verilator/src/V3InstrCount.cpp

335 lines
13 KiB
C++
Raw Normal View History

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Estimate instruction count to run the logic
// we would generate for any given AST subtree.
//
2019-11-08 04:33:59 +01:00
// Code available from: https://verilator.org
//
//*************************************************************************
//
2023-01-01 16:18:39 +01:00
// Copyright 2003-2023 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
#define VL_MT_DISABLED_CODE_UNIT 1
#include "config_build.h"
#include "verilatedos.h"
#include "V3InstrCount.h"
#include "V3Ast.h"
#include <iomanip>
VL_DEFINE_DEBUG_FUNCTIONS;
/// Estimate the instruction cost for executing all logic within and below
/// a given AST node. Note this estimates the number of instructions we'll
/// execute, not the number we'll generate. That is, for conditionals,
/// we'll count instructions from either the 'if' or the 'else' branch,
/// whichever is larger. We know we won't run both.
class InstrCountVisitor final : public VNVisitorConst {
private:
// NODE STATE
// AstNode::user4() -> int. Path cost + 1, 0 means don't dump
// AstNode::user5() -> bool. Processed if assertNoDups
const VNUser4InUse m_inuser4;
// MEMBERS
uint32_t m_instrCount = 0; // Running count of instructions
const AstNode* const m_startNodep; // Start node of count
bool m_tracingCall = false; // Iterating into a CCall to a CFunc
bool m_inCFunc = false; // Inside AstCFunc
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
bool m_ignoreRemaining = false; // Ignore remaining statements in the block
const bool m_assertNoDups; // Check for duplicates
const std::ostream* const m_osp; // Dump file
// TYPES
// Little class to cleanly call startVisitBase/endVisitBase
class VisitBase final {
private:
// MEMBERS
uint32_t m_savedCount;
AstNode* const m_nodep;
InstrCountVisitor* const m_visitor;
public:
// CONSTRUCTORS
VisitBase(InstrCountVisitor* visitor, AstNode* nodep)
: m_nodep{nodep}
, m_visitor{visitor} {
m_savedCount = m_visitor->startVisitBase(nodep);
}
~VisitBase() { m_visitor->endVisitBase(m_savedCount, m_nodep); }
private:
VL_UNCOPYABLE(VisitBase);
};
public:
// CONSTRUCTORS
InstrCountVisitor(AstNode* nodep, bool assertNoDups, std::ostream* osp)
: m_startNodep{nodep}
, m_assertNoDups{assertNoDups}
, m_osp{osp} {
if (nodep) iterateConst(nodep);
}
~InstrCountVisitor() override = default;
// METHODS
uint32_t instrCount() const { return m_instrCount; }
private:
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
void reset() {
m_instrCount = 0;
m_ignoreRemaining = false;
}
uint32_t startVisitBase(AstNode* nodep) {
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
UASSERT_OBJ(!m_ignoreRemaining, nodep, "Should not reach here if ignoring");
if (m_assertNoDups && !m_inCFunc) {
// Ensure we don't count the same node twice
//
// We only enable this assert for the initial LogicMTask counts
// in V3Order. We can't enable it for the 2nd pass in V3EmitC,
// as we expect mtasks to contain common logic after V3Combine,
// so this would fail.
//
// Also, we expect some collisions within calls to CFuncs
// (which at the V3Order stage represent verilog tasks, not to
// the CFuncs that V3Order will generate.) So don't check for
// collisions in CFuncs.
UASSERT_OBJ(!nodep->user5p(), nodep,
"Node originally inserted below logic vertex "
<< static_cast<AstNode*>(nodep->user5p()));
nodep->user5p(const_cast<void*>(reinterpret_cast<const void*>(m_startNodep)));
}
// Save the count, and add it back in during ~VisitBase This allows
// debug prints to show local cost of each subtree, so we can see a
// hierarchical view of the cost when in debug mode.
const uint32_t savedCount = m_instrCount;
m_instrCount = nodep->instrCount();
return savedCount;
}
void endVisitBase(uint32_t savedCount, AstNode* nodep) {
UINFO(8, "cost " << std::setw(6) << std::left << m_instrCount << " " << nodep << endl);
markCost(nodep);
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
if (!m_ignoreRemaining) m_instrCount += savedCount;
}
void markCost(AstNode* nodep) {
if (m_osp) nodep->user4(m_instrCount + 1); // Else don't mark to avoid writeback
}
// VISITORS
void visit(AstNodeSel* nodep) override {
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
if (m_ignoreRemaining) return;
// This covers both AstArraySel and AstWordSel
//
// If some vector is a bazillion dwords long, and we're selecting 1
// dword to read or write from it, our cost should be small.
//
// Hence, exclude the child of the AstWordSel from the computation,
// whose cost scales with the size of the entire (maybe large) vector.
const VisitBase vb{this, nodep};
iterateAndNextConstNull(nodep->bitp());
}
void visit(AstSel* nodep) override {
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
if (m_ignoreRemaining) return;
// Similar to AstNodeSel above, a small select into a large vector
// is not expensive. Count the cost of the AstSel itself (scales with
// its width) and the cost of the lsbp() and widthp() nodes, but not
// the fromp() node which could be disproportionately large.
const VisitBase vb{this, nodep};
iterateAndNextConstNull(nodep->lsbp());
iterateAndNextConstNull(nodep->widthp());
}
void visit(AstConcat* nodep) override {
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
if (m_ignoreRemaining) return;
// Nop.
//
// Ignore concat. The problem with counting concat is that when we
// have many things concatted together, it's not a single
// operation, but this:
//
// concat(a, concat(b, concat(c, concat(d, ... ))))
//
// Then if we account a cost to each 'concat' that scales with its
// width, this whole operation ends up with a cost accounting that
// scales with N^2. Of course, the real operation isn't that
// expensive: we won't copy each element over and over, we'll just
// copy it once from its origin into its destination, so the actual
// cost is linear with the size of the data. We don't need to count
// the concat at all to reflect a linear cost; it's already there
// in the width of the destination (which we count) and the sum of
// the widths of the operands (ignored here).
markCost(nodep);
}
void visit(AstNodeIf* nodep) override {
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
if (m_ignoreRemaining) return;
const VisitBase vb{this, nodep};
iterateAndNextConstNull(nodep->condp());
const uint32_t savedCount = m_instrCount;
UINFO(8, "thensp:\n");
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
reset();
iterateAndNextConstNull(nodep->thensp());
uint32_t ifCount = m_instrCount;
if (nodep->branchPred().unlikely()) ifCount = 0;
UINFO(8, "elsesp:\n");
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
reset();
iterateAndNextConstNull(nodep->elsesp());
uint32_t elseCount = m_instrCount;
if (nodep->branchPred().likely()) elseCount = 0;
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
reset();
if (ifCount >= elseCount) {
m_instrCount = savedCount + ifCount;
if (nodep->elsesp()) nodep->elsesp()->user4(0); // Don't dump it
} else {
m_instrCount = savedCount + elseCount;
if (nodep->thensp()) nodep->thensp()->user4(0); // Don't dump it
}
}
void visit(AstNodeCond* nodep) override {
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
if (m_ignoreRemaining) return;
// Just like if/else above, the ternary operator only evaluates
// one of the two expressions, so only count the max.
const VisitBase vb{this, nodep};
iterateAndNextConstNull(nodep->condp());
const uint32_t savedCount = m_instrCount;
UINFO(8, "?\n");
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
reset();
iterateAndNextConstNull(nodep->thenp());
const uint32_t ifCount = m_instrCount;
UINFO(8, ":\n");
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
reset();
iterateAndNextConstNull(nodep->elsep());
const uint32_t elseCount = m_instrCount;
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
reset();
if (ifCount < elseCount) {
m_instrCount = savedCount + elseCount;
if (nodep->thenp()) nodep->thenp()->user4(0); // Don't dump it
} else {
m_instrCount = savedCount + ifCount;
if (nodep->elsep()) nodep->elsep()->user4(0); // Don't dump it
}
}
2022-09-16 17:15:10 +02:00
void visit(AstCAwait* nodep) override {
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
if (m_ignoreRemaining) return;
iterateChildrenConst(nodep);
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
// Anything past a co_await is irrelevant
m_ignoreRemaining = true;
}
2022-09-16 17:15:10 +02:00
void visit(AstFork* nodep) override {
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
if (m_ignoreRemaining) return;
const VisitBase vb{this, nodep};
uint32_t totalCount = m_instrCount;
// Sum counts in each statement until the first await
for (AstNode* stmtp = nodep->stmtsp(); stmtp; stmtp = stmtp->nextp()) {
reset();
iterateConst(stmtp);
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
totalCount += m_instrCount;
}
m_instrCount = totalCount;
m_ignoreRemaining = false;
}
void visit(AstActive* nodep) override {
// You'd think that the OrderLogicVertex's would be disjoint trees
// of stuff in the AST, but it isn't so: V3Order makes an
// OrderLogicVertex for each ACTIVE, and then also makes an
// OrderLogicVertex for each statement within the ACTIVE.
//
// To avoid double-counting costs, stop recursing and short-circuit
// the computation for each ACTIVE.
//
// Our intent is that this only stops at the root node of the
// search; there should be no actives beneath the root, as there
// are no actives-under-actives. In any case, check that we're at
// root:
markCost(nodep);
UASSERT_OBJ(nodep == m_startNodep, nodep, "Multiple actives, or not start node");
}
void visit(AstNodeCCall* nodep) override {
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
if (m_ignoreRemaining) return;
const VisitBase vb{this, nodep};
iterateChildrenConst(nodep);
m_tracingCall = true;
iterateConst(nodep->funcp());
UASSERT_OBJ(!m_tracingCall, nodep, "visit(AstCFunc) should have cleared m_tracingCall.");
}
void visit(AstCFunc* nodep) override {
// Don't count a CFunc other than by tracing a call or counting it
// from the root
UASSERT_OBJ(m_tracingCall || nodep == m_startNodep, nodep,
"AstCFunc not under AstCCall, or not start node");
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
UASSERT_OBJ(!m_ignoreRemaining, nodep, "Should not be ignoring at the start of a CFunc");
m_tracingCall = false;
VL_RESTORER(m_inCFunc);
{
m_inCFunc = true;
const VisitBase vb{this, nodep};
iterateChildrenConst(nodep);
}
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
m_ignoreRemaining = false;
}
void visit(AstNode* nodep) override {
Timing support (#3363) Adds timing support to Verilator. It makes it possible to use delays, event controls within processes (not just at the start), wait statements, and forks. Building a design with those constructs requires a compiler that supports C++20 coroutines (GCC 10, Clang 5). The basic idea is to have processes and tasks with delays/event controls implemented as C++20 coroutines. This allows us to suspend and resume them at any time. There are five main runtime classes responsible for managing suspended coroutines: * `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle` with move semantics and automatic cleanup. * `VlDelayScheduler`, for coroutines suspended by delays. It resumes them at a proper simulation time. * `VlTriggerScheduler`, for coroutines suspended by event controls. It resumes them if its corresponding trigger was set. * `VlForkSync`, used for syncing `fork..join` and `fork..join_any` blocks. * `VlCoroutine`, the return type of all verilated coroutines. It allows for suspending a stack of coroutines (normally, C++ coroutines are stackless). There is a new visitor in `V3Timing.cpp` which: * scales delays according to the timescale, * simplifies intra-assignment timing controls and net delays into regular timing controls and assignments, * simplifies wait statements into loops with event controls, * marks processes and tasks with timing controls in them as suspendable, * creates delay, trigger scheduler, and fork sync variables, * transforms timing controls and fork joins into C++ awaits There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`) that integrate static scheduling with timing. This involves providing external domains for variables, so that the necessary combinational logic gets triggered after coroutine resumption, as well as statements that need to be injected into the design eval function to perform this resumption at the correct time. There is also a function that transforms forked processes into separate functions. See the comments in `verilated_timing.h`, `verilated_timing.cpp`, `V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals documentation for more details. Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2022-08-22 14:26:32 +02:00
if (m_ignoreRemaining) return;
const VisitBase vb{this, nodep};
iterateChildrenConst(nodep);
}
VL_UNCOPYABLE(InstrCountVisitor);
};
// Iterate the graph printing the critical path marked by previous visitation
class InstrCountDumpVisitor final : public VNVisitorConst {
private:
// NODE STATE
// AstNode::user4() -> int. Path cost, 0 means don't dump
// MEMBERS
std::ostream* const m_osp; // Dump file
unsigned m_depth = 0; // Current tree depth for printing indent
public:
// CONSTRUCTORS
InstrCountDumpVisitor(AstNode* nodep, std::ostream* osp)
: m_osp{osp} {
// No check for nullptr output, so...
UASSERT_OBJ(osp, nodep, "Don't call if not dumping");
if (nodep) iterateConst(nodep);
}
~InstrCountDumpVisitor() override = default;
private:
// METHODS
string indent() const { return string(m_depth, ':') + " "; }
void visit(AstNode* nodep) override {
++m_depth;
if (unsigned costPlus1 = nodep->user4()) {
*m_osp << " " << indent() << "cost " << std::setw(6) << std::left << (costPlus1 - 1)
<< " " << nodep << '\n';
iterateChildrenConst(nodep);
}
--m_depth;
}
VL_UNCOPYABLE(InstrCountDumpVisitor);
};
uint32_t V3InstrCount::count(AstNode* nodep, bool assertNoDups, std::ostream* osp) {
const InstrCountVisitor visitor{nodep, assertNoDups, osp};
2022-11-19 20:45:33 +01:00
if (osp) InstrCountDumpVisitor dumper{nodep, osp};
return visitor.instrCount();
}