TO_STRING(m_storage[i]);
|
||||
comma = ", ";
|
||||
}
|
||||
return out + "} ";
|
||||
}
|
||||
};
|
||||
|
||||
template <class T_Value, std::size_t T_Depth>
|
||||
std::string VL_TO_STRING(const VlUnpacked<T_Value, T_Depth>& obj) {
|
||||
return obj.to_string();
|
||||
}
|
||||
|
||||
//===================================================================
|
||||
// Verilog class reference container
|
||||
// There are no multithreaded locks on this; the base variable must
|
||||
// be protected by other means
|
||||
|
||||
#define VlClassRef std::shared_ptr
|
||||
|
||||
template <class T> // T typically of type VlClassRef<x>
|
||||
inline T VL_NULL_CHECK(T t, const char* filename, int linenum) {
|
||||
if (VL_UNLIKELY(!t)) Verilated::nullPointerError(filename, linenum);
|
||||
return t;
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
static inline bool VL_CAST_DYNAMIC(VlClassRef<T> in, VlClassRef<U>& outr) {
|
||||
VlClassRef<U> casted = std::dynamic_pointer_cast<U>(in);
|
||||
if (VL_LIKELY(casted)) {
|
||||
outr = casted;
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
//======================================================================
|
||||
|
||||
#endif // Guard
|
||||
|
|
@ -49,7 +49,7 @@ class EmitCConstPool final : public EmitCConstInit {
|
|||
ofp->puts("// DESCRIPTION: Verilator output: Constant pool\n");
|
||||
ofp->puts("//\n");
|
||||
ofp->puts("\n");
|
||||
ofp->puts("#include \"verilated_heavy.h\"\n");
|
||||
ofp->puts("#include \"verilated.h\"\n");
|
||||
return ofp;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -303,7 +303,7 @@ class EmitCHeader final : public EmitCConstInit {
|
|||
// Include files
|
||||
puts("\n");
|
||||
ofp()->putsIntTopInclude();
|
||||
puts("#include \"verilated_heavy.h\"\n");
|
||||
puts("#include \"verilated.h\"\n");
|
||||
if (v3Global.opt.mtasks()) puts("#include \"verilated_threads.h\"\n");
|
||||
if (v3Global.opt.savable()) puts("#include \"verilated_save.h\"\n");
|
||||
if (v3Global.opt.coverage()) puts("#include \"verilated_cov.h\"\n");
|
||||
|
|
|
|||
|
|
@ -181,7 +181,7 @@ class EmitCImp final : EmitCFunc {
|
|||
puts("// See " + topClassName() + ".h for the primary calling header\n");
|
||||
|
||||
// Include files
|
||||
puts("\n#include \"verilated_heavy.h\"\n");
|
||||
puts("\n#include \"verilated.h\"\n");
|
||||
if (v3Global.dpi()) puts("#include \"verilated_dpi.h\"\n");
|
||||
puts("\n");
|
||||
for (const string& name : headers) puts("#include \"" + name + ".h\"\n");
|
||||
|
|
|
|||
|
|
@ -56,7 +56,7 @@ class EmitCModel final : public EmitCFunc {
|
|||
// Include files
|
||||
puts("\n");
|
||||
ofp()->putsIntTopInclude();
|
||||
puts("#include \"verilated_heavy.h\"\n");
|
||||
puts("#include \"verilated.h\"\n");
|
||||
if (v3Global.opt.mtasks()) puts("#include \"verilated_threads.h\"\n");
|
||||
if (v3Global.opt.savable()) puts("#include \"verilated_save.h\"\n");
|
||||
if (v3Global.opt.coverage()) puts("#include \"verilated_cov.h\"\n");
|
||||
|
|
|
|||
|
|
@ -389,7 +389,7 @@ void EmitCSyms::emitSymHdr() {
|
|||
|
||||
puts("\n");
|
||||
ofp()->putsIntTopInclude();
|
||||
puts("#include \"verilated_heavy.h\"\n");
|
||||
puts("#include \"verilated.h\"\n");
|
||||
if (v3Global.needTraceDumper()) {
|
||||
puts("#include \"" + v3Global.opt.traceSourceLang() + ".h\"\n");
|
||||
}
|
||||
|
|
|
|||
|
|
@ -53,6 +53,7 @@ foreach my $file (sort keys %hit) {
|
|||
if (!$hit{$file}
|
||||
&& $file !~ /_sc/
|
||||
&& $file !~ /_fst/
|
||||
&& $file !~ /_heavy/
|
||||
&& ($file !~ /_thread/ || $Self->cfg_with_threaded)) {
|
||||
error("Include file not covered by t_verilated_all test: ",$file);
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue