Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
// -*- mode: C++; c-file-style: "cc-mode" -*-
|
|
|
|
|
//*************************************************************************
|
|
|
|
|
// DESCRIPTION: Verilator: Convert DfgGraph to AstModule
|
|
|
|
|
//
|
|
|
|
|
// Code available from: https://verilator.org
|
|
|
|
|
//
|
|
|
|
|
//*************************************************************************
|
|
|
|
|
//
|
2024-01-01 09:19:59 +01:00
|
|
|
// Copyright 2003-2024 by Wilson Snyder. This program is free software; you
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
// can redistribute it and/or modify it under the terms of either the GNU
|
|
|
|
|
// Lesser General Public License Version 3 or the Perl Artistic License
|
|
|
|
|
// Version 2.0.
|
|
|
|
|
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
|
|
|
|
|
//
|
|
|
|
|
//*************************************************************************
|
|
|
|
|
//
|
2022-10-12 11:19:21 +02:00
|
|
|
// Convert DfgGraph back to AstModule. We recursively construct AstNodeExpr expressions for each
|
2022-09-27 01:06:50 +02:00
|
|
|
// DfgVertex which represents a storage location (e.g.: DfgVarPacked), or has multiple sinks
|
|
|
|
|
// without driving a storage location (and hence needs a temporary variable to duplication). The
|
|
|
|
|
// recursion stops when we reach a DfgVertex representing a storage location (e.g.: DfgVarPacked),
|
|
|
|
|
// or a vertex that that has multiple sinks (as these nodes will have a [potentially new temporary]
|
|
|
|
|
// corresponding// storage location). Redundant variables (those whose source vertex drives
|
|
|
|
|
// multiple variables) are eliminated when possible. Vertices driving multiple variables are
|
|
|
|
|
// rendered once, driving an arbitrarily (but deterministically) chosen canonical variable, and the
|
|
|
|
|
// corresponding redundant variables are assigned from the canonical variable.
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
//
|
|
|
|
|
//*************************************************************************
|
|
|
|
|
|
2023-10-18 12:37:46 +02:00
|
|
|
#include "V3PchAstNoMT.h" // VL_MT_DISABLED_CODE_UNIT
|
|
|
|
|
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
#include "V3Dfg.h"
|
|
|
|
|
#include "V3DfgPasses.h"
|
|
|
|
|
#include "V3UniqueNames.h"
|
|
|
|
|
|
|
|
|
|
#include <unordered_map>
|
|
|
|
|
|
|
|
|
|
VL_DEFINE_DEBUG_FUNCTIONS;
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
2022-10-12 11:19:21 +02:00
|
|
|
// Create an AstNodeExpr out of a DfgVertex. For most AstNodeExpr subtypes, this can be done
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
// automatically. For the few special cases, we provide specializations below
|
2022-10-04 12:03:41 +02:00
|
|
|
template <typename Node, typename Vertex, typename... Ops>
|
|
|
|
|
Node* makeNode(const Vertex* vtxp, Ops... ops) {
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
Node* const nodep = new Node{vtxp->fileline(), ops...};
|
|
|
|
|
UASSERT_OBJ(nodep->width() == static_cast<int>(vtxp->width()), vtxp,
|
|
|
|
|
"Incorrect width in AstNode created from DfgVertex "
|
|
|
|
|
<< vtxp->typeName() << ": " << nodep->width() << " vs " << vtxp->width());
|
|
|
|
|
return nodep;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//======================================================================
|
|
|
|
|
// Vertices needing special conversion
|
|
|
|
|
|
2022-10-06 20:19:34 +02:00
|
|
|
template <>
|
2022-10-12 11:19:21 +02:00
|
|
|
AstCountOnes* makeNode<AstCountOnes, DfgCountOnes, AstNodeExpr*>( //
|
|
|
|
|
const DfgCountOnes* vtxp, AstNodeExpr* op1) {
|
2022-10-06 20:19:34 +02:00
|
|
|
AstCountOnes* const nodep = new AstCountOnes{vtxp->fileline(), op1};
|
|
|
|
|
// Set dtype same as V3Width
|
2023-04-23 14:49:44 +02:00
|
|
|
nodep->dtypeSetLogicSized(32, VSigning::UNSIGNED);
|
2022-10-06 20:19:34 +02:00
|
|
|
return nodep;
|
|
|
|
|
}
|
|
|
|
|
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
template <>
|
2022-10-12 11:19:21 +02:00
|
|
|
AstExtend* makeNode<AstExtend, DfgExtend, AstNodeExpr*>( //
|
|
|
|
|
const DfgExtend* vtxp, AstNodeExpr* op1) {
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
return new AstExtend{vtxp->fileline(), op1, static_cast<int>(vtxp->width())};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <>
|
2022-10-12 11:19:21 +02:00
|
|
|
AstExtendS* makeNode<AstExtendS, DfgExtendS, AstNodeExpr*>( //
|
|
|
|
|
const DfgExtendS* vtxp, AstNodeExpr* op1) {
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
return new AstExtendS{vtxp->fileline(), op1, static_cast<int>(vtxp->width())};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <>
|
2022-10-12 11:19:21 +02:00
|
|
|
AstShiftL* makeNode<AstShiftL, DfgShiftL, AstNodeExpr*, AstNodeExpr*>( //
|
|
|
|
|
const DfgShiftL* vtxp, AstNodeExpr* op1, AstNodeExpr* op2) {
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
return new AstShiftL{vtxp->fileline(), op1, op2, static_cast<int>(vtxp->width())};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <>
|
2022-10-12 11:19:21 +02:00
|
|
|
AstShiftR* makeNode<AstShiftR, DfgShiftR, AstNodeExpr*, AstNodeExpr*>( //
|
|
|
|
|
const DfgShiftR* vtxp, AstNodeExpr* op1, AstNodeExpr* op2) {
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
return new AstShiftR{vtxp->fileline(), op1, op2, static_cast<int>(vtxp->width())};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <>
|
2022-10-12 11:19:21 +02:00
|
|
|
AstShiftRS* makeNode<AstShiftRS, DfgShiftRS, AstNodeExpr*, AstNodeExpr*>( //
|
|
|
|
|
const DfgShiftRS* vtxp, AstNodeExpr* op1, AstNodeExpr* op2) {
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
return new AstShiftRS{vtxp->fileline(), op1, op2, static_cast<int>(vtxp->width())};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//======================================================================
|
|
|
|
|
// Currently unhandled nodes - see corresponding AstToDfg functions
|
|
|
|
|
// LCOV_EXCL_START
|
|
|
|
|
template <>
|
2022-10-12 11:19:21 +02:00
|
|
|
AstCCast* makeNode<AstCCast, DfgCCast, AstNodeExpr*>(const DfgCCast* vtxp, AstNodeExpr*) {
|
2022-10-03 05:04:55 +02:00
|
|
|
vtxp->v3fatalSrc("not implemented");
|
2022-12-13 00:45:32 +01:00
|
|
|
VL_UNREACHABLE;
|
|
|
|
|
return nullptr; // LCOV_EXCL_LINE
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
|
|
|
|
template <>
|
2022-10-12 11:19:21 +02:00
|
|
|
AstAtoN* makeNode<AstAtoN, DfgAtoN, AstNodeExpr*>(const DfgAtoN* vtxp, AstNodeExpr*) {
|
2022-10-03 05:04:55 +02:00
|
|
|
vtxp->v3fatalSrc("not implemented");
|
2022-12-13 00:45:32 +01:00
|
|
|
VL_UNREACHABLE;
|
|
|
|
|
return nullptr; // LCOV_EXCL_LINE
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
|
|
|
|
template <>
|
2022-10-04 12:03:41 +02:00
|
|
|
AstCompareNN*
|
2022-10-12 11:19:21 +02:00
|
|
|
makeNode<AstCompareNN, DfgCompareNN, AstNodeExpr*, AstNodeExpr*>(const DfgCompareNN* vtxp,
|
|
|
|
|
AstNodeExpr*, AstNodeExpr*) {
|
2022-10-03 05:04:55 +02:00
|
|
|
vtxp->v3fatalSrc("not implemented");
|
2022-12-13 00:45:32 +01:00
|
|
|
VL_UNREACHABLE;
|
|
|
|
|
return nullptr; // LCOV_EXCL_LINE
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
|
|
|
|
template <>
|
2022-10-12 11:19:21 +02:00
|
|
|
AstSliceSel* makeNode<AstSliceSel, DfgSliceSel, AstNodeExpr*, AstNodeExpr*, AstNodeExpr*>(
|
|
|
|
|
const DfgSliceSel* vtxp, AstNodeExpr*, AstNodeExpr*, AstNodeExpr*) {
|
2022-10-03 05:04:55 +02:00
|
|
|
vtxp->v3fatalSrc("not implemented");
|
2022-12-13 00:45:32 +01:00
|
|
|
VL_UNREACHABLE;
|
|
|
|
|
return nullptr; // LCOV_EXCL_LINE
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
|
|
|
|
// LCOV_EXCL_STOP
|
|
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
class DfgToAstVisitor final : DfgVisitor {
|
|
|
|
|
// STATE
|
|
|
|
|
|
|
|
|
|
AstModule* const m_modp; // The parent/result module
|
|
|
|
|
V3DfgOptimizationContext& m_ctx; // The optimization context for stats
|
2022-10-12 11:19:21 +02:00
|
|
|
AstNodeExpr* m_resultp = nullptr; // The result node of the current traversal
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
// Map from DfgVertex to the AstVar holding the value of that DfgVertex after conversion
|
|
|
|
|
std::unordered_map<const DfgVertex*, AstVar*> m_resultVars;
|
|
|
|
|
// Map from an AstVar, to the canonical AstVar that can be substituted for that AstVar
|
|
|
|
|
std::unordered_map<AstVar*, AstVar*> m_canonVars;
|
2022-10-21 13:05:38 +02:00
|
|
|
V3UniqueNames m_tmpNames{"__VdfgTmp"}; // For generating temporary names
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
|
|
|
|
|
// METHODS
|
|
|
|
|
|
2022-10-12 11:19:21 +02:00
|
|
|
AstNodeExpr* convertDfgVertexToAstNodeExpr(DfgVertex* vtxp) {
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
UASSERT_OBJ(!m_resultp, vtxp, "Result already computed");
|
2024-03-02 20:49:29 +01:00
|
|
|
UASSERT_OBJ(!vtxp->hasMultipleSinks() || vtxp->is<DfgVertexVar>()
|
|
|
|
|
|| vtxp->is<DfgArraySel>() || vtxp->is<DfgConst>(),
|
|
|
|
|
vtxp, "Intermediate DFG value with multiple uses");
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
iterate(vtxp);
|
|
|
|
|
UASSERT_OBJ(m_resultp, vtxp, "Missing result");
|
2022-10-12 11:19:21 +02:00
|
|
|
AstNodeExpr* const resultp = m_resultp;
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
m_resultp = nullptr;
|
|
|
|
|
return resultp;
|
|
|
|
|
}
|
|
|
|
|
|
2024-03-02 20:49:29 +01:00
|
|
|
void addResultEquation(FileLine* flp, AstNodeExpr* lhsp, AstNodeExpr* rhsp) {
|
|
|
|
|
m_modp->addStmtsp(new AstAssignW{flp, lhsp, rhsp});
|
|
|
|
|
++m_ctx.m_resultEquations;
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
|
|
|
|
|
2024-03-02 20:49:29 +01:00
|
|
|
void convertVarDriver(const DfgVarPacked* dfgVarp) {
|
2022-09-25 17:03:15 +02:00
|
|
|
if (dfgVarp->isDrivenFullyByDfg()) {
|
|
|
|
|
// Whole variable is driven. Render driver and assign directly to whole variable.
|
2024-03-02 20:49:29 +01:00
|
|
|
FileLine* const flp = dfgVarp->driverFileLine(0);
|
|
|
|
|
AstVarRef* const lhsp = new AstVarRef{flp, dfgVarp->varp(), VAccess::WRITE};
|
2022-10-12 11:19:21 +02:00
|
|
|
AstNodeExpr* const rhsp = convertDfgVertexToAstNodeExpr(dfgVarp->source(0));
|
2024-03-02 20:49:29 +01:00
|
|
|
addResultEquation(flp, lhsp, rhsp);
|
2022-09-25 17:03:15 +02:00
|
|
|
} else {
|
|
|
|
|
// Variable is driven partially. Render each driver as a separate assignment.
|
|
|
|
|
dfgVarp->forEachSourceEdge([&](const DfgEdge& edge, size_t idx) {
|
|
|
|
|
UASSERT_OBJ(edge.sourcep(), dfgVarp, "Should have removed undriven sources");
|
|
|
|
|
// Render the rhs expression
|
2022-10-12 11:19:21 +02:00
|
|
|
AstNodeExpr* const rhsp = convertDfgVertexToAstNodeExpr(edge.sourcep());
|
2022-09-25 17:03:15 +02:00
|
|
|
// Create select LValue
|
|
|
|
|
FileLine* const flp = dfgVarp->driverFileLine(idx);
|
2024-03-02 20:49:29 +01:00
|
|
|
AstVarRef* const refp = new AstVarRef{flp, dfgVarp->varp(), VAccess::WRITE};
|
2022-09-25 17:03:15 +02:00
|
|
|
AstConst* const lsbp = new AstConst{flp, dfgVarp->driverLsb(idx)};
|
|
|
|
|
AstConst* const widthp = new AstConst{flp, edge.sourcep()->width()};
|
2024-03-02 20:49:29 +01:00
|
|
|
AstSel* const lhsp = new AstSel{flp, refp, lsbp, widthp};
|
2022-09-25 17:03:15 +02:00
|
|
|
// Add assignment of the value to the selected bits
|
|
|
|
|
addResultEquation(flp, lhsp, rhsp);
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2022-09-27 01:06:50 +02:00
|
|
|
void convertArrayDiver(const DfgVarArray* dfgVarp) {
|
2022-12-26 10:30:41 +01:00
|
|
|
// Variable is driven partially. Assign from parts of the canonical var.
|
2022-09-27 01:06:50 +02:00
|
|
|
dfgVarp->forEachSourceEdge([&](const DfgEdge& edge, size_t idx) {
|
|
|
|
|
UASSERT_OBJ(edge.sourcep(), dfgVarp, "Should have removed undriven sources");
|
|
|
|
|
// Render the rhs expression
|
2022-10-12 11:19:21 +02:00
|
|
|
AstNodeExpr* const rhsp = convertDfgVertexToAstNodeExpr(edge.sourcep());
|
2022-09-27 01:06:50 +02:00
|
|
|
// Create select LValue
|
|
|
|
|
FileLine* const flp = dfgVarp->driverFileLine(idx);
|
|
|
|
|
AstVarRef* const refp = new AstVarRef{flp, dfgVarp->varp(), VAccess::WRITE};
|
|
|
|
|
AstConst* const idxp = new AstConst{flp, dfgVarp->driverIndex(idx)};
|
|
|
|
|
AstArraySel* const lhsp = new AstArraySel{flp, refp, idxp};
|
|
|
|
|
// Add assignment of the value to the selected bits
|
|
|
|
|
addResultEquation(flp, lhsp, rhsp);
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
// VISITORS
|
|
|
|
|
void visit(DfgVertex* vtxp) override { // LCOV_EXCL_START
|
|
|
|
|
vtxp->v3fatal("Unhandled DfgVertex: " << vtxp->typeName());
|
|
|
|
|
} // LCOV_EXCL_STOP
|
|
|
|
|
|
2022-09-27 01:06:50 +02:00
|
|
|
void visit(DfgVarPacked* vtxp) override {
|
2024-03-02 20:49:29 +01:00
|
|
|
m_resultp = new AstVarRef{vtxp->fileline(), vtxp->varp(), VAccess::READ};
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
|
|
|
|
|
2022-09-27 01:06:50 +02:00
|
|
|
void visit(DfgVarArray* vtxp) override {
|
|
|
|
|
m_resultp = new AstVarRef{vtxp->fileline(), vtxp->varp(), VAccess::READ};
|
|
|
|
|
}
|
|
|
|
|
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
void visit(DfgConst* vtxp) override { //
|
2022-10-07 16:44:14 +02:00
|
|
|
m_resultp = new AstConst{vtxp->fileline(), vtxp->num()};
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
|
|
|
|
|
2022-10-06 19:34:18 +02:00
|
|
|
void visit(DfgSel* vtxp) override {
|
|
|
|
|
FileLine* const flp = vtxp->fileline();
|
2024-03-02 20:49:29 +01:00
|
|
|
AstNodeExpr* const fromp = convertDfgVertexToAstNodeExpr(vtxp->fromp());
|
2022-10-06 19:34:18 +02:00
|
|
|
AstConst* const lsbp = new AstConst{flp, vtxp->lsb()};
|
|
|
|
|
AstConst* const widthp = new AstConst{flp, vtxp->width()};
|
|
|
|
|
m_resultp = new AstSel{flp, fromp, lsbp, widthp};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void visit(DfgMux* vtxp) override {
|
|
|
|
|
FileLine* const flp = vtxp->fileline();
|
2024-03-02 20:49:29 +01:00
|
|
|
AstNodeExpr* const fromp = convertDfgVertexToAstNodeExpr(vtxp->fromp());
|
|
|
|
|
AstNodeExpr* const lsbp = convertDfgVertexToAstNodeExpr(vtxp->lsbp());
|
2022-10-06 19:34:18 +02:00
|
|
|
AstConst* const widthp = new AstConst{flp, vtxp->width()};
|
|
|
|
|
m_resultp = new AstSel{flp, fromp, lsbp, widthp};
|
|
|
|
|
}
|
|
|
|
|
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
// The rest of the 'visit' methods are generated by 'astgen'
|
|
|
|
|
#include "V3Dfg__gen_dfg_to_ast.h"
|
|
|
|
|
|
|
|
|
|
// Constructor
|
|
|
|
|
explicit DfgToAstVisitor(DfgGraph& dfg, V3DfgOptimizationContext& ctx)
|
|
|
|
|
: m_modp{dfg.modulep()}
|
|
|
|
|
, m_ctx{ctx} {
|
2022-10-07 17:13:01 +02:00
|
|
|
// Convert the graph back to combinational assignments
|
2022-10-06 12:26:11 +02:00
|
|
|
|
2024-03-02 20:49:29 +01:00
|
|
|
// The graph must have been regularized, so we only need to render assignments
|
2024-03-26 00:06:25 +01:00
|
|
|
for (DfgVertexVar& vtx : dfg.varVertices()) {
|
2022-10-07 17:13:01 +02:00
|
|
|
// If there is no driver (this vertex is an input to the graph), then nothing to do.
|
2024-03-26 00:06:25 +01:00
|
|
|
if (!vtx.isDrivenByDfg()) continue;
|
2022-10-07 17:13:01 +02:00
|
|
|
|
2022-09-27 01:06:50 +02:00
|
|
|
// Render packed variable assignments
|
2024-03-26 00:06:25 +01:00
|
|
|
if (const DfgVarPacked* const dfgVarp = vtx.cast<DfgVarPacked>()) {
|
2024-03-02 20:49:29 +01:00
|
|
|
convertVarDriver(dfgVarp);
|
2022-10-07 17:13:01 +02:00
|
|
|
continue;
|
2022-09-25 17:03:15 +02:00
|
|
|
}
|
|
|
|
|
|
2022-09-27 01:06:50 +02:00
|
|
|
// Render array variable assignments
|
2024-03-26 00:06:25 +01:00
|
|
|
convertArrayDiver(vtx.as<DfgVarArray>());
|
2022-10-07 17:13:01 +02:00
|
|
|
}
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
static AstModule* apply(DfgGraph& dfg, V3DfgOptimizationContext& ctx) {
|
|
|
|
|
return DfgToAstVisitor{dfg, ctx}.m_modp;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
AstModule* V3DfgPasses::dfgToAst(DfgGraph& dfg, V3DfgOptimizationContext& ctx) {
|
|
|
|
|
return DfgToAstVisitor::apply(dfg, ctx);
|
|
|
|
|
}
|