Includes: Fix spacing and style in prep for new LXT2. No functional change.

This commit is contained in:
Wilson Snyder 2018-08-22 19:14:06 -04:00
parent aad5c3ae75
commit 0b84222500
4 changed files with 536 additions and 536 deletions

View File

@ -39,7 +39,7 @@
// SPDIFF_ON // SPDIFF_ON
#ifndef O_LARGEFILE // For example on WIN32 #ifndef O_LARGEFILE // For example on WIN32
# define O_LARGEFILE 0 # define O_LARGEFILE 0
#endif #endif
#ifndef O_NONBLOCK #ifndef O_NONBLOCK
@ -58,25 +58,25 @@ private:
VerilatedMutex s_vcdMutex; ///< Protect the singleton VerilatedMutex s_vcdMutex; ///< Protect the singleton
VcdVec s_vcdVecp VL_GUARDED_BY(s_vcdMutex); ///< List of all created traces VcdVec s_vcdVecp VL_GUARDED_BY(s_vcdMutex); ///< List of all created traces
}; };
static Singleton& singleton() { static Singleton s; return s; } static Singleton& singleton() { static Singleton s; return s; }
public: public:
static void pushVcd(VerilatedVcd* vcdp) VL_EXCLUDES(singleton().s_vcdMutex) { static void pushVcd(VerilatedVcd* vcdp) VL_EXCLUDES(singleton().s_vcdMutex) {
VerilatedLockGuard lock(singleton().s_vcdMutex); VerilatedLockGuard lock(singleton().s_vcdMutex);
singleton().s_vcdVecp.push_back(vcdp); singleton().s_vcdVecp.push_back(vcdp);
} }
static void removeVcd(const VerilatedVcd* vcdp) VL_EXCLUDES(singleton().s_vcdMutex) { static void removeVcd(const VerilatedVcd* vcdp) VL_EXCLUDES(singleton().s_vcdMutex) {
VerilatedLockGuard lock(singleton().s_vcdMutex); VerilatedLockGuard lock(singleton().s_vcdMutex);
VcdVec::iterator pos = find(singleton().s_vcdVecp.begin(), singleton().s_vcdVecp.end(), vcdp); VcdVec::iterator pos = find(singleton().s_vcdVecp.begin(), singleton().s_vcdVecp.end(), vcdp);
if (pos != singleton().s_vcdVecp.end()) { singleton().s_vcdVecp.erase(pos); } if (pos != singleton().s_vcdVecp.end()) { singleton().s_vcdVecp.erase(pos); }
} }
static void flush_all() VL_EXCLUDES(singleton().s_vcdMutex) VL_MT_UNSAFE_ONE { static void flush_all() VL_EXCLUDES(singleton().s_vcdMutex) VL_MT_UNSAFE_ONE {
// Thread safety: Although this function is protected by a mutex so perhaps // Thread safety: Although this function is protected by a mutex so perhaps
// in the future we can allow tracing in separate threads, vcdp->flush() assumes call from single thread // in the future we can allow tracing in separate threads, vcdp->flush() assumes call from single thread
VerilatedLockGuard lock(singleton().s_vcdMutex); VerilatedLockGuard lock(singleton().s_vcdMutex);
for (VcdVec::const_iterator it=singleton().s_vcdVecp.begin(); it!=singleton().s_vcdVecp.end(); ++it) { for (VcdVec::const_iterator it=singleton().s_vcdVecp.begin(); it!=singleton().s_vcdVecp.end(); ++it) {
VerilatedVcd* vcdp = *it; VerilatedVcd* vcdp = *it;
vcdp->flush(); vcdp->flush();
} }
} }
}; };
@ -91,16 +91,16 @@ public:
class VerilatedVcdCallInfo { class VerilatedVcdCallInfo {
protected: protected:
friend class VerilatedVcd; friend class VerilatedVcd;
VerilatedVcdCallback_t m_initcb; ///< Initialization Callback function VerilatedVcdCallback_t m_initcb; ///< Initialization Callback function
VerilatedVcdCallback_t m_fullcb; ///< Full Dumping Callback function VerilatedVcdCallback_t m_fullcb; ///< Full Dumping Callback function
VerilatedVcdCallback_t m_changecb; ///< Incremental Dumping Callback function VerilatedVcdCallback_t m_changecb; ///< Incremental Dumping Callback function
void* m_userthis; ///< Fake "this" for caller void* m_userthis; ///< Fake "this" for caller
vluint32_t m_code; ///< Starting code number vluint32_t m_code; ///< Starting code number
// CONSTRUCTORS // CONSTRUCTORS
VerilatedVcdCallInfo (VerilatedVcdCallback_t icb, VerilatedVcdCallback_t fcb, VerilatedVcdCallInfo(VerilatedVcdCallback_t icb, VerilatedVcdCallback_t fcb,
VerilatedVcdCallback_t changecb, VerilatedVcdCallback_t changecb,
void* ut, vluint32_t code) void* ut, vluint32_t code)
: m_initcb(icb), m_fullcb(fcb), m_changecb(changecb), m_userthis(ut), m_code(code) {}; : m_initcb(icb), m_fullcb(fcb), m_changecb(changecb), m_userthis(ut), m_code(code) {};
~VerilatedVcdCallInfo() {} ~VerilatedVcdCallInfo() {}
}; };
@ -146,7 +146,7 @@ VerilatedVcd::VerilatedVcd(VerilatedVcdFile* filep)
m_wroteBytes = 0; m_wroteBytes = 0;
} }
void VerilatedVcd::open (const char* filename) { void VerilatedVcd::open(const char* filename) {
m_assertOne.check(); m_assertOne.check();
if (isOpen()) return; if (isOpen()) return;
@ -159,64 +159,64 @@ void VerilatedVcd::open (const char* filename) {
Verilated::flushCb(&flush_all); Verilated::flushCb(&flush_all);
// SPDIFF_ON // SPDIFF_ON
openNext (m_rolloverMB!=0); openNext(m_rolloverMB!=0);
if (!isOpen()) return; if (!isOpen()) return;
dumpHeader(); dumpHeader();
// Allocate space now we know the number of codes // Allocate space now we know the number of codes
if (!m_sigs_oldvalp) { if (!m_sigs_oldvalp) {
m_sigs_oldvalp = new vluint32_t [m_nextCode+10]; m_sigs_oldvalp = new vluint32_t [m_nextCode+10];
} }
if (m_rolloverMB) { if (m_rolloverMB) {
openNext(true); openNext(true);
if (!isOpen()) return; if (!isOpen()) return;
} }
} }
void VerilatedVcd::openNext (bool incFilename) { void VerilatedVcd::openNext(bool incFilename) {
// Open next filename in concat sequence, mangle filename if // Open next filename in concat sequence, mangle filename if
// incFilename is true. // incFilename is true.
m_assertOne.check(); m_assertOne.check();
closePrev(); // Close existing closePrev(); // Close existing
if (incFilename) { if (incFilename) {
// Find _0000.{ext} in filename // Find _0000.{ext} in filename
std::string name = m_filename; std::string name = m_filename;
size_t pos=name.rfind("."); size_t pos=name.rfind(".");
if (pos>8 && 0==strncmp("_cat",name.c_str()+pos-8,4) if (pos>8 && 0==strncmp("_cat",name.c_str()+pos-8,4)
&& isdigit(name.c_str()[pos-4]) && isdigit(name.c_str()[pos-4])
&& isdigit(name.c_str()[pos-3]) && isdigit(name.c_str()[pos-3])
&& isdigit(name.c_str()[pos-2]) && isdigit(name.c_str()[pos-2])
&& isdigit(name.c_str()[pos-1])) { && isdigit(name.c_str()[pos-1])) {
// Increment code. // Increment code.
if ((++(name[pos-1])) > '9') { if ((++(name[pos-1])) > '9') {
name[pos-1] = '0'; name[pos-1] = '0';
if ((++(name[pos-2])) > '9') { if ((++(name[pos-2])) > '9') {
name[pos-2] = '0'; name[pos-2] = '0';
if ((++(name[pos-3])) > '9') { if ((++(name[pos-3])) > '9') {
name[pos-3] = '0'; name[pos-3] = '0';
if ((++(name[pos-4])) > '9') { if ((++(name[pos-4])) > '9') {
name[pos-4] = '0'; name[pos-4] = '0';
}}}} }}}}
} else { } else {
// Append _cat0000 // Append _cat0000
name.insert(pos,"_cat0000"); name.insert(pos,"_cat0000");
} }
m_filename = name; m_filename = name;
} }
if (m_filename[0]=='|') { if (m_filename[0]=='|') {
assert(0); // Not supported yet. assert(0); // Not supported yet.
} else { } else {
// cppcheck-suppress duplicateExpression // cppcheck-suppress duplicateExpression
if (!m_filep->open(m_filename)) { if (!m_filep->open(m_filename)) {
// User code can check isOpen() // User code can check isOpen()
m_isOpen = false; m_isOpen = false;
return; return;
} }
} }
m_isOpen = true; m_isOpen = true;
m_fullDump = true; // First dump must be full m_fullDump = true; // First dump must be full
m_wroteBytes = 0; m_wroteBytes = 0;
} }
@ -226,9 +226,9 @@ void VerilatedVcd::makeNameMap() {
m_nextCode = 1; m_nextCode = 1;
m_namemapp = new NameMap; m_namemapp = new NameMap;
for (vluint32_t ent = 0; ent< m_callbacks.size(); ent++) { for (vluint32_t ent = 0; ent< m_callbacks.size(); ent++) {
VerilatedVcdCallInfo *cip = m_callbacks[ent]; VerilatedVcdCallInfo *cip = m_callbacks[ent];
cip->m_code = m_nextCode; cip->m_code = m_nextCode;
(cip->m_initcb) (this, cip->m_userthis, cip->m_code); (cip->m_initcb) (this, cip->m_userthis, cip->m_code);
} }
// Though not speced, it's illegal to generate a vcd with signals // Though not speced, it's illegal to generate a vcd with signals
@ -237,21 +237,21 @@ void VerilatedVcd::makeNameMap() {
// This comes from user instantiations with no name - IE Vtop(""). // This comes from user instantiations with no name - IE Vtop("").
bool nullScope = false; bool nullScope = false;
for (NameMap::const_iterator it=m_namemapp->begin(); it!=m_namemapp->end(); ++it) { for (NameMap::const_iterator it=m_namemapp->begin(); it!=m_namemapp->end(); ++it) {
const std::string& hiername = it->first; const std::string& hiername = it->first;
if (hiername.size() >= 1 && hiername[0] == '\t') nullScope=true; if (hiername.size() >= 1 && hiername[0] == '\t') nullScope=true;
} }
if (nullScope) { if (nullScope) {
NameMap* newmapp = new NameMap; NameMap* newmapp = new NameMap;
for (NameMap::const_iterator it=m_namemapp->begin(); it!=m_namemapp->end(); ++it) { for (NameMap::const_iterator it=m_namemapp->begin(); it!=m_namemapp->end(); ++it) {
const std::string& hiername = it->first; const std::string& hiername = it->first;
const std::string& decl = it->second; const std::string& decl = it->second;
std::string newname = std::string("top"); std::string newname = std::string("top");
if (hiername[0] != '\t') newname += ' '; if (hiername[0] != '\t') newname += ' ';
newname += hiername; newname += hiername;
newmapp->insert(std::make_pair(newname,decl)); newmapp->insert(std::make_pair(newname,decl));
} }
deleteNameMap(); deleteNameMap();
m_namemapp = newmapp; m_namemapp = newmapp;
} }
} }
@ -266,13 +266,13 @@ VerilatedVcd::~VerilatedVcd() {
deleteNameMap(); deleteNameMap();
if (m_filep && m_fileNewed) { delete m_filep; m_filep = NULL; } if (m_filep && m_fileNewed) { delete m_filep; m_filep = NULL; }
for (CallbackVec::const_iterator it=m_callbacks.begin(); it!=m_callbacks.end(); ++it) { for (CallbackVec::const_iterator it=m_callbacks.begin(); it!=m_callbacks.end(); ++it) {
delete (*it); delete (*it);
} }
m_callbacks.clear(); m_callbacks.clear();
VerilatedVcdSingleton::removeVcd(this); VerilatedVcdSingleton::removeVcd(this);
} }
void VerilatedVcd::closePrev () { void VerilatedVcd::closePrev() {
// This function is on the flush() call path // This function is on the flush() call path
if (!isOpen()) return; if (!isOpen()) return;
@ -281,7 +281,7 @@ void VerilatedVcd::closePrev () {
m_filep->close(); m_filep->close();
} }
void VerilatedVcd::closeErr () { void VerilatedVcd::closeErr() {
// This function is on the flush() call path // This function is on the flush() call path
// Close due to an error. We might abort before even getting here, // Close due to an error. We might abort before even getting here,
// depending on the definition of vl_fatal. // depending on the definition of vl_fatal.
@ -297,37 +297,37 @@ void VerilatedVcd::close() {
m_assertOne.check(); m_assertOne.check();
if (!isOpen()) return; if (!isOpen()) return;
if (m_evcd) { if (m_evcd) {
printStr("$vcdclose "); printStr("$vcdclose ");
printTime(m_timeLastDump); printTime(m_timeLastDump);
printStr(" $end\n"); printStr(" $end\n");
} }
closePrev(); closePrev();
} }
void VerilatedVcd::printStr (const char* str) { void VerilatedVcd::printStr(const char* str) {
// Not fast... // Not fast...
while (*str) { while (*str) {
*m_writep++ = *str++; *m_writep++ = *str++;
bufferCheck(); bufferCheck();
} }
} }
void VerilatedVcd::printQuad (vluint64_t n) { void VerilatedVcd::printQuad(vluint64_t n) {
char buf [100]; char buf [100];
sprintf(buf,"%" VL_PRI64 "u", n); sprintf(buf,"%" VL_PRI64 "u", n);
printStr(buf); printStr(buf);
} }
void VerilatedVcd::printTime (vluint64_t timeui) { void VerilatedVcd::printTime(vluint64_t timeui) {
// VCD file format specification does not allow non-integers for timestamps // VCD file format specification does not allow non-integers for timestamps
// Dinotrace doesn't mind, but Cadence vvision seems to choke // Dinotrace doesn't mind, but Cadence vvision seems to choke
if (VL_UNLIKELY(timeui < m_timeLastDump)) { if (VL_UNLIKELY(timeui < m_timeLastDump)) {
timeui = m_timeLastDump; timeui = m_timeLastDump;
static VL_THREAD_LOCAL bool backTime = false; static VL_THREAD_LOCAL bool backTime = false;
if (!backTime) { if (!backTime) {
backTime = true; backTime = true;
VL_PRINTF_MT("%%Warning: VCD time is moving backwards, wave file may be incorrect.\n"); VL_PRINTF_MT("%%Warning: VCD time is moving backwards, wave file may be incorrect.\n");
} }
} }
m_timeLastDump = timeui; m_timeLastDump = timeui;
printQuad(timeui); printQuad(timeui);
@ -337,17 +337,17 @@ void VerilatedVcd::bufferResize(vluint64_t minsize) {
// minsize is size of largest write. We buffer at least 8 times as much data, // minsize is size of largest write. We buffer at least 8 times as much data,
// writing when we are 3/4 full (with thus 2*minsize remaining free) // writing when we are 3/4 full (with thus 2*minsize remaining free)
if (VL_UNLIKELY(minsize > m_wrChunkSize)) { if (VL_UNLIKELY(minsize > m_wrChunkSize)) {
char* oldbufp = m_wrBufp; char* oldbufp = m_wrBufp;
m_wrChunkSize = minsize*2; m_wrChunkSize = minsize*2;
m_wrBufp = new char [m_wrChunkSize * 8]; m_wrBufp = new char [m_wrChunkSize * 8];
memcpy(m_wrBufp, oldbufp, m_writep - oldbufp); memcpy(m_wrBufp, oldbufp, m_writep - oldbufp);
m_writep = m_wrBufp + (m_writep - oldbufp); m_writep = m_wrBufp + (m_writep - oldbufp);
m_wrFlushp = m_wrBufp + m_wrChunkSize * 6; m_wrFlushp = m_wrBufp + m_wrChunkSize * 6;
delete [] oldbufp; oldbufp=NULL; delete [] oldbufp; oldbufp=NULL;
} }
} }
void VerilatedVcd::bufferFlush () VL_MT_UNSAFE_ONE { void VerilatedVcd::bufferFlush() VL_MT_UNSAFE_ONE {
// This function is on the flush() call path // This function is on the flush() call path
// We add output data to m_writep. // We add output data to m_writep.
// When it gets nearly full we dump it using this routine which calls write() // When it gets nearly full we dump it using this routine which calls write()
@ -356,22 +356,22 @@ void VerilatedVcd::bufferFlush () VL_MT_UNSAFE_ONE {
if (VL_UNLIKELY(!isOpen())) return; if (VL_UNLIKELY(!isOpen())) return;
char* wp = m_wrBufp; char* wp = m_wrBufp;
while (1) { while (1) {
ssize_t remaining = (m_writep - wp); ssize_t remaining = (m_writep - wp);
if (remaining==0) break; if (remaining==0) break;
errno = 0; errno = 0;
ssize_t got = m_filep->write(wp, remaining); ssize_t got = m_filep->write(wp, remaining);
if (got>0) { if (got>0) {
wp += got; wp += got;
m_wroteBytes += got; m_wroteBytes += got;
} else if (got < 0) { } else if (got < 0) {
if (errno != EAGAIN && errno != EINTR) { if (errno != EAGAIN && errno != EINTR) {
// write failed, presume error (perhaps out of disk space) // write failed, presume error (perhaps out of disk space)
std::string msg = std::string("VerilatedVcd::bufferFlush: ")+strerror(errno); std::string msg = std::string("VerilatedVcd::bufferFlush: ")+strerror(errno);
VL_FATAL_MT("",0,"",msg.c_str()); VL_FATAL_MT("",0,"",msg.c_str());
closeErr(); closeErr();
break; break;
} }
} }
} }
// Reset buffer // Reset buffer
@ -381,19 +381,19 @@ void VerilatedVcd::bufferFlush () VL_MT_UNSAFE_ONE {
//============================================================================= //=============================================================================
// Simple methods // Simple methods
void VerilatedVcd::set_time_unit (const char* unitp) { void VerilatedVcd::set_time_unit(const char* unitp) {
//cout<<" set_time_unit ("<<unitp<<") == "<<timescaleToDouble(unitp) //cout<<" set_time_unit("<<unitp<<") == "<<timescaleToDouble(unitp)
// <<" == "<<doubleToTimescale(timescaleToDouble(unitp))<<endl; // <<" == "<<doubleToTimescale(timescaleToDouble(unitp))<<endl;
m_timeUnit = timescaleToDouble(unitp); m_timeUnit = timescaleToDouble(unitp);
} }
void VerilatedVcd::set_time_resolution (const char* unitp) { void VerilatedVcd::set_time_resolution(const char* unitp) {
//cout<<"set_time_resolution ("<<unitp<<") == "<<timescaleToDouble(unitp) //cout<<"set_time_resolution("<<unitp<<") == "<<timescaleToDouble(unitp)
// <<" == "<<doubleToTimescale(timescaleToDouble(unitp))<<endl; // <<" == "<<doubleToTimescale(timescaleToDouble(unitp))<<endl;
m_timeRes = timescaleToDouble(unitp); m_timeRes = timescaleToDouble(unitp);
} }
double VerilatedVcd::timescaleToDouble (const char* unitp) { double VerilatedVcd::timescaleToDouble(const char* unitp) {
char* endp; char* endp;
double value = strtod(unitp, &endp); double value = strtod(unitp, &endp);
if (value==0.0 && endp==unitp) value=1; // On error so we allow just "ns" to return 1e-9. if (value==0.0 && endp==unitp) value=1; // On error so we allow just "ns" to return 1e-9.
@ -411,9 +411,9 @@ double VerilatedVcd::timescaleToDouble (const char* unitp) {
return value; return value;
} }
std::string VerilatedVcd::doubleToTimescale (double value) { std::string VerilatedVcd::doubleToTimescale(double value) {
const char* suffixp = "s"; const char* suffixp = "s";
if (value>=1e0) { suffixp="s"; value *= 1e0; } if (value>=1e0) { suffixp="s"; value *= 1e0; }
else if (value>=1e-3 ) { suffixp="ms"; value *= 1e3; } else if (value>=1e-3 ) { suffixp="ms"; value *= 1e3; }
else if (value>=1e-6 ) { suffixp="us"; value *= 1e6; } else if (value>=1e-6 ) { suffixp="us"; value *= 1e6; }
else if (value>=1e-9 ) { suffixp="ns"; value *= 1e9; } else if (value>=1e-9 ) { suffixp="ns"; value *= 1e9; }
@ -427,14 +427,14 @@ std::string VerilatedVcd::doubleToTimescale (double value) {
//============================================================================= //=============================================================================
// Definitions // Definitions
void VerilatedVcd::printIndent (int level_change) { void VerilatedVcd::printIndent(int level_change) {
if (level_change<0) m_modDepth += level_change; if (level_change<0) m_modDepth += level_change;
assert(m_modDepth>=0); assert(m_modDepth>=0);
for (int i=0; i<m_modDepth; i++) printStr(" "); for (int i=0; i<m_modDepth; i++) printStr(" ");
if (level_change>0) m_modDepth += level_change; if (level_change>0) m_modDepth += level_change;
} }
void VerilatedVcd::dumpHeader () { void VerilatedVcd::dumpHeader() {
printStr("$version Generated by VerilatedVcd $end\n"); printStr("$version Generated by VerilatedVcd $end\n");
time_t time_str = time(NULL); time_t time_str = time(NULL);
printStr("$date "); printStr(ctime(&time_str)); printStr(" $end\n"); printStr("$date "); printStr(ctime(&time_str)); printStr(" $end\n");
@ -447,7 +447,7 @@ void VerilatedVcd::dumpHeader () {
makeNameMap(); makeNameMap();
// Signal header // Signal header
assert (m_modDepth==0); assert(m_modDepth==0);
printIndent(1); printIndent(1);
printStr("\n"); printStr("\n");
@ -459,78 +459,78 @@ void VerilatedVcd::dumpHeader () {
// Print the signal names // Print the signal names
const char* lastName = ""; const char* lastName = "";
for (NameMap::const_iterator it=m_namemapp->begin(); it!=m_namemapp->end(); ++it) { for (NameMap::const_iterator it=m_namemapp->begin(); it!=m_namemapp->end(); ++it) {
const std::string& hiernamestr = it->first; const std::string& hiernamestr = it->first;
const std::string& decl = it->second; const std::string& decl = it->second;
// Determine difference between the old and new names // Determine difference between the old and new names
const char* hiername = hiernamestr.c_str(); const char* hiername = hiernamestr.c_str();
const char* lp = lastName; const char* lp = lastName;
const char* np = hiername; const char* np = hiername;
lastName = hiername; lastName = hiername;
// Skip common prefix, it must break at a space or tab // Skip common prefix, it must break at a space or tab
for (; *np && (*np == *lp); np++, lp++) {} for (; *np && (*np == *lp); np++, lp++) {}
while (np!=hiername && *np && *np!=' ' && *np!='\t') { np--; lp--; } while (np!=hiername && *np && *np!=' ' && *np!='\t') { np--; lp--; }
//printf("hier %s\n lp=%s\n np=%s\n",hiername,lp,np); //printf("hier %s\n lp=%s\n np=%s\n",hiername,lp,np);
// Any extra spaces in last name are scope ups we need to do // Any extra spaces in last name are scope ups we need to do
bool first = true; bool first = true;
for (; *lp; lp++) { for (; *lp; lp++) {
if (*lp==' ' || (first && *lp!='\t')) { if (*lp==' ' || (first && *lp!='\t')) {
printIndent(-1); printIndent(-1);
printStr("$upscope $end\n"); printStr("$upscope $end\n");
} }
first = false; first = false;
} }
// Any new spaces are scope downs we need to do // Any new spaces are scope downs we need to do
while (*np) { while (*np) {
if (*np==' ') np++; if (*np==' ') np++;
if (*np=='\t') break; // tab means signal name starts if (*np=='\t') break; // tab means signal name starts
printIndent(1); printIndent(1);
printStr("$scope module "); printStr("$scope module ");
for (; *np && *np!=' ' && *np!='\t'; np++) { for (; *np && *np!=' ' && *np!='\t'; np++) {
if (*np=='[') printStr("("); if (*np=='[') printStr("(");
else if (*np==']') printStr(")"); else if (*np==']') printStr(")");
else *m_writep++=*np; else *m_writep++=*np;
} }
printStr(" $end\n"); printStr(" $end\n");
} }
printIndent(0); printIndent(0);
printStr(decl.c_str()); printStr(decl.c_str());
} }
while (m_modDepth>1) { while (m_modDepth>1) {
printIndent(-1); printIndent(-1);
printStr("$upscope $end\n"); printStr("$upscope $end\n");
} }
printIndent(-1); printIndent(-1);
printStr("$enddefinitions $end\n\n\n"); printStr("$enddefinitions $end\n\n\n");
assert (m_modDepth==0); assert(m_modDepth==0);
// Reclaim storage // Reclaim storage
deleteNameMap(); deleteNameMap();
} }
void VerilatedVcd::module (const std::string& name) { void VerilatedVcd::module(const std::string& name) {
m_assertOne.check(); m_assertOne.check();
m_modName = name; m_modName = name;
} }
void VerilatedVcd::declare (vluint32_t code, const char* name, const char* wirep, void VerilatedVcd::declare(vluint32_t code, const char* name, const char* wirep,
int arraynum, bool tri, bool bussed, int msb, int lsb) { int arraynum, bool tri, bool bussed, int msb, int lsb) {
if (!code) { VL_FATAL_MT(__FILE__,__LINE__,"","Internal: internal trace problem, code 0 is illegal"); } if (!code) { VL_FATAL_MT(__FILE__,__LINE__,"","Internal: internal trace problem, code 0 is illegal"); }
int bits = ((msb>lsb)?(msb-lsb):(lsb-msb))+1; int bits = ((msb>lsb)?(msb-lsb):(lsb-msb))+1;
int codesNeeded = 1+int(bits/32); int codesNeeded = 1+int(bits/32);
if (tri) codesNeeded *= 2; // Space in change array for __en signals if (tri) codesNeeded *= 2; // Space in change array for __en signals
// Make sure array is large enough // Make sure array is large enough
m_nextCode = std::max(m_nextCode, code+codesNeeded); m_nextCode = std::max(m_nextCode, code+codesNeeded);
if (m_sigs.capacity() <= m_nextCode) { if (m_sigs.capacity() <= m_nextCode) {
m_sigs.reserve(m_nextCode*2); // Power-of-2 allocation speeds things up m_sigs.reserve(m_nextCode*2); // Power-of-2 allocation speeds things up
} }
// Make sure write buffer is large enough (one character per bit), plus header // Make sure write buffer is large enough (one character per bit), plus header
@ -551,14 +551,14 @@ void VerilatedVcd::declare (vluint32_t code, const char* name, const char* wirep
std::string hiername; std::string hiername;
std::string basename; std::string basename;
for (const char* cp=nameasstr.c_str(); *cp; cp++) { for (const char* cp=nameasstr.c_str(); *cp; cp++) {
if (isScopeEscape(*cp)) { if (isScopeEscape(*cp)) {
// Ahh, we've just read a scope, not a basename // Ahh, we've just read a scope, not a basename
if (hiername!="") hiername += " "; if (hiername!="") hiername += " ";
hiername += basename; hiername += basename;
basename = ""; basename = "";
} else { } else {
basename += *cp; basename += *cp;
} }
} }
hiername += "\t"+basename; hiername += "\t"+basename;
@ -570,49 +570,49 @@ void VerilatedVcd::declare (vluint32_t code, const char* name, const char* wirep
decl += buf; decl += buf;
if (m_evcd) { if (m_evcd) {
sprintf(buf, "<%u", code); sprintf(buf, "<%u", code);
decl += buf; decl += buf;
} else { } else {
decl += stringCode(code); decl += stringCode(code);
} }
decl += " "; decl += " ";
decl += basename; decl += basename;
if (arraynum>=0) { if (arraynum>=0) {
sprintf(buf, "(%d)", arraynum); sprintf(buf, "(%d)", arraynum);
decl += buf; decl += buf;
hiername += buf; hiername += buf;
} }
if (bussed) { if (bussed) {
sprintf(buf, " [%d:%d]", msb, lsb); sprintf(buf, " [%d:%d]", msb, lsb);
decl += buf; decl += buf;
} }
decl += " $end\n"; decl += " $end\n";
m_namemapp->insert(std::make_pair(hiername,decl)); m_namemapp->insert(std::make_pair(hiername,decl));
} }
void VerilatedVcd::declBit (vluint32_t code, const char* name, int arraynum) void VerilatedVcd::declBit (vluint32_t code, const char* name, int arraynum)
{ declare (code, name, "wire", arraynum, false, false, 0, 0); } { declare(code, name, "wire", arraynum, false, false, 0, 0); }
void VerilatedVcd::declBus (vluint32_t code, const char* name, int arraynum, int msb, int lsb) void VerilatedVcd::declBus (vluint32_t code, const char* name, int arraynum, int msb, int lsb)
{ declare (code, name, "wire", arraynum, false, true, msb, lsb); } { declare(code, name, "wire", arraynum, false, true, msb, lsb); }
void VerilatedVcd::declQuad (vluint32_t code, const char* name, int arraynum, int msb, int lsb) void VerilatedVcd::declQuad (vluint32_t code, const char* name, int arraynum, int msb, int lsb)
{ declare (code, name, "wire", arraynum, false, true, msb, lsb); } { declare(code, name, "wire", arraynum, false, true, msb, lsb); }
void VerilatedVcd::declArray (vluint32_t code, const char* name, int arraynum, int msb, int lsb) void VerilatedVcd::declArray (vluint32_t code, const char* name, int arraynum, int msb, int lsb)
{ declare (code, name, "wire", arraynum, false, true, msb, lsb); } { declare(code, name, "wire", arraynum, false, true, msb, lsb); }
void VerilatedVcd::declTriBit (vluint32_t code, const char* name, int arraynum) void VerilatedVcd::declTriBit (vluint32_t code, const char* name, int arraynum)
{ declare (code, name, "wire", arraynum, true, false, 0, 0); } { declare(code, name, "wire", arraynum, true, false, 0, 0); }
void VerilatedVcd::declTriBus (vluint32_t code, const char* name, int arraynum, int msb, int lsb) void VerilatedVcd::declTriBus (vluint32_t code, const char* name, int arraynum, int msb, int lsb)
{ declare (code, name, "wire", arraynum, true, true, msb, lsb); } { declare(code, name, "wire", arraynum, true, true, msb, lsb); }
void VerilatedVcd::declTriQuad (vluint32_t code, const char* name, int arraynum, int msb, int lsb) void VerilatedVcd::declTriQuad (vluint32_t code, const char* name, int arraynum, int msb, int lsb)
{ declare (code, name, "wire", arraynum, true, true, msb, lsb); } { declare(code, name, "wire", arraynum, true, true, msb, lsb); }
void VerilatedVcd::declTriArray (vluint32_t code, const char* name, int arraynum, int msb, int lsb) void VerilatedVcd::declTriArray (vluint32_t code, const char* name, int arraynum, int msb, int lsb)
{ declare (code, name, "wire", arraynum, true, true, msb, lsb); } { declare(code, name, "wire", arraynum, true, true, msb, lsb); }
void VerilatedVcd::declFloat (vluint32_t code, const char* name, int arraynum) void VerilatedVcd::declFloat (vluint32_t code, const char* name, int arraynum)
{ declare (code, name, "real", arraynum, false, false, 31, 0); } { declare(code, name, "real", arraynum, false, false, 31, 0); }
void VerilatedVcd::declDouble (vluint32_t code, const char* name, int arraynum) void VerilatedVcd::declDouble (vluint32_t code, const char* name, int arraynum)
{ declare (code, name, "real", arraynum, false, false, 63, 0); } { declare(code, name, "real", arraynum, false, false, 63, 0); }
//============================================================================= //=============================================================================
void VerilatedVcd::fullDouble (vluint32_t code, const double newval) { void VerilatedVcd::fullDouble(vluint32_t code, const double newval) {
// cppcheck-suppress invalidPointerCast // cppcheck-suppress invalidPointerCast
(*(reinterpret_cast<double*>(&m_sigs_oldvalp[code]))) = newval; (*(reinterpret_cast<double*>(&m_sigs_oldvalp[code]))) = newval;
// Buffer can't overflow before sprintf; we sized during declaration // Buffer can't overflow before sprintf; we sized during declaration
@ -621,7 +621,7 @@ void VerilatedVcd::fullDouble (vluint32_t code, const double newval) {
*m_writep++=' '; printCode(code); *m_writep++='\n'; *m_writep++=' '; printCode(code); *m_writep++='\n';
bufferCheck(); bufferCheck();
} }
void VerilatedVcd::fullFloat (vluint32_t code, const float newval) { void VerilatedVcd::fullFloat(vluint32_t code, const float newval) {
// cppcheck-suppress invalidPointerCast // cppcheck-suppress invalidPointerCast
(*(reinterpret_cast<float*>(&m_sigs_oldvalp[code]))) = newval; (*(reinterpret_cast<float*>(&m_sigs_oldvalp[code]))) = newval;
// Buffer can't overflow before sprintf; we sized during declaration // Buffer can't overflow before sprintf; we sized during declaration
@ -634,14 +634,14 @@ void VerilatedVcd::fullFloat (vluint32_t code, const float newval) {
//============================================================================= //=============================================================================
// Callbacks // Callbacks
void VerilatedVcd::addCallback VL_MT_UNSAFE_ONE ( void VerilatedVcd::addCallback(
VerilatedVcdCallback_t initcb, VerilatedVcdCallback_t fullcb, VerilatedVcdCallback_t changecb, VerilatedVcdCallback_t initcb, VerilatedVcdCallback_t fullcb, VerilatedVcdCallback_t changecb,
void* userthis) void* userthis) VL_MT_UNSAFE_ONE
{ {
m_assertOne.check(); m_assertOne.check();
if (VL_UNLIKELY(isOpen())) { if (VL_UNLIKELY(isOpen())) {
std::string msg = std::string("Internal: ")+__FILE__+"::"+__FUNCTION__+" called with already open file"; std::string msg = std::string("Internal: ")+__FILE__+"::"+__FUNCTION__+" called with already open file";
VL_FATAL_MT(__FILE__,__LINE__,"",msg.c_str()); VL_FATAL_MT(__FILE__,__LINE__,"",msg.c_str());
} }
VerilatedVcdCallInfo* vci = new VerilatedVcdCallInfo(initcb, fullcb, changecb, userthis, m_nextCode); VerilatedVcdCallInfo* vci = new VerilatedVcdCallInfo(initcb, fullcb, changecb, userthis, m_nextCode);
m_callbacks.push_back(vci); m_callbacks.push_back(vci);
@ -650,37 +650,37 @@ void VerilatedVcd::addCallback VL_MT_UNSAFE_ONE (
//============================================================================= //=============================================================================
// Dumping // Dumping
void VerilatedVcd::dumpFull (vluint64_t timeui) { void VerilatedVcd::dumpFull(vluint64_t timeui) {
m_assertOne.check(); m_assertOne.check();
dumpPrep (timeui); dumpPrep(timeui);
Verilated::quiesce(); Verilated::quiesce();
for (vluint32_t ent = 0; ent< m_callbacks.size(); ent++) { for (vluint32_t ent = 0; ent< m_callbacks.size(); ent++) {
VerilatedVcdCallInfo *cip = m_callbacks[ent]; VerilatedVcdCallInfo *cip = m_callbacks[ent];
(cip->m_fullcb) (this, cip->m_userthis, cip->m_code); (cip->m_fullcb) (this, cip->m_userthis, cip->m_code);
} }
} }
void VerilatedVcd::dump (vluint64_t timeui) { void VerilatedVcd::dump(vluint64_t timeui) {
m_assertOne.check(); m_assertOne.check();
if (!isOpen()) return; if (!isOpen()) return;
if (VL_UNLIKELY(m_fullDump)) { if (VL_UNLIKELY(m_fullDump)) {
m_fullDump = false; // No need for more full dumps m_fullDump = false; // No need for more full dumps
dumpFull(timeui); dumpFull(timeui);
return; return;
} }
if (VL_UNLIKELY(m_rolloverMB && m_wroteBytes > this->m_rolloverMB)) { if (VL_UNLIKELY(m_rolloverMB && m_wroteBytes > this->m_rolloverMB)) {
openNext(true); openNext(true);
if (!isOpen()) return; if (!isOpen()) return;
} }
dumpPrep (timeui); dumpPrep(timeui);
Verilated::quiesce(); Verilated::quiesce();
for (vluint32_t ent = 0; ent< m_callbacks.size(); ent++) { for (vluint32_t ent = 0; ent< m_callbacks.size(); ent++) {
VerilatedVcdCallInfo *cip = m_callbacks[ent]; VerilatedVcdCallInfo *cip = m_callbacks[ent];
(cip->m_changecb) (this, cip->m_userthis, cip->m_code); (cip->m_changecb) (this, cip->m_userthis, cip->m_code);
} }
} }
void VerilatedVcd::dumpPrep (vluint64_t timeui) { void VerilatedVcd::dumpPrep(vluint64_t timeui) {
printStr("#"); printStr("#");
printTime(timeui); printTime(timeui);
printStr("\n"); printStr("\n");
@ -705,40 +705,40 @@ vluint8_t ch;
vluint64_t timestamp = 1; vluint64_t timestamp = 1;
double doub = 0; double doub = 0;
void vcdInit (VerilatedVcd* vcdp, void* userthis, vluint32_t code) { void vcdInit(VerilatedVcd* vcdp, void* userthis, vluint32_t code) {
vcdp->scopeEscape('.'); vcdp->scopeEscape('.');
vcdp->module ("top"); vcdp->module("top");
vcdp->declBus (0x2, "v1",-1,5,1); vcdp->declBus(0x2, "v1",-1,5,1);
vcdp->declBus (0x3, "v2",-1,6,0); vcdp->declBus(0x3, "v2",-1,6,0);
vcdp->module ("top.sub1"); vcdp->module("top.sub1");
vcdp->declBit (0x4, "s1",-1); vcdp->declBit(0x4, "s1",-1);
vcdp->declBit (0x5, "ch",-1); vcdp->declBit(0x5, "ch",-1);
vcdp->module ("top.sub2"); vcdp->module("top.sub2");
vcdp->declArray (0x6, "s2",-1, 40,3); vcdp->declArray(0x6, "s2",-1, 40,3);
// Note need to add 3 for next code. // Note need to add 3 for next code.
vcdp->module ("top2"); vcdp->module("top2");
vcdp->declBus (0x2, "t2v1",-1,4,1); vcdp->declBus(0x2, "t2v1",-1,4,1);
vcdp->declTriBit (0x10, "io1", -1); vcdp->declTriBit (0x10, "io1", -1);
vcdp->declTriBus (0x12, "io5", -1,4,0); vcdp->declTriBus (0x12, "io5", -1,4,0);
vcdp->declTriArray (0x16, "io96",-1,95,0); vcdp->declTriArray(0x16, "io96",-1,95,0);
// Note need to add 6 for next code. // Note need to add 6 for next code.
vcdp->declDouble (0x1c, "doub",-1); vcdp->declDouble (0x1c, "doub",-1);
// Note need to add 2 for next code. // Note need to add 2 for next code.
} }
void vcdFull (VerilatedVcd* vcdp, void* userthis, vluint32_t code) { void vcdFull(VerilatedVcd* vcdp, void* userthis, vluint32_t code) {
vcdp->fullBus (0x2, v1,5); vcdp->fullBus (0x2, v1,5);
vcdp->fullBus (0x3, v2,7); vcdp->fullBus (0x3, v2,7);
vcdp->fullBit (0x4, s1); vcdp->fullBit (0x4, s1);
vcdp->fullBus (0x5, ch,2); vcdp->fullBus (0x5, ch,2);
vcdp->fullArray(0x6, &s2[0], 38); vcdp->fullArray(0x6, &s2[0], 38);
vcdp->fullTriBit (0x10, tri96[0]&1, tri96__tri[0]&1); vcdp->fullTriBit (0x10, tri96[0]&1, tri96__tri[0]&1);
vcdp->fullTriBus (0x12, tri96[0]&0x1f, tri96__tri[0]&0x1f, 5); vcdp->fullTriBus (0x12, tri96[0]&0x1f, tri96__tri[0]&0x1f, 5);
vcdp->fullTriArray (0x16, tri96, tri96__tri, 96); vcdp->fullTriArray(0x16, tri96, tri96__tri, 96);
vcdp->fullDouble(0x1c, doub); vcdp->fullDouble(0x1c, doub);
} }
void vcdChange (VerilatedVcd* vcdp, void* userthis, vluint32_t code) { void vcdChange(VerilatedVcd* vcdp, void* userthis, vluint32_t code) {
vcdp->chgBus (0x2, v1,5); vcdp->chgBus (0x2, v1,5);
vcdp->chgBus (0x3, v2,7); vcdp->chgBus (0x3, v2,7);
vcdp->chgBit (0x4, s1); vcdp->chgBit (0x4, s1);
@ -760,34 +760,34 @@ main() {
ch = 0; ch = 0;
doub = 0; doub = 0;
{ {
VerilatedVcdC* vcdp = new VerilatedVcdC; VerilatedVcdC* vcdp = new VerilatedVcdC;
vcdp->spTrace()->addCallback (&vcdInit, &vcdFull, &vcdChange, 0); vcdp->spTrace()->addCallback(&vcdInit, &vcdFull, &vcdChange, 0);
vcdp->open ("test.vcd"); vcdp->open("test.vcd");
// Dumping // Dumping
vcdp->dump(timestamp++); vcdp->dump(timestamp++);
v1 = 0xfff; v1 = 0xfff;
tri96[2] = 4; tri96[1] = 2; tri96[0] = 1; tri96[2] = 4; tri96[1] = 2; tri96[0] = 1;
tri96__tri[2] = tri96__tri[1] = tri96__tri[0] = ~0; // Still tri tri96__tri[2] = tri96__tri[1] = tri96__tri[0] = ~0; // Still tri
doub = 1.5; doub = 1.5;
vcdp->dump(timestamp++); vcdp->dump(timestamp++);
v2 = 0x1; v2 = 0x1;
s2[1] = 2; s2[1] = 2;
tri96__tri[2] = tri96__tri[1] = tri96__tri[0] = 0; // enable w/o data change tri96__tri[2] = tri96__tri[1] = tri96__tri[0] = 0; // enable w/o data change
doub = -1.66e13; doub = -1.66e13;
vcdp->dump(timestamp++); vcdp->dump(timestamp++);
ch = 2; ch = 2;
tri96[2] = ~4; tri96[1] = ~2; tri96[0] = ~1; tri96[2] = ~4; tri96[1] = ~2; tri96[0] = ~1;
doub = -3.33e-13; doub = -3.33e-13;
vcdp->dump(timestamp++); vcdp->dump(timestamp++);
vcdp->dump(timestamp++); vcdp->dump(timestamp++);
# ifdef VERILATED_VCD_TEST_64BIT # ifdef VERILATED_VCD_TEST_64BIT
vluint64_t bytesPerDump = 15ULL; vluint64_t bytesPerDump = 15ULL;
for (vluint64_t i=0; i<((1ULL<<32) / bytesPerDump); i++) { for (vluint64_t i=0; i<((1ULL<<32) / bytesPerDump); i++) {
v1 = i; v1 = i;
vcdp->dump(timestamp++); vcdp->dump(timestamp++);
} }
# endif # endif
vcdp->close(); vcdp->close();
} }
} }
#endif #endif

View File

@ -40,7 +40,7 @@ class VerilatedVcdCallInfo;
class VerilatedVcdFile { class VerilatedVcdFile {
private: private:
int m_fd; ///< File descriptor we're writing to int m_fd; ///< File descriptor we're writing to
public: public:
// METHODS // METHODS
VerilatedVcdFile() : m_fd(0) {} VerilatedVcdFile() : m_fd(0) {}
@ -57,10 +57,10 @@ public:
class VerilatedVcdSig { class VerilatedVcdSig {
protected: protected:
friend class VerilatedVcd; friend class VerilatedVcd;
vluint32_t m_code; ///< VCD file code number vluint32_t m_code; ///< VCD file code number
int m_bits; ///< Size of value in bits int m_bits; ///< Size of value in bits
VerilatedVcdSig (vluint32_t code, int bits) VerilatedVcdSig(vluint32_t code, int bits)
: m_code(code), m_bits(bits) {} : m_code(code), m_bits(bits) {}
public: public:
~VerilatedVcdSig() {} ~VerilatedVcdSig() {}
}; };
@ -76,75 +76,75 @@ typedef void (*VerilatedVcdCallback_t)(VerilatedVcd* vcdp, void* userthis, vluin
class VerilatedVcd { class VerilatedVcd {
private: private:
VerilatedVcdFile* m_filep; ///< File we're writing to VerilatedVcdFile* m_filep; ///< File we're writing to
bool m_fileNewed; ///< m_filep needs destruction bool m_fileNewed; ///< m_filep needs destruction
bool m_isOpen; ///< True indicates open file bool m_isOpen; ///< True indicates open file
bool m_evcd; ///< True for evcd format bool m_evcd; ///< True for evcd format
std::string m_filename; ///< Filename we're writing to (if open) std::string m_filename; ///< Filename we're writing to (if open)
vluint64_t m_rolloverMB; ///< MB of file size to rollover at vluint64_t m_rolloverMB; ///< MB of file size to rollover at
char m_scopeEscape; ///< Character to separate scope components char m_scopeEscape; ///< Character to separate scope components
int m_modDepth; ///< Depth of module hierarchy int m_modDepth; ///< Depth of module hierarchy
bool m_fullDump; ///< True indicates dump ignoring if changed bool m_fullDump; ///< True indicates dump ignoring if changed
vluint32_t m_nextCode; ///< Next code number to assign vluint32_t m_nextCode; ///< Next code number to assign
std::string m_modName; ///< Module name being traced now std::string m_modName; ///< Module name being traced now
double m_timeRes; ///< Time resolution (ns/ms etc) double m_timeRes; ///< Time resolution (ns/ms etc)
double m_timeUnit; ///< Time units (ns/ms etc) double m_timeUnit; ///< Time units (ns/ms etc)
vluint64_t m_timeLastDump; ///< Last time we did a dump vluint64_t m_timeLastDump; ///< Last time we did a dump
char* m_wrBufp; ///< Output buffer char* m_wrBufp; ///< Output buffer
char* m_wrFlushp; ///< Output buffer flush trigger location char* m_wrFlushp; ///< Output buffer flush trigger location
char* m_writep; ///< Write pointer into output buffer char* m_writep; ///< Write pointer into output buffer
vluint64_t m_wrChunkSize; ///< Output buffer size vluint64_t m_wrChunkSize; ///< Output buffer size
vluint64_t m_wroteBytes; ///< Number of bytes written to this file vluint64_t m_wroteBytes; ///< Number of bytes written to this file
vluint32_t* m_sigs_oldvalp; ///< Pointer to old signal values vluint32_t* m_sigs_oldvalp; ///< Pointer to old signal values
typedef std::vector<VerilatedVcdSig> SigVec; typedef std::vector<VerilatedVcdSig> SigVec;
SigVec m_sigs; ///< Pointer to signal information SigVec m_sigs; ///< Pointer to signal information
typedef std::vector<VerilatedVcdCallInfo*> CallbackVec; typedef std::vector<VerilatedVcdCallInfo*> CallbackVec;
CallbackVec m_callbacks; ///< Routines to perform dumping CallbackVec m_callbacks; ///< Routines to perform dumping
typedef std::map<std::string,std::string> NameMap; typedef std::map<std::string,std::string> NameMap;
NameMap* m_namemapp; ///< List of names for the header NameMap* m_namemapp; ///< List of names for the header
VerilatedAssertOneThread m_assertOne; ///< Assert only called from single thread VerilatedAssertOneThread m_assertOne; ///< Assert only called from single thread
void bufferResize(vluint64_t minsize); void bufferResize(vluint64_t minsize);
void bufferFlush() VL_MT_UNSAFE_ONE; void bufferFlush() VL_MT_UNSAFE_ONE;
inline void bufferCheck() { inline void bufferCheck() {
// Flush the write buffer if there's not enough space left for new information // Flush the write buffer if there's not enough space left for new information
// We only call this once per vector, so we need enough slop for a very wide "b###" line // We only call this once per vector, so we need enough slop for a very wide "b###" line
if (VL_UNLIKELY(m_writep > m_wrFlushp)) { if (VL_UNLIKELY(m_writep > m_wrFlushp)) {
bufferFlush(); bufferFlush();
} }
} }
void closePrev(); void closePrev();
void closeErr(); void closeErr();
void openNext(); void openNext();
void makeNameMap(); void makeNameMap();
void deleteNameMap(); void deleteNameMap();
void printIndent (int levelchange); void printIndent(int levelchange);
void printStr (const char* str); void printStr(const char* str);
void printQuad (vluint64_t n); void printQuad(vluint64_t n);
void printTime (vluint64_t timeui); void printTime(vluint64_t timeui);
void declare (vluint32_t code, const char* name, const char* wirep, void declare(vluint32_t code, const char* name, const char* wirep,
int arraynum, bool tri, bool bussed, int msb, int lsb); int arraynum, bool tri, bool bussed, int msb, int lsb);
void dumpHeader(); void dumpHeader();
void dumpPrep (vluint64_t timeui); void dumpPrep(vluint64_t timeui);
void dumpFull (vluint64_t timeui); void dumpFull(vluint64_t timeui);
// cppcheck-suppress functionConst // cppcheck-suppress functionConst
void dumpDone (); void dumpDone();
inline void printCode (vluint32_t code) { inline void printCode(vluint32_t code) {
if (code>=(94*94*94)) *m_writep++ = static_cast<char>((code/94/94/94)%94+33); if (code>=(94*94*94)) *m_writep++ = static_cast<char>((code/94/94/94)%94+33);
if (code>=(94*94)) *m_writep++ = static_cast<char>((code/94/94)%94+33); if (code>=(94*94)) *m_writep++ = static_cast<char>((code/94/94)%94+33);
if (code>=(94)) *m_writep++ = static_cast<char>((code/94)%94+33); if (code>=(94)) *m_writep++ = static_cast<char>((code/94)%94+33);
*m_writep++ = static_cast<char>((code)%94+33); *m_writep++ = static_cast<char>((code)%94+33);
} }
static std::string stringCode (vluint32_t code) VL_PURE { static std::string stringCode(vluint32_t code) VL_PURE {
std::string out; std::string out;
if (code>=(94*94*94)) out += static_cast<char>((code/94/94/94)%94+33); if (code>=(94*94*94)) out += static_cast<char>((code/94/94/94)%94+33);
if (code>=(94*94)) out += static_cast<char>((code/94/94)%94+33); if (code>=(94*94)) out += static_cast<char>((code/94/94)%94+33);
if (code>=(94)) out += static_cast<char>((code/94)%94+33); if (code>=(94)) out += static_cast<char>((code/94)%94+33);
return out + static_cast<char>((code)%94+33); return out + static_cast<char>((code)%94+33);
} }
// CONSTRUCTORS // CONSTRUCTORS
@ -165,34 +165,34 @@ public:
// METHODS // METHODS
void open(const char* filename) VL_MT_UNSAFE_ONE; ///< Open the file; call isOpen() to see if errors void open(const char* filename) VL_MT_UNSAFE_ONE; ///< Open the file; call isOpen() to see if errors
void openNext (bool incFilename); ///< Open next data-only file void openNext(bool incFilename); ///< Open next data-only file
void close() VL_MT_UNSAFE_ONE; ///< Close the file void close() VL_MT_UNSAFE_ONE; ///< Close the file
/// Flush any remaining data to this file /// Flush any remaining data to this file
void flush() VL_MT_UNSAFE_ONE { bufferFlush(); } void flush() VL_MT_UNSAFE_ONE { bufferFlush(); }
/// Flush any remaining data from all files /// Flush any remaining data from all files
static void flush_all() VL_MT_UNSAFE_ONE; static void flush_all() VL_MT_UNSAFE_ONE;
void set_time_unit (const char* unit); ///< Set time units (s/ms, defaults to ns) void set_time_unit(const char* unit); ///< Set time units (s/ms, defaults to ns)
void set_time_unit (const std::string& unit) { set_time_unit(unit.c_str()); } void set_time_unit(const std::string& unit) { set_time_unit(unit.c_str()); }
void set_time_resolution (const char* unit); ///< Set time resolution (s/ms, defaults to ns) void set_time_resolution(const char* unit); ///< Set time resolution (s/ms, defaults to ns)
void set_time_resolution (const std::string& unit) { set_time_resolution(unit.c_str()); } void set_time_resolution(const std::string& unit) { set_time_resolution(unit.c_str()); }
double timescaleToDouble (const char* unitp); double timescaleToDouble(const char* unitp);
std::string doubleToTimescale (double value); std::string doubleToTimescale(double value);
/// Inside dumping routines, called each cycle to make the dump /// Inside dumping routines, called each cycle to make the dump
void dump (vluint64_t timeui); void dump(vluint64_t timeui);
/// Call dump with a absolute unscaled time in seconds /// Call dump with a absolute unscaled time in seconds
void dumpSeconds (double secs) { dump(static_cast<vluint64_t>(secs * m_timeRes)); } void dumpSeconds(double secs) { dump(static_cast<vluint64_t>(secs * m_timeRes)); }
/// Inside dumping routines, declare callbacks for tracings /// Inside dumping routines, declare callbacks for tracings
void addCallback (VerilatedVcdCallback_t init, VerilatedVcdCallback_t full, void addCallback(VerilatedVcdCallback_t init, VerilatedVcdCallback_t full,
VerilatedVcdCallback_t change, VerilatedVcdCallback_t change,
void* userthis) VL_MT_UNSAFE_ONE; void* userthis) VL_MT_UNSAFE_ONE;
/// Inside dumping routines, declare a module /// Inside dumping routines, declare a module
void module (const std::string& name); void module(const std::string& name);
/// Inside dumping routines, declare a signal /// Inside dumping routines, declare a signal
void declBit (vluint32_t code, const char* name, int arraynum); void declBit (vluint32_t code, const char* name, int arraynum);
void declBus (vluint32_t code, const char* name, int arraynum, int msb, int lsb); void declBus (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
@ -204,192 +204,192 @@ public:
void declTriArray (vluint32_t code, const char* name, int arraynum, int msb, int lsb); void declTriArray (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
void declDouble (vluint32_t code, const char* name, int arraynum); void declDouble (vluint32_t code, const char* name, int arraynum);
void declFloat (vluint32_t code, const char* name, int arraynum); void declFloat (vluint32_t code, const char* name, int arraynum);
// ... other module_start for submodules (based on cell name) // ... other module_start for submodules (based on cell name)
/// Inside dumping routines, dump one signal /// Inside dumping routines, dump one signal
void fullBit (vluint32_t code, const vluint32_t newval) { void fullBit(vluint32_t code, const vluint32_t newval) {
// Note the &1, so we don't require clean input -- makes more common no change case faster // Note the &1, so we don't require clean input -- makes more common no change case faster
m_sigs_oldvalp[code] = newval; m_sigs_oldvalp[code] = newval;
*m_writep++=('0'+static_cast<char>(newval&1)); printCode(code); *m_writep++='\n'; *m_writep++=('0'+static_cast<char>(newval&1)); printCode(code); *m_writep++='\n';
bufferCheck(); bufferCheck();
} }
void fullBus (vluint32_t code, const vluint32_t newval, int bits) { void fullBus(vluint32_t code, const vluint32_t newval, int bits) {
m_sigs_oldvalp[code] = newval; m_sigs_oldvalp[code] = newval;
*m_writep++='b'; *m_writep++='b';
for (int bit=bits-1; bit>=0; --bit) { for (int bit=bits-1; bit>=0; --bit) {
*m_writep++=((newval&(1L<<bit))?'1':'0'); *m_writep++=((newval&(1L<<bit))?'1':'0');
} }
*m_writep++=' '; printCode(code); *m_writep++='\n'; *m_writep++=' '; printCode(code); *m_writep++='\n';
bufferCheck(); bufferCheck();
} }
void fullQuad (vluint32_t code, const vluint64_t newval, int bits) { void fullQuad(vluint32_t code, const vluint64_t newval, int bits) {
(*(reinterpret_cast<vluint64_t*>(&m_sigs_oldvalp[code]))) = newval; (*(reinterpret_cast<vluint64_t*>(&m_sigs_oldvalp[code]))) = newval;
*m_writep++='b'; *m_writep++='b';
for (int bit=bits-1; bit>=0; --bit) { for (int bit=bits-1; bit>=0; --bit) {
*m_writep++=((newval&(1ULL<<bit))?'1':'0'); *m_writep++=((newval&(1ULL<<bit))?'1':'0');
} }
*m_writep++=' '; printCode(code); *m_writep++='\n'; *m_writep++=' '; printCode(code); *m_writep++='\n';
bufferCheck(); bufferCheck();
} }
void fullArray (vluint32_t code, const vluint32_t* newval, int bits) { void fullArray(vluint32_t code, const vluint32_t* newval, int bits) {
for (int word=0; word<(((bits-1)/32)+1); ++word) { for (int word=0; word<(((bits-1)/32)+1); ++word) {
m_sigs_oldvalp[code+word] = newval[word]; m_sigs_oldvalp[code+word] = newval[word];
} }
*m_writep++='b'; *m_writep++='b';
for (int bit=bits-1; bit>=0; --bit) { for (int bit=bits-1; bit>=0; --bit) {
*m_writep++=((newval[(bit/32)]&(1L<<(bit&0x1f)))?'1':'0'); *m_writep++=((newval[(bit/32)]&(1L<<(bit&0x1f)))?'1':'0');
} }
*m_writep++=' '; printCode(code); *m_writep++='\n'; *m_writep++=' '; printCode(code); *m_writep++='\n';
bufferCheck(); bufferCheck();
} }
void fullTriBit (vluint32_t code, const vluint32_t newval, const vluint32_t newtri) { void fullTriBit(vluint32_t code, const vluint32_t newval, const vluint32_t newtri) {
m_sigs_oldvalp[code] = newval; m_sigs_oldvalp[code] = newval;
m_sigs_oldvalp[code+1] = newtri; m_sigs_oldvalp[code+1] = newtri;
*m_writep++ = "01zz"[m_sigs_oldvalp[code] *m_writep++ = "01zz"[m_sigs_oldvalp[code]
| (m_sigs_oldvalp[code+1]<<1)]; | (m_sigs_oldvalp[code+1]<<1)];
printCode(code); *m_writep++='\n'; printCode(code); *m_writep++='\n';
bufferCheck(); bufferCheck();
} }
void fullTriBus (vluint32_t code, const vluint32_t newval, const vluint32_t newtri, int bits) { void fullTriBus(vluint32_t code, const vluint32_t newval, const vluint32_t newtri, int bits) {
m_sigs_oldvalp[code] = newval; m_sigs_oldvalp[code] = newval;
m_sigs_oldvalp[code+1] = newtri; m_sigs_oldvalp[code+1] = newtri;
*m_writep++='b'; *m_writep++='b';
for (int bit=bits-1; bit>=0; --bit) { for (int bit=bits-1; bit>=0; --bit) {
*m_writep++ = "01zz"[((newval >> bit)&1) *m_writep++ = "01zz"[((newval >> bit)&1)
| (((newtri >> bit)&1)<<1)]; | (((newtri >> bit)&1)<<1)];
} }
*m_writep++=' '; printCode(code); *m_writep++='\n'; *m_writep++=' '; printCode(code); *m_writep++='\n';
bufferCheck(); bufferCheck();
} }
void fullTriQuad (vluint32_t code, const vluint64_t newval, const vluint32_t newtri, int bits) { void fullTriQuad(vluint32_t code, const vluint64_t newval, const vluint32_t newtri, int bits) {
(*(reinterpret_cast<vluint64_t*>(&m_sigs_oldvalp[code]))) = newval; (*(reinterpret_cast<vluint64_t*>(&m_sigs_oldvalp[code]))) = newval;
(*(reinterpret_cast<vluint64_t*>(&m_sigs_oldvalp[code+1]))) = newtri; (*(reinterpret_cast<vluint64_t*>(&m_sigs_oldvalp[code+1]))) = newtri;
*m_writep++='b'; *m_writep++='b';
for (int bit=bits-1; bit>=0; --bit) { for (int bit=bits-1; bit>=0; --bit) {
*m_writep++ = "01zz"[((newval >> bit)&1ULL) *m_writep++ = "01zz"[((newval >> bit)&1ULL)
| (((newtri >> bit)&1ULL)<<1ULL)]; | (((newtri >> bit)&1ULL)<<1ULL)];
} }
*m_writep++=' '; printCode(code); *m_writep++='\n'; *m_writep++=' '; printCode(code); *m_writep++='\n';
bufferCheck(); bufferCheck();
} }
void fullTriArray (vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip, int bits) { void fullTriArray(vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip, int bits) {
for (int word=0; word<(((bits-1)/32)+1); ++word) { for (int word=0; word<(((bits-1)/32)+1); ++word) {
m_sigs_oldvalp[code+word*2] = newvalp[word]; m_sigs_oldvalp[code+word*2] = newvalp[word];
m_sigs_oldvalp[code+word*2+1] = newtrip[word]; m_sigs_oldvalp[code+word*2+1] = newtrip[word];
} }
*m_writep++='b'; *m_writep++='b';
for (int bit=bits-1; bit>=0; --bit) { for (int bit=bits-1; bit>=0; --bit) {
vluint32_t valbit = (newvalp[(bit/32)]>>(bit&0x1f)) & 1; vluint32_t valbit = (newvalp[(bit/32)]>>(bit&0x1f)) & 1;
vluint32_t tribit = (newtrip[(bit/32)]>>(bit&0x1f)) & 1; vluint32_t tribit = (newtrip[(bit/32)]>>(bit&0x1f)) & 1;
*m_writep++ = "01zz"[valbit | (tribit<<1)]; *m_writep++ = "01zz"[valbit | (tribit<<1)];
} }
*m_writep++=' '; printCode(code); *m_writep++='\n'; *m_writep++=' '; printCode(code); *m_writep++='\n';
bufferCheck(); bufferCheck();
} }
void fullDouble (vluint32_t code, const double newval); void fullDouble(vluint32_t code, const double newval);
void fullFloat (vluint32_t code, const float newval); void fullFloat(vluint32_t code, const float newval);
/// Inside dumping routines, dump one signal as unknowns /// Inside dumping routines, dump one signal as unknowns
/// Presently this code doesn't change the oldval vector. /// Presently this code doesn't change the oldval vector.
/// Thus this is for special standalone applications that after calling /// Thus this is for special standalone applications that after calling
/// fullBitX, must when then value goes non-X call fullBit. /// fullBitX, must when then value goes non-X call fullBit.
inline void fullBitX (vluint32_t code) { inline void fullBitX(vluint32_t code) {
*m_writep++='x'; printCode(code); *m_writep++='\n'; *m_writep++='x'; printCode(code); *m_writep++='\n';
bufferCheck(); bufferCheck();
} }
inline void fullBusX (vluint32_t code, int bits) { inline void fullBusX(vluint32_t code, int bits) {
*m_writep++='b'; *m_writep++='b';
for (int bit=bits-1; bit>=0; --bit) { for (int bit=bits-1; bit>=0; --bit) {
*m_writep++='x'; *m_writep++='x';
} }
*m_writep++=' '; printCode(code); *m_writep++='\n'; *m_writep++=' '; printCode(code); *m_writep++='\n';
bufferCheck(); bufferCheck();
} }
inline void fullQuadX (vluint32_t code, int bits) { fullBusX (code, bits); } inline void fullQuadX(vluint32_t code, int bits) { fullBusX (code, bits); }
inline void fullArrayX (vluint32_t code, int bits) { fullBusX (code, bits); } inline void fullArrayX(vluint32_t code, int bits) { fullBusX (code, bits); }
/// Inside dumping routines, dump one signal if it has changed /// Inside dumping routines, dump one signal if it has changed
inline void chgBit (vluint32_t code, const vluint32_t newval) { inline void chgBit(vluint32_t code, const vluint32_t newval) {
vluint32_t diff = m_sigs_oldvalp[code] ^ newval; vluint32_t diff = m_sigs_oldvalp[code] ^ newval;
if (VL_UNLIKELY(diff)) { if (VL_UNLIKELY(diff)) {
// Verilator 3.510 and newer provide clean input, so the below is only for back compatibility // Verilator 3.510 and newer provide clean input, so the below is only for back compatibility
if (VL_UNLIKELY(diff & 1)) { // Change after clean? if (VL_UNLIKELY(diff & 1)) { // Change after clean?
fullBit (code, newval); fullBit(code, newval);
} }
} }
} }
inline void chgBus (vluint32_t code, const vluint32_t newval, int bits) { inline void chgBus(vluint32_t code, const vluint32_t newval, int bits) {
vluint32_t diff = m_sigs_oldvalp[code] ^ newval; vluint32_t diff = m_sigs_oldvalp[code] ^ newval;
if (VL_UNLIKELY(diff)) { if (VL_UNLIKELY(diff)) {
if (VL_UNLIKELY(bits==32 || (diff & ((1U<<bits)-1) ))) { if (VL_UNLIKELY(bits==32 || (diff & ((1U<<bits)-1) ))) {
fullBus (code, newval, bits); fullBus(code, newval, bits);
} }
} }
} }
inline void chgQuad (vluint32_t code, const vluint64_t newval, int bits) { inline void chgQuad(vluint32_t code, const vluint64_t newval, int bits) {
vluint64_t diff = (*(reinterpret_cast<vluint64_t*>(&m_sigs_oldvalp[code]))) ^ newval; vluint64_t diff = (*(reinterpret_cast<vluint64_t*>(&m_sigs_oldvalp[code]))) ^ newval;
if (VL_UNLIKELY(diff)) { if (VL_UNLIKELY(diff)) {
if (VL_UNLIKELY(bits==64 || (diff & ((1ULL<<bits)-1) ))) { if (VL_UNLIKELY(bits==64 || (diff & ((1ULL<<bits)-1) ))) {
fullQuad(code, newval, bits); fullQuad(code, newval, bits);
} }
} }
} }
inline void chgArray (vluint32_t code, const vluint32_t* newval, int bits) { inline void chgArray(vluint32_t code, const vluint32_t* newval, int bits) {
for (int word=0; word<(((bits-1)/32)+1); ++word) { for (int word=0; word<(((bits-1)/32)+1); ++word) {
if (VL_UNLIKELY(m_sigs_oldvalp[code+word] ^ newval[word])) { if (VL_UNLIKELY(m_sigs_oldvalp[code+word] ^ newval[word])) {
fullArray (code,newval,bits); fullArray(code,newval,bits);
return; return;
} }
} }
} }
inline void chgTriBit (vluint32_t code, const vluint32_t newval, const vluint32_t newtri) { inline void chgTriBit(vluint32_t code, const vluint32_t newval, const vluint32_t newtri) {
vluint32_t diff = ((m_sigs_oldvalp[code] ^ newval) vluint32_t diff = ((m_sigs_oldvalp[code] ^ newval)
| (m_sigs_oldvalp[code+1] ^ newtri)); | (m_sigs_oldvalp[code+1] ^ newtri));
if (VL_UNLIKELY(diff)) { if (VL_UNLIKELY(diff)) {
// Verilator 3.510 and newer provide clean input, so the below is only for back compatibility // Verilator 3.510 and newer provide clean input, so the below is only for back compatibility
if (VL_UNLIKELY(diff & 1)) { // Change after clean? if (VL_UNLIKELY(diff & 1)) { // Change after clean?
fullTriBit (code, newval, newtri); fullTriBit(code, newval, newtri);
} }
} }
} }
inline void chgTriBus (vluint32_t code, const vluint32_t newval, const vluint32_t newtri, int bits) { inline void chgTriBus(vluint32_t code, const vluint32_t newval, const vluint32_t newtri, int bits) {
vluint32_t diff = ((m_sigs_oldvalp[code] ^ newval) vluint32_t diff = ((m_sigs_oldvalp[code] ^ newval)
| (m_sigs_oldvalp[code+1] ^ newtri)); | (m_sigs_oldvalp[code+1] ^ newtri));
if (VL_UNLIKELY(diff)) { if (VL_UNLIKELY(diff)) {
if (VL_UNLIKELY(bits==32 || (diff & ((1U<<bits)-1) ))) { if (VL_UNLIKELY(bits==32 || (diff & ((1U<<bits)-1) ))) {
fullTriBus (code, newval, newtri, bits); fullTriBus(code, newval, newtri, bits);
} }
} }
} }
inline void chgTriQuad (vluint32_t code, const vluint64_t newval, const vluint32_t newtri, int bits) { inline void chgTriQuad(vluint32_t code, const vluint64_t newval, const vluint32_t newtri, int bits) {
vluint64_t diff = ( ((*(reinterpret_cast<vluint64_t*>(&m_sigs_oldvalp[code]))) ^ newval) vluint64_t diff = ( ((*(reinterpret_cast<vluint64_t*>(&m_sigs_oldvalp[code]))) ^ newval)
| ((*(reinterpret_cast<vluint64_t*>(&m_sigs_oldvalp[code+1]))) ^ newtri)); | ((*(reinterpret_cast<vluint64_t*>(&m_sigs_oldvalp[code+1]))) ^ newtri));
if (VL_UNLIKELY(diff)) { if (VL_UNLIKELY(diff)) {
if (VL_UNLIKELY(bits==64 || (diff & ((1ULL<<bits)-1) ))) { if (VL_UNLIKELY(bits==64 || (diff & ((1ULL<<bits)-1) ))) {
fullTriQuad(code, newval, newtri, bits); fullTriQuad(code, newval, newtri, bits);
} }
} }
} }
inline void chgTriArray (vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip, int bits) { inline void chgTriArray(vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip, int bits) {
for (int word=0; word<(((bits-1)/32)+1); ++word) { for (int word=0; word<(((bits-1)/32)+1); ++word) {
if (VL_UNLIKELY((m_sigs_oldvalp[code+word*2] ^ newvalp[word]) if (VL_UNLIKELY((m_sigs_oldvalp[code+word*2] ^ newvalp[word])
| (m_sigs_oldvalp[code+word*2+1] ^ newtrip[word]))) { | (m_sigs_oldvalp[code+word*2+1] ^ newtrip[word]))) {
fullTriArray (code,newvalp,newtrip,bits); fullTriArray(code,newvalp,newtrip,bits);
return; return;
} }
} }
} }
inline void chgDouble (vluint32_t code, const double newval) { inline void chgDouble(vluint32_t code, const double newval) {
// cppcheck-suppress invalidPointerCast // cppcheck-suppress invalidPointerCast
if (VL_UNLIKELY((*(reinterpret_cast<double*>(&m_sigs_oldvalp[code]))) != newval)) { if (VL_UNLIKELY((*(reinterpret_cast<double*>(&m_sigs_oldvalp[code]))) != newval)) {
fullDouble (code, newval); fullDouble(code, newval);
} }
} }
inline void chgFloat (vluint32_t code, const float newval) { inline void chgFloat(vluint32_t code, const float newval) {
// cppcheck-suppress invalidPointerCast // cppcheck-suppress invalidPointerCast
if (VL_UNLIKELY((*(reinterpret_cast<float*>(&m_sigs_oldvalp[code]))) != newval)) { if (VL_UNLIKELY((*(reinterpret_cast<float*>(&m_sigs_oldvalp[code]))) != newval)) {
fullFloat (code, newval); fullFloat(code, newval);
} }
} }
protected: protected:
@ -404,7 +404,7 @@ protected:
/// Thread safety: Unless otherwise indicated, every function is VL_MT_UNSAFE_ONE /// Thread safety: Unless otherwise indicated, every function is VL_MT_UNSAFE_ONE
class VerilatedVcdC { class VerilatedVcdC {
VerilatedVcd m_sptrace; ///< Trace file being created VerilatedVcd m_sptrace; ///< Trace file being created
// CONSTRUCTORS // CONSTRUCTORS
VL_UNCOPYABLE(VerilatedVcdC); VL_UNCOPYABLE(VerilatedVcdC);
@ -431,23 +431,23 @@ public:
/// Flush dump /// Flush dump
void flush() VL_MT_UNSAFE_ONE { m_sptrace.flush(); } void flush() VL_MT_UNSAFE_ONE { m_sptrace.flush(); }
/// Write one cycle of dump data /// Write one cycle of dump data
void dump (vluint64_t timeui) { m_sptrace.dump(timeui); } void dump(vluint64_t timeui) { m_sptrace.dump(timeui); }
/// Write one cycle of dump data - backward compatible and to reduce /// Write one cycle of dump data - backward compatible and to reduce
/// conversion warnings. It's better to use a vluint64_t time instead. /// conversion warnings. It's better to use a vluint64_t time instead.
void dump (double timestamp) { dump(static_cast<vluint64_t>(timestamp)); } void dump(double timestamp) { dump(static_cast<vluint64_t>(timestamp)); }
void dump (vluint32_t timestamp) { dump(static_cast<vluint64_t>(timestamp)); } void dump(vluint32_t timestamp) { dump(static_cast<vluint64_t>(timestamp)); }
void dump (int timestamp) { dump(static_cast<vluint64_t>(timestamp)); } void dump(int timestamp) { dump(static_cast<vluint64_t>(timestamp)); }
/// Set time units (s/ms, defaults to ns) /// Set time units (s/ms, defaults to ns)
/// See also VL_TIME_PRECISION, and VL_TIME_MULTIPLIER in verilated.h /// See also VL_TIME_PRECISION, and VL_TIME_MULTIPLIER in verilated.h
void set_time_unit (const char* unit) { m_sptrace.set_time_unit(unit); } void set_time_unit(const char* unit) { m_sptrace.set_time_unit(unit); }
void set_time_unit (const std::string& unit) { set_time_unit(unit.c_str()); } void set_time_unit(const std::string& unit) { set_time_unit(unit.c_str()); }
/// Set time resolution (s/ms, defaults to ns) /// Set time resolution (s/ms, defaults to ns)
/// See also VL_TIME_PRECISION, and VL_TIME_MULTIPLIER in verilated.h /// See also VL_TIME_PRECISION, and VL_TIME_MULTIPLIER in verilated.h
void set_time_resolution (const char* unit) { m_sptrace.set_time_resolution(unit); } void set_time_resolution(const char* unit) { m_sptrace.set_time_resolution(unit); }
void set_time_resolution (const std::string& unit) { set_time_resolution(unit.c_str()); } void set_time_resolution(const std::string& unit) { set_time_resolution(unit.c_str()); }
/// Internal class access /// Internal class access
inline VerilatedVcd* spTrace () { return &m_sptrace; }; inline VerilatedVcd* spTrace() { return &m_sptrace; };
}; };
#endif // guard #endif // guard

View File

@ -31,8 +31,8 @@
#if (SYSTEMC_VERSION>=20050714) #if (SYSTEMC_VERSION>=20050714)
// SystemC 2.1.v1 // SystemC 2.1.v1
// cppcheck-suppress unusedFunction // cppcheck-suppress unusedFunction
void VerilatedVcdSc::write_comment (const std::string &) {} void VerilatedVcdSc::write_comment(const std::string &) {}
void VerilatedVcdSc::trace (const unsigned int &, const std::string &, const char **) {} void VerilatedVcdSc::trace(const unsigned int &, const std::string &, const char **) {}
# define DECL_TRACE_METHOD_A(tp) \ # define DECL_TRACE_METHOD_A(tp) \
void VerilatedVcdSc::trace( const tp& object, const std::string& name ) {} void VerilatedVcdSc::trace( const tp& object, const std::string& name ) {}
@ -81,8 +81,8 @@ void VerilatedVcdSc::trace (const unsigned int &, const std::string &, const cha
#elif (SYSTEMC_VERSION>20011000) #elif (SYSTEMC_VERSION>20011000)
// SystemC 2.0.1 // SystemC 2.0.1
// cppcheck-suppress unusedFunction // cppcheck-suppress unusedFunction
void VerilatedVcdSc::write_comment (const sc_string &) {} void VerilatedVcdSc::write_comment(const sc_string &) {}
void VerilatedVcdSc::trace (const unsigned int &, const sc_string &, const char **) {} void VerilatedVcdSc::trace(const unsigned int &, const sc_string &, const char **) {}
#define DECL_TRACE_METHOD_A(tp) \ #define DECL_TRACE_METHOD_A(tp) \
void VerilatedVcdSc::trace( const tp& object, const sc_string& name ) {} void VerilatedVcdSc::trace( const tp& object, const sc_string& name ) {}
@ -124,8 +124,8 @@ void VerilatedVcdSc::trace (const unsigned int &, const sc_string &, const char
#else #else
// SystemC 1.2.1beta // SystemC 1.2.1beta
// cppcheck-suppress unusedFunction // cppcheck-suppress unusedFunction
void VerilatedVcdSc::write_comment (const sc_string &) {} void VerilatedVcdSc::write_comment(const sc_string &) {}
void VerilatedVcdSc::trace (const unsigned int &, const sc_string &, const char **) {} void VerilatedVcdSc::trace(const unsigned int &, const sc_string &, const char **) {}
#define DECL_TRACE_METHOD_A(tp) \ #define DECL_TRACE_METHOD_A(tp) \
void VerilatedVcdSc::trace( const tp& object, const sc_string& name ) {} void VerilatedVcdSc::trace( const tp& object, const sc_string& name ) {}

View File

@ -43,33 +43,33 @@ class VerilatedVcdSc
VL_UNCOPYABLE(VerilatedVcdSc); VL_UNCOPYABLE(VerilatedVcdSc);
public: public:
VerilatedVcdSc() { VerilatedVcdSc() {
sc_get_curr_simcontext()->add_trace_file(this); sc_get_curr_simcontext()->add_trace_file(this);
# if (SYSTEMC_VERSION>=20060505) # if (SYSTEMC_VERSION>=20060505)
// We want to avoid a depreciated warning, but still be back compatible. // We want to avoid a depreciated warning, but still be back compatible.
// Turning off the message just for this still results in an annoying "to turn off" message. // Turning off the message just for this still results in an annoying "to turn off" message.
sc_time t1sec(1,SC_SEC); sc_time t1sec(1,SC_SEC);
if (t1sec.to_default_time_units()!=0) { if (t1sec.to_default_time_units()!=0) {
sc_time tunits(1.0/t1sec.to_default_time_units(),SC_SEC); sc_time tunits(1.0/t1sec.to_default_time_units(),SC_SEC);
spTrace()->set_time_unit(tunits.to_string()); spTrace()->set_time_unit(tunits.to_string());
} }
spTrace()->set_time_resolution(sc_get_time_resolution().to_string()); spTrace()->set_time_resolution(sc_get_time_resolution().to_string());
# elif (SYSTEMC_VERSION>20011000) # elif (SYSTEMC_VERSION>20011000)
// To confuse matters 2.1.beta returns a char* here, while 2.1.v1 returns a std::string // To confuse matters 2.1.beta returns a char* here, while 2.1.v1 returns a std::string
// we allow both flavors with overloaded set_time_* functions. // we allow both flavors with overloaded set_time_* functions.
spTrace()->set_time_unit(sc_get_default_time_unit().to_string()); spTrace()->set_time_unit(sc_get_default_time_unit().to_string());
spTrace()->set_time_resolution(sc_get_time_resolution().to_string()); spTrace()->set_time_resolution(sc_get_time_resolution().to_string());
# endif # endif
} }
virtual ~VerilatedVcdSc() {} virtual ~VerilatedVcdSc() {}
// METHODS // METHODS
/// Called by SystemC simulate() /// Called by SystemC simulate()
virtual void cycle (bool delta_cycle) { virtual void cycle(bool delta_cycle) {
# if (SYSTEMC_VERSION>20011000) # if (SYSTEMC_VERSION>20011000)
if (!delta_cycle) { this->dump(sc_time_stamp().to_double()); } if (!delta_cycle) { this->dump(sc_time_stamp().to_double()); }
# else # else
// VCD files must have integer timestamps, so we write all times in increments of time_resolution // VCD files must have integer timestamps, so we write all times in increments of time_resolution
if (!delta_cycle) { this->dump(sc_time_stamp().to_double()); } if (!delta_cycle) { this->dump(sc_time_stamp().to_double()); }
# endif # endif
} }
@ -78,10 +78,10 @@ private:
#ifdef NC_SYSTEMC #ifdef NC_SYSTEMC
// Cadence Incisive has these as abstract functions so we must create them // Cadence Incisive has these as abstract functions so we must create them
virtual void set_time_unit( int exponent10_seconds ) {} // deprecated virtual void set_time_unit(int exponent10_seconds) {} // deprecated
#endif #endif
#if defined(NC_SYSTEMC) || (SYSTEMC_VERSION>=20111100) #if defined(NC_SYSTEMC) || (SYSTEMC_VERSION>=20111100)
virtual void set_time_unit( double v, sc_time_unit tu ) {} virtual void set_time_unit(double v, sc_time_unit tu) {}
#endif #endif
@ -89,12 +89,12 @@ private:
# if (SYSTEMC_VERSION>=20050714) # if (SYSTEMC_VERSION>=20050714)
// SystemC 2.1.v1 // SystemC 2.1.v1
# define DECL_TRACE_METHOD_A(tp) \ # define DECL_TRACE_METHOD_A(tp) \
virtual void trace( const tp& object, const std::string& name ); virtual void trace(const tp& object, const std::string& name);
# define DECL_TRACE_METHOD_B(tp) \ # define DECL_TRACE_METHOD_B(tp) \
virtual void trace( const tp& object, const std::string& name, int width ); virtual void trace(const tp& object, const std::string& name, int width);
virtual void write_comment (const std::string &); virtual void write_comment(const std::string &);
virtual void trace (const unsigned int &, const std::string &, const char **); virtual void trace(const unsigned int &, const std::string &, const char **);
#if (SYSTEMC_VERSION>=20171012) #if (SYSTEMC_VERSION>=20171012)
DECL_TRACE_METHOD_A( sc_event ) DECL_TRACE_METHOD_A( sc_event )
@ -138,14 +138,14 @@ private:
# elif (SYSTEMC_VERSION>20011000) # elif (SYSTEMC_VERSION>20011000)
// SystemC 2.0.1 // SystemC 2.0.1
# define DECL_TRACE_METHOD_A(tp) \ # define DECL_TRACE_METHOD_A(tp) \
virtual void trace( const tp& object, const sc_string& name ); virtual void trace(const tp& object, const sc_string& name);
# define DECL_TRACE_METHOD_B(tp) \ # define DECL_TRACE_METHOD_B(tp) \
virtual void trace( const tp& object, const sc_string& name, int width ); virtual void trace(const tp& object, const sc_string& name, int width);
virtual void write_comment (const sc_string &); virtual void write_comment(const sc_string &);
virtual void trace (const unsigned int &, const sc_string &, const char **); virtual void trace(const unsigned int &, const sc_string &, const char **);
virtual void delta_cycles (bool) {} virtual void delta_cycles(bool) {}
virtual void space( int n ) {} virtual void space(int n) {}
DECL_TRACE_METHOD_A( bool ) DECL_TRACE_METHOD_A( bool )
DECL_TRACE_METHOD_A( sc_bit ) DECL_TRACE_METHOD_A( sc_bit )
@ -182,12 +182,12 @@ private:
# else # else
// SystemC 1.2.1beta // SystemC 1.2.1beta
# define DECL_TRACE_METHOD_A(tp) \ # define DECL_TRACE_METHOD_A(tp) \
virtual void trace( const tp& object, const sc_string& name ); virtual void trace(const tp& object, const sc_string& name);
# define DECL_TRACE_METHOD_B(tp) \ # define DECL_TRACE_METHOD_B(tp) \
virtual void trace( const tp& object, const sc_string& name, int width ); virtual void trace(const tp& object, const sc_string& name, int width);
virtual void write_comment (const sc_string &); virtual void write_comment(const sc_string &);
virtual void trace (const unsigned int &, const sc_string &, const char **); virtual void trace(const unsigned int &, const sc_string &, const char **);
DECL_TRACE_METHOD_A( bool ) DECL_TRACE_METHOD_A( bool )
DECL_TRACE_METHOD_B( unsigned char ) DECL_TRACE_METHOD_B( unsigned char )
@ -220,4 +220,4 @@ private:
# undef DECL_TRACE_METHOD_B # undef DECL_TRACE_METHOD_B
}; };
#endif // guard #endif // Guard