sv2v/src/Convert/TypeOf.hs

454 lines
17 KiB
Haskell

{-# LANGUAGE PatternSynonyms #-}
{- sv2v
- Author: Zachary Snow <zach@zachjs.com>
-
- Conversion for the `type` operator
-
- This conversion is responsible for explicit type resolution throughout sv2v.
- It uses Scoper to resolve hierarchical expressions in a scope-aware manner.
-
- Some other conversions, such as the dimension query and streaming
- concatenation conversions, defer the resolution of type information to this
- conversion pass by producing nodes with the `type` operator during
- elaboration.
-
- This conversion also elaborates sign and size casts to their primitive types.
- Sign casts take on the size of the underlying expression. Size casts take on
- the sign of the underlying expression. This conversion incorporates this
- elaboration as the canonical source for type information. It also enables the
- removal of unnecessary casts often resulting from struct literals or casts in
- the source intended to appease certain lint rules.
-}
module Convert.TypeOf (convert) where
import Control.Monad.State.Strict
import Data.Tuple (swap)
import Convert.ExprUtils (dimensionsSize, endianCondRange, simplify)
import Convert.Scoper
import Convert.Traverse
import Language.SystemVerilog.AST
convert :: [AST] -> [AST]
convert = map $ traverseDescriptions $ partScoper
traverseDeclM traverseModuleItemM traverseGenItemM traverseStmtM
-- single bit 4-state `logic` type
pattern UnitType :: Type
pattern UnitType = IntegerVector TLogic Unspecified []
type ST = Scoper Type
-- insert the given declaration into the scope, and convert an TypeOfs within
traverseDeclM :: Decl -> ST Decl
traverseDeclM decl@Net{} =
traverseNetAsVarM traverseDeclM decl
traverseDeclM decl = do
decl' <- traverseDeclNodesM traverseTypeM traverseExprM decl
case decl' of
Variable _ (Implicit sg rs) ident a _ ->
-- implicit types, which are commonly found in function return
-- types, are recast as logics to avoid outputting bare ranges
insertType ident t' >> return decl'
where t' = injectRanges (IntegerVector TLogic sg rs) a
Variable d t ident a e -> do
let t' = injectRanges t a
insertType ident t'
return $ case t' of
UnpackedType t'' a' -> Variable d t'' ident a' e
_ -> Variable d t' ident [] e
Param Parameter UnknownType ident String{} ->
insertType ident (TypeOf $ Ident ident) >> return decl'
Param _ UnknownType ident e ->
typeof e >>= insertType ident >> return decl'
Param _ (Implicit sg rs) ident _ ->
insertType ident t' >> return decl'
where t' = IntegerVector TLogic sg rs
Param _ t ident _ ->
insertType ident t >> return decl'
_ -> return decl'
-- rewrite and store a non-genvar data declaration's type information
insertType :: Identifier -> Type -> ST ()
insertType ident typ = do
-- hack to make this evaluation lazy
typ' <- gets $ evalState $ scopeType typ
insertElem ident typ'
-- convert TypeOf in a ModuleItem
traverseModuleItemM :: ModuleItem -> ST ModuleItem
traverseModuleItemM =
traverseNodesM traverseExprM return traverseTypeM traverseLHSM return
where traverseLHSM = traverseLHSExprsM traverseExprM
-- convert TypeOf in a GenItem
traverseGenItemM :: GenItem -> ST GenItem
traverseGenItemM = traverseGenItemExprsM traverseExprM
-- convert TypeOf in a Stmt
traverseStmtM :: Stmt -> ST Stmt
traverseStmtM = traverseStmtExprsM traverseExprM
-- convert TypeOf in an Expr
traverseExprM :: Expr -> ST Expr
traverseExprM (Cast (Left (Implicit sg [])) expr) =
-- `signed'(foo)` and `unsigned'(foo)` are syntactic sugar for the `$signed`
-- and `$unsigned` system functions present in Verilog-2005
traverseExprM $ Call (Ident fn) $ Args [expr] []
where fn = if sg == Signed then "$signed" else "$unsigned"
traverseExprM (Cast (Left t) (Number (UnbasedUnsized bit))) =
-- defer until this expression becomes explicit
return $ Cast (Left t) (Number (UnbasedUnsized bit))
traverseExprM (Cast (Left t@(IntegerAtom TInteger _)) expr) =
-- convert to cast to an integer vector type
traverseExprM $ Cast (Left t') expr
where
(tf, []) = typeRanges t
t' = tf [(RawNum 1, RawNum 1)]
traverseExprM (Cast (Left t1) expr) = do
expr' <- traverseExprM expr
t1' <- traverseTypeM t1
t2 <- typeof expr'
if typeCastUnneeded t1' t2
then traverseExprM $ makeExplicit expr'
else return $ Cast (Left t1') expr'
traverseExprM (Cast (Right (Ident x)) expr) = do
expr' <- traverseExprM expr
details <- lookupElemM x
isGenvar <- isLoopVarM x
if details == Nothing && not isGenvar
then return $ Cast (Left $ Alias x []) expr'
else elaborateSizeCast (Ident x) expr'
traverseExprM (Cast (Right size) expr) = do
expr' <- traverseExprM expr
size' <- traverseExprM size
elaborateSizeCast size' expr'
traverseExprM orig@(Dot (Ident x) f) = do
unneeded <- unneededModuleScope x f
return $ if unneeded
then Ident f
else orig
traverseExprM other =
traverseSinglyNestedExprsM traverseExprM other
>>= traverseExprTypesM traverseTypeM
-- carry forward the signedness of the expression when cast to the given size
elaborateSizeCast :: Expr -> Expr -> ST Expr
elaborateSizeCast (Number size) _ | Just 0 == numberToInteger size =
-- special case because zero-width ranges cannot be represented
scopedErrorM $ "size cast width " ++ show size
++ " is not a positive integer"
elaborateSizeCast size value = do
t <- typeof value
force <- isStringParam value
case (typeSignedness t, force) of
(Unspecified, False)-> return $ Cast (Right size) value
(sg, _) -> traverseExprM $ Cast (Left $ typeOfSize sg size) value
-- string params use a self-referential type to enable the string param
-- conversion to add a synthetic parameter if necessary; this check enables size
-- casts to assume a string parameter is unsigned regardless of its length
isStringParam :: Expr -> ST Bool
isStringParam (Ident x) = do
details <- lookupElemM x
return $ case details of
Nothing -> False
Just (_, _, typ) -> typ == TypeOf (Ident x)
isStringParam _ = return False
-- checks if referring to part.wire is needlessly explicit
unneededModuleScope :: Identifier -> Identifier -> ST Bool
unneededModuleScope part wire = do
accessesLocal <- localAccessesM wire
if accessesLocal == accessesTop then
return True
else if head accessesLocal == head accessesTop then do
details <- lookupElemM wire
return $ case details of
Just (accessesFound, _, _) -> accessesTop == accessesFound
_ -> False
else
return False
where accessesTop = [Access part Nil, Access wire Nil]
-- convert TypeOf in a Type
traverseTypeM :: Type -> ST Type
traverseTypeM (TypeOf expr) =
traverseExprM expr >>= typeof
traverseTypeM other =
traverseSinglyNestedTypesM traverseTypeM other
>>= traverseTypeExprsM traverseExprM
-- attempts to find the given (potentially hierarchical or generate-scoped)
-- expression in the available scope information
lookupTypeOf :: Expr -> ST Type
lookupTypeOf expr@(Ident x) = do
details <- lookupElemM x
loopVar <- loopVarDepthM x
return $ case details of
Nothing ->
if loopVar == Nothing
then TypeOf expr
else IntegerAtom TInteger Unspecified
Just (accesses, replacements, typ) ->
if maybe True (length accesses >) loopVar
then replaceInType replacements typ
else IntegerAtom TInteger Unspecified
lookupTypeOf expr = do
details <- lookupElemM expr
return $ case details of
Nothing -> TypeOf expr
Just (_, replacements, typ) ->
replaceInType replacements typ
-- determines the type of an expression based on the available scope information
-- according the semantics defined in IEEE 1800-2017, especially Section 11.6
typeof :: Expr -> ST Type
typeof (Number n) =
return $ IntegerVector TLogic sg [r]
where
r = (RawNum $ size - 1, RawNum 0)
size = numberBitLength n
sg = if numberIsSigned n then Signed else Unspecified
typeof (Call (Ident x) args) = typeofCall x args
typeof orig@(Bit e _) = do
t <- typeof e
case t of
TypeOf{} -> return $ TypeOf orig
Alias{} -> return $ TypeOf orig
_ -> do
t' <- popRange orig t
return $ typeSignednessOverride t' Unsigned t'
typeof orig@(Range e NonIndexed r) = do
t <- typeof e
case t of
TypeOf{} -> return $ TypeOf orig
Alias{} -> return $ TypeOf orig
_ -> do
t' <- replaceRange orig r t
return $ typeSignednessOverride t' Unsigned t'
typeof (Range expr mode (base, len)) =
typeof $ Range expr NonIndexed $
endianCondRange index (base, end) (end, base)
where
index =
if mode == IndexedPlus
then (boundR, boundL)
else (boundL, boundR)
boundL = DimFn FnLeft (Left $ TypeOf expr) (RawNum 1)
boundR = DimFn FnRight (Left $ TypeOf expr) (RawNum 1)
end =
if mode == IndexedPlus
then BinOp Sub (BinOp Add base len) (RawNum 1)
else BinOp Add (BinOp Sub base len) (RawNum 1)
typeof orig@(Dot e x) = do
t <- typeof e
case t of
Struct _ fields [] -> return $ fieldsType fields
Union _ fields [] -> return $ fieldsType fields
_ -> lookupTypeOf orig
where
fieldsType :: [Field] -> Type
fieldsType fields =
case lookup x $ map swap fields of
Just typ -> typ
Nothing -> TypeOf orig
typeof (Cast (Left t) _) = traverseTypeM t
typeof (UniOp op expr) = typeofUniOp op expr
typeof (BinOp op a b) = typeofBinOp op a b
typeof (Mux _ a b) = largerSizeType a b
typeof (Concat exprs) = return $ typeOfSize Unsigned $ concatSize exprs
typeof (Stream _ _ exprs) = return $ typeOfSize Unsigned $ concatSize exprs
typeof (Repeat reps exprs) = return $ typeOfSize Unsigned size
where size = BinOp Mul reps (concatSize exprs)
typeof (String str) =
return $ IntegerVector TBit Unspecified [r]
where
r = (RawNum $ len - 1, RawNum 0)
len = if null str then 8 else 8 * unescapedLength str
typeof other = lookupTypeOf other
-- length of a string literal in characters
unescapedLength :: String -> Integer
unescapedLength [] = 0
unescapedLength ('\\' : _ : rest) = 1 + unescapedLength rest
unescapedLength (_ : rest) = 1 + unescapedLength rest
-- type of a standard (non-member) function call
typeofCall :: String -> Args -> ST Type
typeofCall "$unsigned" (Args [e] []) = return $ typeOfSize Unsigned $ sizeof e
typeofCall "$signed" (Args [e] []) = return $ typeOfSize Signed $ sizeof e
typeofCall "$clog2" (Args [_] []) =
return $ IntegerAtom TInteger Unspecified
typeofCall fnName _ = typeof $ Ident fnName
-- replaces the signing of a type if possible
typeSignednessOverride :: Type -> Signing -> Type -> Type
typeSignednessOverride fallback sg t =
case t of
IntegerVector base _ rs -> IntegerVector base sg rs
IntegerAtom base _ -> IntegerAtom base sg
_ -> fallback
-- type of a unary operator expression
typeofUniOp :: UniOp -> Expr -> ST Type
typeofUniOp UniAdd e = typeof e
typeofUniOp UniSub e = typeof e
typeofUniOp BitNot e = typeof e
typeofUniOp _ _ =
-- unary reductions and logical negation
return UnitType
-- type of a binary operator expression (Section 11.6.1)
typeofBinOp :: BinOp -> Expr -> Expr -> ST Type
typeofBinOp op a b =
case op of
LogAnd -> unitType
LogOr -> unitType
LogImp -> unitType
LogEq -> unitType
Eq -> unitType
Ne -> unitType
TEq -> unitType
TNe -> unitType
WEq -> unitType
WNe -> unitType
Lt -> unitType
Le -> unitType
Gt -> unitType
Ge -> unitType
Pow -> typeof a
ShiftL -> typeof a
ShiftR -> typeof a
ShiftAL -> typeof a
ShiftAR -> typeof a
Add -> largerSizeType a b
Sub -> largerSizeType a b
Mul -> largerSizeType a b
Div -> largerSizeType a b
Mod -> largerSizeType a b
BitAnd -> largerSizeType a b
BitXor -> largerSizeType a b
BitXnor -> largerSizeType a b
BitOr -> largerSizeType a b
where unitType = return UnitType
-- produces a type large enough to hold either expression
largerSizeType :: Expr -> Expr -> ST Type
largerSizeType a (Number (Based 1 _ _ _ _)) = typeof a
largerSizeType a b = do
t <- typeof a
u <- typeof b
let sg = binopSignedness (typeSignedness t) (typeSignedness u)
return $
if t == u then
t
else if sg == Unspecified then
TypeOf $ BinOp Add a b
else
typeOfSize sg $ largerSizeOf a b
-- returns the signedness of a traditional arithmetic binop, if possible
binopSignedness :: Signing -> Signing -> Signing
binopSignedness Unspecified _ = Unspecified
binopSignedness _ Unspecified = Unspecified
binopSignedness Unsigned _ = Unsigned
binopSignedness _ Unsigned = Unsigned
binopSignedness Signed Signed = Signed
-- returns the signedness of the given type, if possible
typeSignedness :: Type -> Signing
typeSignedness (IntegerVector _ sg _) = signednessFallback Unsigned sg
typeSignedness (IntegerAtom t sg ) = signednessFallback fallback sg
where fallback = if t == TTime then Unsigned else Signed
typeSignedness _ = Unspecified
-- helper for producing the former signing when the latter is unspecified
signednessFallback :: Signing -> Signing -> Signing
signednessFallback fallback Unspecified = fallback
signednessFallback _ sg = sg
-- returns the total size of concatenated list of expressions
concatSize :: [Expr] -> Expr
concatSize exprs =
foldl (BinOp Add) (RawNum 0) $
map sizeof exprs
-- returns the size of an expression, with the short-circuiting
sizeof :: Expr -> Expr
sizeof (Number n) = RawNum $ numberBitLength n
sizeof (Mux _ a b) = largerSizeOf a b
sizeof expr = DimsFn FnBits $ Left $ TypeOf expr
-- returns the maximum size of the two given expressions
largerSizeOf :: Expr -> Expr -> Expr
largerSizeOf a b =
simplify $ Mux cond (sizeof a) (sizeof b)
where cond = BinOp Ge (sizeof a) (sizeof b)
-- produces a generic type of the given size
typeOfSize :: Signing -> Expr -> Type
typeOfSize sg size =
IntegerVector TLogic sg [(hi, RawNum 0)]
where hi = simplify $ BinOp Sub size (RawNum 1)
-- combines a type with unpacked ranges
injectRanges :: Type -> [Range] -> Type
injectRanges t [] = t
injectRanges (UnpackedType t rs) unpacked = UnpackedType t $ unpacked ++ rs
injectRanges t unpacked = UnpackedType t unpacked
-- removes the most significant range of the given type
popRange :: Expr -> Type -> ST Type
popRange _ (UnpackedType t [_]) = return t
popRange _ (IntegerAtom TInteger sg) =
return $ IntegerVector TLogic sg []
popRange e t =
case typeRanges t of
(tf, _ : rs) -> return $ tf rs
_ -> indexedAtomError e t
-- replaces the most significant range of the given type
replaceRange :: Expr -> Range -> Type -> ST Type
replaceRange _ r (UnpackedType t (_ : rs)) =
return $ UnpackedType t (r : rs)
replaceRange _ r (IntegerAtom TInteger sg) =
return $ IntegerVector TLogic sg [r]
replaceRange e r t =
case typeRanges t of
(tf, _ : rs) -> return $ tf (r : rs)
_ -> indexedAtomError e t
-- readable error message when looking up the type of a portion of an atom
indexedAtomError :: Expr -> Type -> ST a
indexedAtomError e t =
scopedErrorM $ "can't determine the type of " ++ show e ++ " because the"
++ " inner type " ++ show t ++ " can't be indexed"
-- checks for a cast type which already trivially matches the expression type
typeCastUnneeded :: Type -> Type -> Bool
typeCastUnneeded t1 t2 =
sg1 == sg2 && sz1 == sz2 && sz1 /= Nothing && sz2 /= Nothing
where
sg1 = typeSignedness t1
sg2 = typeSignedness t2
sz1 = typeSize t1
sz2 = typeSize t2
typeSize :: Type -> Maybe Expr
typeSize (IntegerVector _ _ rs) = Just $ dimensionsSize rs
typeSize t@IntegerAtom{} =
typeSize $ tf [(RawNum 1, RawNum 1)]
where (tf, []) = typeRanges t
typeSize _ = Nothing
-- explicitly sizes top level numbers used in arithmetic expressions
makeExplicit :: Expr -> Expr
makeExplicit (Number n) =
Number $ numberCast (numberIsSigned n) (fromIntegral $ numberBitLength n) n
makeExplicit (BinOp op e1 e2) =
BinOp op (makeExplicit e1) (makeExplicit e2)
makeExplicit (UniOp op e) =
UniOp op $ makeExplicit e
makeExplicit other = other