Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
// -*- mode: C++; c-file-style: "cc-mode" -*-
|
|
|
|
|
//*************************************************************************
|
|
|
|
|
// DESCRIPTION: Verilator: Control flow graph (CFG) builder
|
|
|
|
|
//
|
|
|
|
|
// Code available from: https://verilator.org
|
|
|
|
|
//
|
|
|
|
|
//*************************************************************************
|
|
|
|
|
//
|
|
|
|
|
// Copyright 2003-2025 by Wilson Snyder. This program is free software; you
|
|
|
|
|
// can redistribute it and/or modify it under the terms of either the GNU
|
|
|
|
|
// Lesser General Public License Version 3 or the Perl Artistic License
|
|
|
|
|
// Version 2.0.
|
|
|
|
|
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
|
|
|
|
|
//
|
|
|
|
|
//*************************************************************************
|
|
|
|
|
//
|
|
|
|
|
// Control flow graph (CFG) builder
|
|
|
|
|
//
|
|
|
|
|
//*************************************************************************
|
|
|
|
|
|
|
|
|
|
#include "config_build.h"
|
|
|
|
|
#include "verilatedos.h"
|
|
|
|
|
|
|
|
|
|
#include "V3Ast.h"
|
|
|
|
|
#include "V3Cfg.h"
|
|
|
|
|
#include "V3EmitV.h"
|
|
|
|
|
|
|
|
|
|
#include <deque>
|
|
|
|
|
#include <unordered_map>
|
|
|
|
|
#include <unordered_set>
|
|
|
|
|
|
|
|
|
|
VL_DEFINE_DEBUG_FUNCTIONS;
|
|
|
|
|
|
2025-08-25 14:47:45 +02:00
|
|
|
class CfgBuilder final : public VNVisitorConst {
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
// STATE
|
|
|
|
|
// The graph being built, or nullptr if failed to build one
|
2025-08-25 14:47:45 +02:00
|
|
|
std::unique_ptr<CfgGraph> m_cfgp{new CfgGraph};
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
// Current basic block to add statements to
|
2025-08-25 14:47:45 +02:00
|
|
|
CfgBlock* m_currBBp = nullptr;
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
// Continuation block for given JumpBlock
|
2025-08-25 14:47:45 +02:00
|
|
|
std::unordered_map<AstJumpBlock*, CfgBlock*> m_jumpBlockContp;
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
|
|
|
|
|
// METHODS
|
|
|
|
|
|
2025-08-25 14:47:45 +02:00
|
|
|
// Add the given statement to the current CfgBlock
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
void addStmt(AstNodeStmt* nodep) { m_currBBp->m_stmtps.emplace_back(nodep); }
|
|
|
|
|
|
|
|
|
|
// Used to handle statements not representable in the CFG
|
|
|
|
|
void nonRepresentable(AstNodeStmt*) {
|
|
|
|
|
if (!m_cfgp) return;
|
|
|
|
|
m_cfgp.reset();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Used to handle simple (non-branching) statements in the CFG
|
|
|
|
|
void simpleStatement(AstNodeStmt* nodep, bool representable = true) {
|
|
|
|
|
if (!m_cfgp) return;
|
|
|
|
|
// If non-representable, reset graph
|
|
|
|
|
if (!representable) {
|
|
|
|
|
m_cfgp.reset();
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
// Just add to current block
|
|
|
|
|
addStmt(nodep);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// VISITORS
|
|
|
|
|
|
|
|
|
|
// Eventually we should handle all procedural statements, however, what
|
|
|
|
|
// is a procedural statemen is a bit unclear (#6280), so in the first
|
|
|
|
|
// instance we will only handle select statemetns that cover the requied
|
|
|
|
|
// use cases, and in the base case we conservatively assume the statement
|
|
|
|
|
// is non-representable. More visits can be added case by case if needed.
|
|
|
|
|
void visit(AstNode* nodep) override {
|
|
|
|
|
if (!m_cfgp) return;
|
|
|
|
|
UINFO(9, "Unhandled AstNode type " << nodep->typeName());
|
|
|
|
|
m_cfgp.reset();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Non-representable statements
|
|
|
|
|
void visit(AstAssignDly* nodep) override { nonRepresentable(nodep); }
|
|
|
|
|
void visit(AstCase* nodep) override { nonRepresentable(nodep); } // V3Case will eliminate
|
|
|
|
|
void visit(AstCReset* nodep) override { nonRepresentable(nodep); }
|
|
|
|
|
void visit(AstDelay* nodep) override { nonRepresentable(nodep); }
|
|
|
|
|
|
|
|
|
|
// Representable non control-flow statements
|
|
|
|
|
void visit(AstAssign* nodep) override { simpleStatement(nodep, !nodep->timingControlp()); }
|
|
|
|
|
void visit(AstComment*) override {} // ignore entirely
|
|
|
|
|
void visit(AstDisplay* nodep) override { simpleStatement(nodep); }
|
|
|
|
|
void visit(AstFinish* nodep) override { simpleStatement(nodep); }
|
|
|
|
|
void visit(AstStmtExpr* nodep) override { simpleStatement(nodep); }
|
|
|
|
|
void visit(AstStop* nodep) override { simpleStatement(nodep); }
|
|
|
|
|
|
|
|
|
|
// Representable control flow statements
|
|
|
|
|
void visit(AstIf* nodep) override {
|
|
|
|
|
if (!m_cfgp) return;
|
|
|
|
|
|
|
|
|
|
// Add terminator statement to current block - semantically the condition check only ...
|
|
|
|
|
addStmt(nodep);
|
|
|
|
|
|
|
|
|
|
// Create then/else/continuation blocks
|
2025-08-25 14:47:45 +02:00
|
|
|
CfgBlock* const thenBBp = m_cfgp->addBlock();
|
|
|
|
|
CfgBlock* const elseBBp = m_cfgp->addBlock();
|
|
|
|
|
CfgBlock* const contBBp = m_cfgp->addBlock();
|
|
|
|
|
m_cfgp->addTakenEdge(m_currBBp, thenBBp);
|
|
|
|
|
m_cfgp->addUntknEdge(m_currBBp, elseBBp);
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
|
|
|
|
|
// Build then branch
|
2025-08-25 14:47:45 +02:00
|
|
|
m_currBBp = thenBBp;
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
iterateAndNextConstNull(nodep->thensp());
|
|
|
|
|
if (!m_cfgp) return;
|
2025-08-25 14:47:45 +02:00
|
|
|
if (m_currBBp) m_cfgp->addTakenEdge(m_currBBp, contBBp);
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
|
|
|
|
|
// Build else branch
|
2025-08-25 14:47:45 +02:00
|
|
|
m_currBBp = elseBBp;
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
iterateAndNextConstNull(nodep->elsesp());
|
|
|
|
|
if (!m_cfgp) return;
|
2025-08-25 14:47:45 +02:00
|
|
|
if (m_currBBp) m_cfgp->addTakenEdge(m_currBBp, contBBp);
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
|
|
|
|
|
// Set continuation
|
2025-08-25 14:47:45 +02:00
|
|
|
m_currBBp = contBBp;
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
}
|
|
|
|
|
void visit(AstWhile* nodep) override {
|
|
|
|
|
if (!m_cfgp) return;
|
|
|
|
|
|
|
|
|
|
// Create the header block
|
2025-08-25 14:47:45 +02:00
|
|
|
CfgBlock* const headBBp = m_cfgp->addBlock();
|
|
|
|
|
m_cfgp->addTakenEdge(m_currBBp, headBBp);
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
|
|
|
|
|
// The While goes in the header block - semantically the condition check only ...
|
2025-08-25 14:47:45 +02:00
|
|
|
m_currBBp = headBBp;
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
addStmt(nodep);
|
|
|
|
|
|
|
|
|
|
// Create the body/continuation blocks
|
2025-08-25 14:47:45 +02:00
|
|
|
CfgBlock* const bodyBBp = m_cfgp->addBlock();
|
|
|
|
|
CfgBlock* const contBBp = m_cfgp->addBlock();
|
|
|
|
|
m_cfgp->addTakenEdge(headBBp, bodyBBp);
|
|
|
|
|
m_cfgp->addUntknEdge(headBBp, contBBp);
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
|
|
|
|
|
// Build the body
|
2025-08-25 14:47:45 +02:00
|
|
|
m_currBBp = bodyBBp;
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
iterateAndNextConstNull(nodep->stmtsp());
|
|
|
|
|
iterateAndNextConstNull(nodep->incsp());
|
|
|
|
|
if (!m_cfgp) return;
|
2025-08-25 14:47:45 +02:00
|
|
|
if (m_currBBp) m_cfgp->addTakenEdge(m_currBBp, headBBp);
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
|
|
|
|
|
// Set continuation
|
2025-08-25 14:47:45 +02:00
|
|
|
m_currBBp = contBBp;
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
}
|
|
|
|
|
void visit(AstJumpBlock* nodep) override {
|
|
|
|
|
if (!m_cfgp) return;
|
|
|
|
|
|
2025-08-25 14:47:45 +02:00
|
|
|
// Don't acutally need to add this 'nodep' to any block
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
|
|
|
|
|
// Create continuation block
|
2025-08-25 14:47:45 +02:00
|
|
|
CfgBlock* const contBBp = m_cfgp->addBlock();
|
|
|
|
|
const bool newEntry = m_jumpBlockContp.emplace(nodep, contBBp).second;
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
UASSERT_OBJ(newEntry, nodep, "AstJumpBlock visited twice");
|
|
|
|
|
|
|
|
|
|
// Build the body
|
|
|
|
|
iterateAndNextConstNull(nodep->stmtsp());
|
|
|
|
|
if (!m_cfgp) return;
|
2025-08-25 14:47:45 +02:00
|
|
|
if (m_currBBp) m_cfgp->addTakenEdge(m_currBBp, contBBp);
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
|
|
|
|
|
// Set continuation
|
2025-08-25 14:47:45 +02:00
|
|
|
m_currBBp = contBBp;
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
}
|
|
|
|
|
void visit(AstJumpGo* nodep) override {
|
|
|
|
|
if (!m_cfgp) return;
|
|
|
|
|
|
|
|
|
|
// Non-representable if not last in statement list (V3Const will fix this later)
|
|
|
|
|
if (nodep->nextp()) {
|
|
|
|
|
m_cfgp.reset();
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
2025-08-25 14:47:45 +02:00
|
|
|
// Don't acutally need to add this 'nodep' to any block
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
|
|
|
|
|
// Make current block go to the continuation of the JumpBlock
|
2025-08-25 14:47:45 +02:00
|
|
|
m_cfgp->addTakenEdge(m_currBBp, m_jumpBlockContp.at(nodep->blockp()));
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
|
|
|
|
|
// There should be no statements after a JumpGo!
|
|
|
|
|
m_currBBp = nullptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// CONSTRUCTOR
|
2025-08-25 14:47:45 +02:00
|
|
|
explicit CfgBuilder(AstNode* stmtsp) {
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
// Build the graph, starting from the entry block
|
2025-08-25 14:47:45 +02:00
|
|
|
m_currBBp = m_cfgp->addBlock();
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
m_cfgp->m_enterp = m_currBBp;
|
|
|
|
|
// Visit each statement to build the control flow graph
|
2025-08-25 14:47:45 +02:00
|
|
|
iterateAndNextConstNull(stmtsp);
|
|
|
|
|
// If failed, stop now
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
if (!m_cfgp) return;
|
|
|
|
|
// The final block is the exit block
|
|
|
|
|
m_cfgp->m_exitp = m_currBBp;
|
2025-08-25 14:47:45 +02:00
|
|
|
// Some blocks might not have predecessors if they are unreachable, remove them
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
{
|
2025-08-25 14:47:45 +02:00
|
|
|
std::vector<V3GraphVertex*> unreachableps;
|
|
|
|
|
for (V3GraphVertex* const vtxp : m_cfgp->vertices().unlinkable()) {
|
|
|
|
|
if (vtxp == m_cfgp->m_enterp) continue;
|
|
|
|
|
if (vtxp == m_cfgp->m_exitp) continue;
|
|
|
|
|
UASSERT_OBJ(!vtxp->outEmpty(), vtxp, "Block with no successor other than exit");
|
|
|
|
|
if (vtxp->inEmpty()) unreachableps.emplace_back(vtxp);
|
|
|
|
|
}
|
|
|
|
|
while (!unreachableps.empty()) {
|
|
|
|
|
V3GraphVertex* const vtxp = unreachableps.back();
|
|
|
|
|
unreachableps.pop_back();
|
|
|
|
|
for (V3GraphEdge& edge : vtxp->outEdges()) {
|
|
|
|
|
--m_cfgp->m_nEdges;
|
|
|
|
|
if (edge.top()->inSize1()) unreachableps.emplace_back(edge.top());
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
}
|
2025-08-25 14:47:45 +02:00
|
|
|
--m_cfgp->m_nBlocks;
|
|
|
|
|
VL_DO_DANGLING(vtxp->unlinkDelete(m_cfgp.get()), vtxp);
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
}
|
|
|
|
|
}
|
2025-08-25 14:47:45 +02:00
|
|
|
// Dump the initial graph
|
|
|
|
|
if (dumpGraphLevel() >= 9) {
|
|
|
|
|
m_cfgp->rpoBlocks();
|
|
|
|
|
m_cfgp->dumpDotFilePrefixed("cfg-builder-initial");
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
}
|
2025-08-25 14:47:45 +02:00
|
|
|
// Minimize it
|
|
|
|
|
m_cfgp->minimize();
|
|
|
|
|
// Dump the final graph
|
|
|
|
|
if (dumpGraphLevel() >= 8) m_cfgp->dumpDotFilePrefixed("cfg-builder");
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public:
|
2025-08-25 14:47:45 +02:00
|
|
|
static std::unique_ptr<CfgGraph> apply(AstNode* stmtsp) {
|
|
|
|
|
return std::move(CfgBuilder{stmtsp}.m_cfgp);
|
Optimize complex combinational logic in DFG (#6298)
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
2025-08-25 14:47:45 +02:00
|
|
|
std::unique_ptr<CfgGraph> CfgGraph::build(AstNode* stmtsp) { return CfgBuilder::apply(stmtsp); }
|