sv2v/src/Convert/Traverse.hs

1167 lines
47 KiB
Haskell

{- sv2v
- Author: Zachary Snow <zach@zachjs.com>
-
- Utilities for traversing AST transformations.
-}
module Convert.Traverse
( MapperM
, Mapper
, CollectorM
, TFStrategy (..)
, unmonad
, collectify
, traverseDescriptionsM
, traverseDescriptions
, collectDescriptionsM
, traverseModuleItemsM
, traverseModuleItems
, collectModuleItemsM
, traverseStmtsM
, traverseStmts
, collectStmtsM
, traverseStmtsM'
, traverseStmts'
, collectStmtsM'
, traverseStmtLHSsM
, traverseStmtLHSs
, collectStmtLHSsM
, traverseExprsM
, traverseExprs
, collectExprsM
, traverseExprsM'
, traverseExprs'
, collectExprsM'
, traverseStmtExprsM
, traverseStmtExprs
, collectStmtExprsM
, traverseLHSsM
, traverseLHSs
, collectLHSsM
, traverseLHSsM'
, traverseLHSs'
, collectLHSsM'
, traverseDeclsM
, traverseDecls
, collectDeclsM
, traverseDeclsM'
, traverseDecls'
, collectDeclsM'
, traverseNestedTypesM
, traverseNestedTypes
, collectNestedTypesM
, traverseTypesM
, traverseTypes
, collectTypesM
, traverseGenItemsM
, traverseGenItems
, collectGenItemsM
, traverseAsgnsM
, traverseAsgns
, collectAsgnsM
, traverseAsgnsM'
, traverseAsgns'
, collectAsgnsM'
, traverseStmtAsgnsM
, traverseStmtAsgns
, collectStmtAsgnsM
, traverseNestedModuleItemsM
, traverseNestedModuleItems
, collectNestedModuleItemsM
, traverseNestedStmts
, collectNestedStmtsM
, traverseNestedExprsM
, traverseNestedExprs
, collectNestedExprsM
, traverseNestedLHSsM
, traverseNestedLHSs
, collectNestedLHSsM
, traverseScopesM
, scopedConversion
, scopedConversionM
, stately
, traverseFilesM
, traverseFiles
) where
import Data.Functor.Identity (runIdentity)
import Control.Monad.State
import Control.Monad.Writer
import Language.SystemVerilog.AST
type MapperM m t = t -> m t
type Mapper t = t -> t
type CollectorM m t = t -> m ()
data TFStrategy
= IncludeTFs
| ExcludeTFs
deriving Eq
unmonad :: (MapperM (State ()) a -> MapperM (State ()) b) -> Mapper a -> Mapper b
unmonad traverser mapper thing =
evalState (traverser (return . mapper) thing) ()
collectify :: Monad m => (MapperM m a -> MapperM m b) -> CollectorM m a -> CollectorM m b
collectify traverser collector thing =
traverser mapper thing >>= \_ -> return ()
where mapper x = collector x >>= \() -> return x
traverseDescriptionsM :: Monad m => MapperM m Description -> MapperM m AST
traverseDescriptionsM mapper descriptions =
mapM mapper descriptions
traverseDescriptions :: Mapper Description -> Mapper AST
traverseDescriptions = unmonad traverseDescriptionsM
collectDescriptionsM :: Monad m => CollectorM m Description -> CollectorM m AST
collectDescriptionsM = collectify traverseDescriptionsM
maybeDo :: Monad m => (a -> m b) -> Maybe a -> m (Maybe b)
maybeDo _ Nothing = return Nothing
maybeDo fun (Just val) = fun val >>= return . Just
traverseModuleItemsM :: Monad m => MapperM m ModuleItem -> MapperM m Description
traverseModuleItemsM mapper (Part attrs extern kw lifetime name ports items) = do
items' <- mapM fullMapper items
let items'' = concatMap breakGenerate items'
return $ Part attrs extern kw lifetime name ports items''
where
fullMapper (Generate [GenBlock "" genItems]) =
mapM fullGenItemMapper genItems >>= mapper . Generate
fullMapper (Generate genItems) = do
let genItems' = filter (/= GenNull) genItems
mapM fullGenItemMapper genItems' >>= mapper . Generate
fullMapper (MIAttr attr mi) =
fullMapper mi >>= return . MIAttr attr
fullMapper other = mapper other
fullGenItemMapper = traverseNestedGenItemsM genItemMapper
genItemMapper (GenModuleItem moduleItem) = do
moduleItem' <- fullMapper moduleItem
return $ case moduleItem' of
Generate subItems -> GenBlock "" subItems
_ -> GenModuleItem moduleItem'
genItemMapper (GenIf (Number "1") s _) = return s
genItemMapper (GenIf (Number "0") _ s) = return s
genItemMapper (GenBlock _ []) = return GenNull
genItemMapper other = return other
breakGenerate :: ModuleItem -> [ModuleItem]
breakGenerate (Generate genItems) =
if all isGenModuleItem genItems
then map (\(GenModuleItem item) -> item) genItems
else [Generate genItems]
where
isGenModuleItem :: GenItem -> Bool
isGenModuleItem (GenModuleItem _) = True
isGenModuleItem _ = False
breakGenerate other = [other]
traverseModuleItemsM mapper (PackageItem packageItem) = do
let item = MIPackageItem packageItem
converted <-
traverseModuleItemsM mapper (Part [] False Module Nothing "DNE" [] [item])
let item' = case converted of
Part [] False Module Nothing "DNE" [] [newItem] -> newItem
_ -> error $ "redirected PackageItem traverse failed: "
++ show converted
return $ case item' of
MIPackageItem packageItem' -> PackageItem packageItem'
other -> error $ "encountered bad package module item: " ++ show other
traverseModuleItemsM mapper (Package lifetime name packageItems) = do
let items = map MIPackageItem packageItems
converted <-
traverseModuleItemsM mapper (Part [] False Module Nothing "DNE" [] items)
let items' = case converted of
Part [] False Module Nothing "DNE" [] newItems -> newItems
_ -> error $ "redirected Package traverse failed: "
++ show converted
return $ Package lifetime name $ map (\(MIPackageItem item) -> item) items'
traverseModuleItems :: Mapper ModuleItem -> Mapper Description
traverseModuleItems = unmonad traverseModuleItemsM
collectModuleItemsM :: Monad m => CollectorM m ModuleItem -> CollectorM m Description
collectModuleItemsM = collectify traverseModuleItemsM
traverseStmtsM' :: Monad m => TFStrategy -> MapperM m Stmt -> MapperM m ModuleItem
traverseStmtsM' strat mapper = moduleItemMapper
where
moduleItemMapper (AlwaysC kw stmt) =
fullMapper stmt >>= return . AlwaysC kw
moduleItemMapper (MIPackageItem (Function lifetime ret name decls stmts)) = do
stmts' <-
if strat == IncludeTFs
then mapM fullMapper stmts
else return stmts
return $ MIPackageItem $ Function lifetime ret name decls stmts'
moduleItemMapper (MIPackageItem (Task lifetime name decls stmts)) = do
stmts' <-
if strat == IncludeTFs
then mapM fullMapper stmts
else return stmts
return $ MIPackageItem $ Task lifetime name decls stmts'
moduleItemMapper (Initial stmt) =
fullMapper stmt >>= return . Initial
moduleItemMapper other = return $ other
fullMapper = traverseNestedStmtsM mapper
traverseStmts' :: TFStrategy -> Mapper Stmt -> Mapper ModuleItem
traverseStmts' strat = unmonad $ traverseStmtsM' strat
collectStmtsM' :: Monad m => TFStrategy -> CollectorM m Stmt -> CollectorM m ModuleItem
collectStmtsM' strat = collectify $ traverseStmtsM' strat
traverseStmtsM :: Monad m => MapperM m Stmt -> MapperM m ModuleItem
traverseStmtsM = traverseStmtsM' IncludeTFs
traverseStmts :: Mapper Stmt -> Mapper ModuleItem
traverseStmts = traverseStmts' IncludeTFs
collectStmtsM :: Monad m => CollectorM m Stmt -> CollectorM m ModuleItem
collectStmtsM = collectStmtsM' IncludeTFs
-- private utility for turning a thing which maps over a single lever of
-- statements into one that maps over the nested statements first, then the
-- higher levels up
traverseNestedStmtsM :: Monad m => MapperM m Stmt -> MapperM m Stmt
traverseNestedStmtsM mapper = fullMapper
where
fullMapper stmt = mapper stmt >>= traverseSinglyNestedStmtsM fullMapper
-- variant of the above which only traverses one level down
traverseSinglyNestedStmtsM :: Monad m => MapperM m Stmt -> MapperM m Stmt
traverseSinglyNestedStmtsM fullMapper = cs
where
cs (StmtAttr a stmt) = fullMapper stmt >>= return . StmtAttr a
cs (Block _ "" [] []) = return Null
cs (Block _ "" [] [stmt]) = fullMapper stmt
cs (Block Seq name decls stmts) = do
stmts' <- mapM fullMapper stmts
return $ Block Seq name decls $ concatMap explode stmts'
where
explode :: Stmt -> [Stmt]
explode (Block Seq "" [] ss) = ss
explode other = [other]
cs (Block kw name decls stmts) =
mapM fullMapper stmts >>= return . Block kw name decls
cs (Case u kw expr cases def) = do
caseStmts <- mapM fullMapper $ map snd cases
let cases' = zip (map fst cases) caseStmts
def' <- maybeDo fullMapper def
return $ Case u kw expr cases' def'
cs (AsgnBlk op lhs expr) = return $ AsgnBlk op lhs expr
cs (Asgn mt lhs expr) = return $ Asgn mt lhs expr
cs (For a b c stmt) = fullMapper stmt >>= return . For a b c
cs (While e stmt) = fullMapper stmt >>= return . While e
cs (RepeatL e stmt) = fullMapper stmt >>= return . RepeatL e
cs (DoWhile e stmt) = fullMapper stmt >>= return . DoWhile e
cs (Forever stmt) = fullMapper stmt >>= return . Forever
cs (Foreach x vars stmt) = fullMapper stmt >>= return . Foreach x vars
cs (If u e s1 s2) = do
s1' <- fullMapper s1
s2' <- fullMapper s2
return $ If u e s1' s2'
cs (Timing event stmt) = fullMapper stmt >>= return . Timing event
cs (Return expr) = return $ Return expr
cs (Subroutine ps f exprs) = return $ Subroutine ps f exprs
cs (Trigger blocks x) = return $ Trigger blocks x
cs (Assertion a) =
traverseAssertionStmtsM fullMapper a >>= return . Assertion
cs (Continue) = return Continue
cs (Break) = return Break
cs (Null) = return Null
traverseAssertionStmtsM :: Monad m => MapperM m Stmt -> MapperM m Assertion
traverseAssertionStmtsM mapper = assertionMapper
where
actionBlockMapper (ActionBlockIf stmt) =
mapper stmt >>= return . ActionBlockIf
actionBlockMapper (ActionBlockElse Nothing stmt) =
mapper stmt >>= return . ActionBlockElse Nothing
actionBlockMapper (ActionBlockElse (Just s1) s2) = do
s1' <- mapper s1
s2' <- mapper s2
return $ ActionBlockElse (Just s1') s2'
assertionMapper (Assert e ab) =
actionBlockMapper ab >>= return . Assert e
assertionMapper (Assume e ab) =
actionBlockMapper ab >>= return . Assume e
assertionMapper (Cover e stmt) =
mapper stmt >>= return . Cover e
-- Note that this does not include the expressions without the statements of the
-- actions associated with the assertions.
traverseAssertionExprsM :: Monad m => MapperM m Expr -> MapperM m Assertion
traverseAssertionExprsM mapper = assertionMapper
where
seqExprMapper (SeqExpr e) =
mapper e >>= return . SeqExpr
seqExprMapper (SeqExprAnd s1 s2) =
ssMapper SeqExprAnd s1 s2
seqExprMapper (SeqExprOr s1 s2) =
ssMapper SeqExprOr s1 s2
seqExprMapper (SeqExprIntersect s1 s2) =
ssMapper SeqExprIntersect s1 s2
seqExprMapper (SeqExprWithin s1 s2) =
ssMapper SeqExprWithin s1 s2
seqExprMapper (SeqExprThroughout e s) = do
e' <- mapper e
s' <- seqExprMapper s
return $ SeqExprThroughout e' s'
seqExprMapper (SeqExprDelay ms e s) = do
ms' <- case ms of
Nothing -> return Nothing
Just x -> seqExprMapper x >>= return . Just
e' <- mapper e
s' <- seqExprMapper s
return $ SeqExprDelay ms' e' s'
seqExprMapper (SeqExprFirstMatch s items) = do
s' <- seqExprMapper s
items' <- mapM seqMatchItemMapper items
return $ SeqExprFirstMatch s' items'
seqMatchItemMapper (Left (a, b, c)) = do
c' <- mapper c
return $ Left (a, b, c')
seqMatchItemMapper (Right (x, (Args l p))) = do
l' <- mapM maybeExprMapper l
pes <- mapM maybeExprMapper $ map snd p
let p' = zip (map fst p) pes
return $ Right (x, Args l' p')
maybeExprMapper Nothing = return Nothing
maybeExprMapper (Just e) =
mapper e >>= return . Just
ppMapper constructor p1 p2 = do
p1' <- propExprMapper p1
p2' <- propExprMapper p2
return $ constructor p1' p2'
ssMapper constructor s1 s2 = do
s1' <- seqExprMapper s1
s2' <- seqExprMapper s2
return $ constructor s1' s2'
spMapper constructor se pe = do
se' <- seqExprMapper se
pe' <- propExprMapper pe
return $ constructor se' pe'
propExprMapper (PropExpr se) =
seqExprMapper se >>= return . PropExpr
propExprMapper (PropExprImpliesO se pe) =
spMapper PropExprImpliesO se pe
propExprMapper (PropExprImpliesNO se pe) =
spMapper PropExprImpliesNO se pe
propExprMapper (PropExprFollowsO se pe) =
spMapper PropExprFollowsO se pe
propExprMapper (PropExprFollowsNO se pe) =
spMapper PropExprFollowsNO se pe
propExprMapper (PropExprIff p1 p2) =
ppMapper PropExprIff p1 p2
propSpecMapper (PropertySpec ms me pe) = do
me' <- case me of
Nothing -> return Nothing
Just e -> mapper e >>= return . Just
pe' <- propExprMapper pe
return $ PropertySpec ms me' pe'
assertionExprMapper (Left e) =
propSpecMapper e >>= return . Left
assertionExprMapper (Right e) =
mapper e >>= return . Right
assertionMapper (Assert e ab) = do
e' <- assertionExprMapper e
return $ Assert e' ab
assertionMapper (Assume e ab) = do
e' <- assertionExprMapper e
return $ Assume e' ab
assertionMapper (Cover e stmt) = do
e' <- assertionExprMapper e
return $ Cover e' stmt
traverseStmtLHSsM :: Monad m => MapperM m LHS -> MapperM m Stmt
traverseStmtLHSsM mapper = stmtMapper
where
fullMapper = mapper
stmtMapper (Timing (Event sense) stmt) = do
sense' <- senseMapper sense
return $ Timing (Event sense') stmt
stmtMapper (Asgn (Just (Event sense)) lhs expr) = do
lhs' <- fullMapper lhs
sense' <- senseMapper sense
return $ Asgn (Just $ Event sense') lhs' expr
stmtMapper (AsgnBlk op lhs expr) = fullMapper lhs >>= \lhs' -> return $ AsgnBlk op lhs' expr
stmtMapper (Asgn mt lhs expr) = fullMapper lhs >>= \lhs' -> return $ Asgn mt lhs' expr
stmtMapper (For inits me incrs stmt) = do
inits' <- mapInits inits
let (lhss, asgnOps, exprs) = unzip3 incrs
lhss' <- mapM fullMapper lhss
let incrs' = zip3 lhss' asgnOps exprs
return $ For inits' me incrs' stmt
where
mapInits (Left decls) = return $ Left decls
mapInits (Right asgns) = do
let (lhss, exprs) = unzip asgns
lhss' <- mapM fullMapper lhss
return $ Right $ zip lhss' exprs
stmtMapper (Assertion a) =
assertionMapper a >>= return . Assertion
stmtMapper other = return other
senseMapper (Sense lhs) = fullMapper lhs >>= return . Sense
senseMapper (SensePosedge lhs) = fullMapper lhs >>= return . SensePosedge
senseMapper (SenseNegedge lhs) = fullMapper lhs >>= return . SenseNegedge
senseMapper (SenseOr s1 s2) = do
s1' <- senseMapper s1
s2' <- senseMapper s2
return $ SenseOr s1' s2'
senseMapper (SenseStar ) = return SenseStar
assertionExprMapper (Left (PropertySpec (Just sense) me pe)) = do
sense' <- senseMapper sense
return $ Left $ PropertySpec (Just sense') me pe
assertionExprMapper other = return $ other
assertionMapper (Assert e ab) = do
e' <- assertionExprMapper e
return $ Assert e' ab
assertionMapper (Assume e ab) = do
e' <- assertionExprMapper e
return $ Assume e' ab
assertionMapper (Cover e stmt) = do
e' <- assertionExprMapper e
return $ Cover e' stmt
traverseStmtLHSs :: Mapper LHS -> Mapper Stmt
traverseStmtLHSs = unmonad traverseStmtLHSsM
collectStmtLHSsM :: Monad m => CollectorM m LHS -> CollectorM m Stmt
collectStmtLHSsM = collectify traverseStmtLHSsM
traverseNestedExprsM :: Monad m => MapperM m Expr -> MapperM m Expr
traverseNestedExprsM mapper = exprMapper
where
exprMapper e = mapper e >>= em
maybeExprMapper Nothing = return Nothing
maybeExprMapper (Just e) =
exprMapper e >>= return . Just
typeOrExprMapper (Left t) = return $ Left t
typeOrExprMapper (Right e) =
exprMapper e >>= return . Right
em (String s) = return $ String s
em (Number s) = return $ Number s
em (Time s) = return $ Time s
em (Ident i) = return $ Ident i
em (PSIdent x y) = return $ PSIdent x y
em (Range e m (e1, e2)) = do
e' <- exprMapper e
e1' <- exprMapper e1
e2' <- exprMapper e2
return $ Range e' m (e1', e2')
em (Bit e1 e2) = do
e1' <- exprMapper e1
e2' <- exprMapper e2
return $ Bit e1' e2'
em (Repeat e l) = do
e' <- exprMapper e
l' <- mapM exprMapper l
return $ Repeat e' l'
em (Concat l) =
mapM exprMapper l >>= return . Concat
em (Stream o e l) = do
e' <- exprMapper e
l' <- mapM exprMapper l
return $ Stream o e' l'
em (Call ps f (Args l p)) = do
l' <- mapM maybeExprMapper l
pes <- mapM maybeExprMapper $ map snd p
let p' = zip (map fst p) pes
return $ Call ps f (Args l' p')
em (UniOp o e) =
exprMapper e >>= return . UniOp o
em (BinOp o e1 e2) = do
e1' <- exprMapper e1
e2' <- exprMapper e2
return $ BinOp o e1' e2'
em (Mux e1 e2 e3) = do
e1' <- exprMapper e1
e2' <- exprMapper e2
e3' <- exprMapper e3
return $ Mux e1' e2' e3'
em (Cast (Left t) e) =
exprMapper e >>= return . Cast (Left t)
em (Cast (Right e1) e2) = do
e1' <- exprMapper e1
e2' <- exprMapper e2
return $ Cast (Right e1') e2'
em (DimsFn f tore) =
typeOrExprMapper tore >>= return . DimsFn f
em (DimFn f tore e) = do
tore' <- typeOrExprMapper tore
e' <- exprMapper e
return $ DimFn f tore' e'
em (Dot e x) =
exprMapper e >>= \e' -> return $ Dot e' x
em (Pattern l) = do
let names = map fst l
exprs <- mapM exprMapper $ map snd l
return $ Pattern $ zip names exprs
em (MinTypMax e1 e2 e3) = do
e1' <- exprMapper e1
e2' <- exprMapper e2
e3' <- exprMapper e3
return $ MinTypMax e1' e2' e3'
em (Nil) = return Nil
exprMapperHelpers :: Monad m => MapperM m Expr ->
(MapperM m Range, MapperM m (Maybe Expr), MapperM m Decl, MapperM m LHS, MapperM m Type)
exprMapperHelpers exprMapper =
(rangeMapper, maybeExprMapper, declMapper, traverseNestedLHSsM lhsMapper, typeMapper)
where
rangeMapper (a, b) = do
a' <- exprMapper a
b' <- exprMapper b
return (a', b')
maybeExprMapper Nothing = return Nothing
maybeExprMapper (Just e) =
exprMapper e >>= return . Just
typeMapper' t = do
let (tf, rs) = typeRanges t
rs' <- mapM rangeMapper rs
return $ tf rs'
typeMapper = traverseNestedTypesM typeMapper'
maybeTypeMapper Nothing = return Nothing
maybeTypeMapper (Just t) =
typeMapper t >>= return . Just
declMapper (Param s t x e) = do
t' <- typeMapper t
e' <- exprMapper e
return $ Param s t' x e'
declMapper (ParamType s x mt) = do
mt' <- maybeTypeMapper mt
return $ ParamType s x mt'
declMapper (Variable d t x a me) = do
t' <- typeMapper t
a' <- mapM rangeMapper a
me' <- maybeExprMapper me
return $ Variable d t' x a' me'
lhsMapper (LHSRange l m r) =
rangeMapper r >>= return . LHSRange l m
lhsMapper (LHSBit l e) =
exprMapper e >>= return . LHSBit l
lhsMapper (LHSStream o e ls) = do
e' <- exprMapper e
return $ LHSStream o e' ls
lhsMapper other = return other
traverseExprsM' :: Monad m => TFStrategy -> MapperM m Expr -> MapperM m ModuleItem
traverseExprsM' strat exprMapper = moduleItemMapper
where
(rangeMapper, maybeExprMapper, declMapper, lhsMapper, typeMapper)
= exprMapperHelpers exprMapper
stmtMapper = traverseNestedStmtsM (traverseStmtExprsM exprMapper)
portBindingMapper (p, me) =
maybeExprMapper me >>= \me' -> return (p, me')
paramBindingMapper (p, Left t) =
typeMapper t >>= \t' -> return (p, Left t')
paramBindingMapper (p, Right e) =
exprMapper e >>= \e' -> return (p, Right e')
moduleItemMapper (MIAttr attr mi) =
-- note: we exclude expressions in attributes from conversion
return $ MIAttr attr mi
moduleItemMapper (MIPackageItem (Typedef t x)) = do
t' <- typeMapper t
return $ MIPackageItem $ Typedef t' x
moduleItemMapper (MIPackageItem (Decl decl)) =
declMapper decl >>= return . MIPackageItem . Decl
moduleItemMapper (Defparam lhs expr) = do
lhs' <- lhsMapper lhs
expr' <- exprMapper expr
return $ Defparam lhs' expr'
moduleItemMapper (AlwaysC kw stmt) =
stmtMapper stmt >>= return . AlwaysC kw
moduleItemMapper (Initial stmt) =
stmtMapper stmt >>= return . Initial
moduleItemMapper (Assign delay lhs expr) = do
delay' <- maybeExprMapper delay
lhs' <- lhsMapper lhs
expr' <- exprMapper expr
return $ Assign delay' lhs' expr'
moduleItemMapper (MIPackageItem (Function lifetime ret f decls stmts)) = do
ret' <- typeMapper ret
decls' <-
if strat == IncludeTFs
then mapM declMapper decls
else return decls
stmts' <-
if strat == IncludeTFs
then mapM stmtMapper stmts
else return stmts
return $ MIPackageItem $ Function lifetime ret' f decls' stmts'
moduleItemMapper (MIPackageItem (Task lifetime f decls stmts)) = do
decls' <-
if strat == IncludeTFs
then mapM declMapper decls
else return decls
stmts' <-
if strat == IncludeTFs
then mapM stmtMapper stmts
else return stmts
return $ MIPackageItem $ Task lifetime f decls' stmts'
moduleItemMapper (Instance m p x r l) = do
p' <- mapM paramBindingMapper p
l' <- mapM portBindingMapper l
r' <- mapM rangeMapper r
return $ Instance m p' x r' l'
moduleItemMapper (Modport x l) =
mapM modportDeclMapper l >>= return . Modport x
moduleItemMapper (NInputGate kw x lhs exprs) = do
exprs' <- mapM exprMapper exprs
lhs' <- lhsMapper lhs
return $ NInputGate kw x lhs' exprs'
moduleItemMapper (NOutputGate kw x lhss expr) = do
lhss' <- mapM lhsMapper lhss
expr' <- exprMapper expr
return $ NOutputGate kw x lhss' expr'
moduleItemMapper (Genvar x) = return $ Genvar x
moduleItemMapper (Generate items) = do
items' <- mapM (traverseNestedGenItemsM genItemMapper) items
return $ Generate items'
moduleItemMapper (MIPackageItem (Directive c)) =
return $ MIPackageItem $ Directive c
moduleItemMapper (MIPackageItem (Comment c)) =
return $ MIPackageItem $ Comment c
moduleItemMapper (MIPackageItem (Import x y)) =
return $ MIPackageItem $ Import x y
moduleItemMapper (MIPackageItem (Export x)) =
return $ MIPackageItem $ Export x
moduleItemMapper (AssertionItem (mx, a)) = do
a' <- traverseAssertionStmtsM stmtMapper a
a'' <- traverseAssertionExprsM exprMapper a'
return $ AssertionItem (mx, a'')
genItemMapper (GenFor (n1, x1, e1) cc (x2, op2, e2) subItem) = do
e1' <- exprMapper e1
e2' <- exprMapper e2
cc' <- exprMapper cc
return $ GenFor (n1, x1, e1') cc' (x2, op2, e2') subItem
genItemMapper (GenIf e i1 i2) = do
e' <- exprMapper e
return $ GenIf e' i1 i2
genItemMapper (GenCase e cases def) = do
e' <- exprMapper e
caseExprs <- mapM (mapM exprMapper . fst) cases
let cases' = zip caseExprs (map snd cases)
return $ GenCase e' cases' def
genItemMapper other = return other
modportDeclMapper (dir, ident, Just e) = do
e' <- exprMapper e
return (dir, ident, Just e')
modportDeclMapper other = return other
traverseExprs' :: TFStrategy -> Mapper Expr -> Mapper ModuleItem
traverseExprs' strat = unmonad $ traverseExprsM' strat
collectExprsM' :: Monad m => TFStrategy -> CollectorM m Expr -> CollectorM m ModuleItem
collectExprsM' strat = collectify $ traverseExprsM' strat
traverseExprsM :: Monad m => MapperM m Expr -> MapperM m ModuleItem
traverseExprsM = traverseExprsM' IncludeTFs
traverseExprs :: Mapper Expr -> Mapper ModuleItem
traverseExprs = traverseExprs' IncludeTFs
collectExprsM :: Monad m => CollectorM m Expr -> CollectorM m ModuleItem
collectExprsM = collectExprsM' IncludeTFs
traverseStmtExprsM :: Monad m => MapperM m Expr -> MapperM m Stmt
traverseStmtExprsM exprMapper = flatStmtMapper
where
(_, maybeExprMapper, declMapper, lhsMapper, _)
= exprMapperHelpers exprMapper
caseMapper (exprs, stmt) = do
exprs' <- mapM exprMapper exprs
return (exprs', stmt)
stmtMapper = traverseNestedStmtsM flatStmtMapper
flatStmtMapper (StmtAttr attr stmt) =
-- note: we exclude expressions in attributes from conversion
return $ StmtAttr attr stmt
flatStmtMapper (Block kw name decls stmts) = do
decls' <- mapM declMapper decls
return $ Block kw name decls' stmts
flatStmtMapper (Case u kw e cases def) = do
e' <- exprMapper e
cases' <- mapM caseMapper cases
return $ Case u kw e' cases' def
flatStmtMapper (AsgnBlk op lhs expr) = do
lhs' <- lhsMapper lhs
expr' <- exprMapper expr
return $ AsgnBlk op lhs' expr'
flatStmtMapper (Asgn mt lhs expr) = do
lhs' <- lhsMapper lhs
expr' <- exprMapper expr
return $ Asgn mt lhs' expr'
flatStmtMapper (For inits cc asgns stmt) = do
inits' <- initsMapper inits
cc' <- exprMapper cc
asgns' <- mapM asgnMapper asgns
return $ For inits' cc' asgns' stmt
flatStmtMapper (While e stmt) =
exprMapper e >>= \e' -> return $ While e' stmt
flatStmtMapper (RepeatL e stmt) =
exprMapper e >>= \e' -> return $ RepeatL e' stmt
flatStmtMapper (DoWhile e stmt) =
exprMapper e >>= \e' -> return $ DoWhile e' stmt
flatStmtMapper (Forever stmt) = return $ Forever stmt
flatStmtMapper (Foreach x vars stmt) = return $ Foreach x vars stmt
flatStmtMapper (If u cc s1 s2) =
exprMapper cc >>= \cc' -> return $ If u cc' s1 s2
flatStmtMapper (Timing event stmt) = return $ Timing event stmt
flatStmtMapper (Subroutine ps f (Args l p)) = do
l' <- mapM maybeExprMapper l
pes <- mapM maybeExprMapper $ map snd p
let p' = zip (map fst p) pes
return $ Subroutine ps f (Args l' p')
flatStmtMapper (Return expr) =
exprMapper expr >>= return . Return
flatStmtMapper (Trigger blocks x) = return $ Trigger blocks x
flatStmtMapper (Assertion a) = do
a' <- traverseAssertionStmtsM stmtMapper a
a'' <- traverseAssertionExprsM exprMapper a'
return $ Assertion a''
flatStmtMapper (Continue) = return Continue
flatStmtMapper (Break) = return Break
flatStmtMapper (Null) = return Null
initsMapper (Left decls) = mapM declMapper decls >>= return . Left
initsMapper (Right asgns) = mapM mapper asgns >>= return . Right
where mapper (l, e) = exprMapper e >>= return . (,) l
asgnMapper (l, op, e) = exprMapper e >>= \e' -> return $ (l, op, e')
traverseStmtExprs :: Mapper Expr -> Mapper Stmt
traverseStmtExprs = unmonad traverseStmtExprsM
collectStmtExprsM :: Monad m => CollectorM m Expr -> CollectorM m Stmt
collectStmtExprsM = collectify traverseStmtExprsM
traverseLHSsM' :: Monad m => TFStrategy -> MapperM m LHS -> MapperM m ModuleItem
traverseLHSsM' strat mapper item =
traverseStmtsM' strat (traverseStmtLHSsM mapper) item >>= traverseModuleItemLHSsM
where
traverseModuleItemLHSsM (Assign delay lhs expr) = do
lhs' <- mapper lhs
return $ Assign delay lhs' expr
traverseModuleItemLHSsM (Defparam lhs expr) = do
lhs' <- mapper lhs
return $ Defparam lhs' expr
traverseModuleItemLHSsM (NOutputGate kw x lhss expr) = do
lhss' <- mapM mapper lhss
return $ NOutputGate kw x lhss' expr
traverseModuleItemLHSsM (NInputGate kw x lhs exprs) = do
lhs' <- mapper lhs
return $ NInputGate kw x lhs' exprs
traverseModuleItemLHSsM (AssertionItem (mx, a)) = do
converted <-
traverseNestedStmtsM (traverseStmtLHSsM mapper) (Assertion a)
return $ case converted of
Assertion a' -> AssertionItem (mx, a')
_ -> error $ "redirected AssertionItem traverse failed: "
++ show converted
traverseModuleItemLHSsM (Generate items) = do
items' <- mapM (traverseNestedGenItemsM traverGenItemLHSsM) items
return $ Generate items'
traverseModuleItemLHSsM other = return other
traverGenItemLHSsM (GenFor (n1, x1, e1) cc (x2, op2, e2) subItem) = do
wrapped_x1' <- (if n1 then return else mapper) $ LHSIdent x1
wrapped_x2' <- mapper $ LHSIdent x2
let LHSIdent x1' = wrapped_x1'
let LHSIdent x2' = wrapped_x2'
return $ GenFor (n1, x1', e1) cc (x2', op2, e2) subItem
traverGenItemLHSsM other = return other
traverseLHSs' :: TFStrategy -> Mapper LHS -> Mapper ModuleItem
traverseLHSs' strat = unmonad $ traverseLHSsM' strat
collectLHSsM' :: Monad m => TFStrategy -> CollectorM m LHS -> CollectorM m ModuleItem
collectLHSsM' strat = collectify $ traverseLHSsM' strat
traverseLHSsM :: Monad m => MapperM m LHS -> MapperM m ModuleItem
traverseLHSsM = traverseLHSsM' IncludeTFs
traverseLHSs :: Mapper LHS -> Mapper ModuleItem
traverseLHSs = traverseLHSs' IncludeTFs
collectLHSsM :: Monad m => CollectorM m LHS -> CollectorM m ModuleItem
collectLHSsM = collectLHSsM' IncludeTFs
traverseNestedLHSsM :: Monad m => MapperM m LHS -> MapperM m LHS
traverseNestedLHSsM mapper = fullMapper
where
fullMapper lhs = mapper lhs >>= tl
tl (LHSIdent x ) = return $ LHSIdent x
tl (LHSBit l e ) = fullMapper l >>= \l' -> return $ LHSBit l' e
tl (LHSRange l m r ) = fullMapper l >>= \l' -> return $ LHSRange l' m r
tl (LHSDot l x ) = fullMapper l >>= \l' -> return $ LHSDot l' x
tl (LHSConcat lhss) = mapM fullMapper lhss >>= return . LHSConcat
tl (LHSStream o e lhss) = mapM fullMapper lhss >>= return . LHSStream o e
traverseNestedLHSs :: Mapper LHS -> Mapper LHS
traverseNestedLHSs = unmonad traverseNestedLHSsM
collectNestedLHSsM :: Monad m => CollectorM m LHS -> CollectorM m LHS
collectNestedLHSsM = collectify traverseNestedLHSsM
traverseDeclsM' :: Monad m => TFStrategy -> MapperM m Decl -> MapperM m ModuleItem
traverseDeclsM' strat mapper item = do
item' <- miMapper item
traverseStmtsM' strat stmtMapper item'
where
miMapper (MIPackageItem (Decl decl)) =
mapper decl >>= return . MIPackageItem . Decl
miMapper (MIPackageItem (Function l t x decls stmts)) = do
decls' <-
if strat == IncludeTFs
then mapM mapper decls
else return decls
return $ MIPackageItem $ Function l t x decls' stmts
miMapper (MIPackageItem (Task l x decls stmts)) = do
decls' <-
if strat == IncludeTFs
then mapM mapper decls
else return decls
return $ MIPackageItem $ Task l x decls' stmts
miMapper other = return other
stmtMapper (Block kw name decls stmts) = do
decls' <- mapM mapper decls
return $ Block kw name decls' stmts
stmtMapper other = return other
traverseDecls' :: TFStrategy -> Mapper Decl -> Mapper ModuleItem
traverseDecls' strat = unmonad $ traverseDeclsM' strat
collectDeclsM' :: Monad m => TFStrategy -> CollectorM m Decl -> CollectorM m ModuleItem
collectDeclsM' strat = collectify $ traverseDeclsM' strat
traverseDeclsM :: Monad m => MapperM m Decl -> MapperM m ModuleItem
traverseDeclsM = traverseDeclsM' IncludeTFs
traverseDecls :: Mapper Decl -> Mapper ModuleItem
traverseDecls = traverseDecls' IncludeTFs
collectDeclsM :: Monad m => CollectorM m Decl -> CollectorM m ModuleItem
collectDeclsM = collectDeclsM' IncludeTFs
traverseNestedTypesM :: Monad m => MapperM m Type -> MapperM m Type
traverseNestedTypesM mapper = fullMapper
where
fullMapper t = tm t >>= mapper
tm (Alias ps xx rs) = return $ Alias ps xx rs
tm (Net kw sg rs) = return $ Net kw sg rs
tm (Implicit sg rs) = return $ Implicit sg rs
tm (IntegerVector kw sg rs) = return $ IntegerVector kw sg rs
tm (IntegerAtom kw sg ) = return $ IntegerAtom kw sg
tm (NonInteger kw ) = return $ NonInteger kw
tm (InterfaceT x my r) = return $ InterfaceT x my r
tm (Enum Nothing vals r) =
return $ Enum Nothing vals r
tm (Enum (Just t) vals r) = do
t' <- fullMapper t
return $ Enum (Just t') vals r
tm (Struct p fields r) = do
types <- mapM fullMapper $ map fst fields
let idents = map snd fields
return $ Struct p (zip types idents) r
tm (Union p fields r) = do
types <- mapM fullMapper $ map fst fields
let idents = map snd fields
return $ Union p (zip types idents) r
traverseNestedTypes :: Mapper Type -> Mapper Type
traverseNestedTypes = unmonad traverseNestedTypesM
collectNestedTypesM :: Monad m => CollectorM m Type -> CollectorM m Type
collectNestedTypesM = collectify traverseNestedTypesM
traverseTypesM :: Monad m => MapperM m Type -> MapperM m ModuleItem
traverseTypesM mapper item =
miMapper item >>=
traverseDeclsM declMapper >>=
traverseExprsM (traverseNestedExprsM exprMapper)
where
fullMapper = traverseNestedTypesM mapper
maybeMapper Nothing = return Nothing
maybeMapper (Just t) = fullMapper t >>= return . Just
typeOrExprMapper (Right e) = return $ Right e
typeOrExprMapper (Left t) =
fullMapper t >>= return . Left
exprMapper (Cast (Left t) e) =
fullMapper t >>= \t' -> return $ Cast (Left t') e
exprMapper (DimsFn f tore) =
typeOrExprMapper tore >>= return . DimsFn f
exprMapper (DimFn f tore e) = do
tore' <- typeOrExprMapper tore
return $ DimFn f tore' e
exprMapper other = return other
declMapper (Param s t x e) =
fullMapper t >>= \t' -> return $ Param s t' x e
declMapper (ParamType s x mt) =
maybeMapper mt >>= \mt' -> return $ ParamType s x mt'
declMapper (Variable d t x a me) =
fullMapper t >>= \t' -> return $ Variable d t' x a me
miMapper (MIPackageItem (Typedef t x)) =
fullMapper t >>= \t' -> return $ MIPackageItem $ Typedef t' x
miMapper (MIPackageItem (Function l t x d s)) =
fullMapper t >>= \t' -> return $ MIPackageItem $ Function l t' x d s
miMapper (MIPackageItem (other @ (Task _ _ _ _))) =
return $ MIPackageItem other
miMapper (Instance m params x r p) = do
params' <- mapM mapParam params
return $ Instance m params' x r p
where
mapParam (i, Left t) =
fullMapper t >>= \t' -> return (i, Left t')
mapParam (i, Right e) = return $ (i, Right e)
miMapper other = return other
traverseTypes :: Mapper Type -> Mapper ModuleItem
traverseTypes = unmonad traverseTypesM
collectTypesM :: Monad m => CollectorM m Type -> CollectorM m ModuleItem
collectTypesM = collectify traverseTypesM
traverseGenItemsM :: Monad m => MapperM m GenItem -> MapperM m ModuleItem
traverseGenItemsM mapper = moduleItemMapper
where
fullMapper = traverseNestedGenItemsM mapper
moduleItemMapper (Generate genItems) =
mapM fullMapper genItems >>= return . Generate
moduleItemMapper other = return other
traverseGenItems :: Mapper GenItem -> Mapper ModuleItem
traverseGenItems = unmonad traverseGenItemsM
collectGenItemsM :: Monad m => CollectorM m GenItem -> CollectorM m ModuleItem
collectGenItemsM = collectify traverseGenItemsM
-- traverses all GenItems within a given GenItem, but doesn't inspect within
-- GenModuleItems
traverseNestedGenItemsM :: Monad m => MapperM m GenItem -> MapperM m GenItem
traverseNestedGenItemsM mapper = fullMapper
where
fullMapper stmt =
mapper stmt >>= traverseSinglyNestedGenItemsM fullMapper
traverseSinglyNestedGenItemsM :: Monad m => MapperM m GenItem -> MapperM m GenItem
traverseSinglyNestedGenItemsM fullMapper = gim
where
gim (GenBlock x subItems) = do
subItems' <- mapM fullMapper subItems
return $ GenBlock x (concatMap flattenBlocks subItems')
gim (GenFor a b c subItem) = do
subItem' <- fullMapper subItem
return $ GenFor a b c subItem'
gim (GenIf e i1 i2) = do
i1' <- fullMapper i1
i2' <- fullMapper i2
return $ GenIf e i1' i2'
gim (GenCase e cases def) = do
caseItems <- mapM (fullMapper . snd) cases
let cases' = zip (map fst cases) caseItems
def' <- maybeDo fullMapper def
return $ GenCase e cases' def'
gim (GenModuleItem moduleItem) =
return $ GenModuleItem moduleItem
gim (GenNull) = return GenNull
flattenBlocks :: GenItem -> [GenItem]
flattenBlocks (GenBlock "" items) = items
flattenBlocks other = [other]
traverseAsgnsM' :: Monad m => TFStrategy -> MapperM m (LHS, Expr) -> MapperM m ModuleItem
traverseAsgnsM' strat mapper = moduleItemMapper
where
moduleItemMapper item = miMapperA item >>= miMapperB
miMapperA (Assign delay lhs expr) = do
(lhs', expr') <- mapper (lhs, expr)
return $ Assign delay lhs' expr'
miMapperA (Defparam lhs expr) = do
(lhs', expr') <- mapper (lhs, expr)
return $ Defparam lhs' expr'
miMapperA other = return other
miMapperB = traverseStmtsM' strat stmtMapper
stmtMapper = traverseStmtAsgnsM mapper
traverseAsgns' :: TFStrategy -> Mapper (LHS, Expr) -> Mapper ModuleItem
traverseAsgns' strat = unmonad $ traverseAsgnsM' strat
collectAsgnsM' :: Monad m => TFStrategy -> CollectorM m (LHS, Expr) -> CollectorM m ModuleItem
collectAsgnsM' strat = collectify $ traverseAsgnsM' strat
traverseAsgnsM :: Monad m => MapperM m (LHS, Expr) -> MapperM m ModuleItem
traverseAsgnsM = traverseAsgnsM' IncludeTFs
traverseAsgns :: Mapper (LHS, Expr) -> Mapper ModuleItem
traverseAsgns = traverseAsgns' IncludeTFs
collectAsgnsM :: Monad m => CollectorM m (LHS, Expr) -> CollectorM m ModuleItem
collectAsgnsM = collectAsgnsM' IncludeTFs
traverseStmtAsgnsM :: Monad m => MapperM m (LHS, Expr) -> MapperM m Stmt
traverseStmtAsgnsM mapper = stmtMapper
where
stmtMapper (AsgnBlk op lhs expr) = do
(lhs', expr') <- mapper (lhs, expr)
return $ AsgnBlk op lhs' expr'
stmtMapper (Asgn mt lhs expr) = do
(lhs', expr') <- mapper (lhs, expr)
return $ Asgn mt lhs' expr'
stmtMapper other = return other
traverseStmtAsgns :: Mapper (LHS, Expr) -> Mapper Stmt
traverseStmtAsgns = unmonad traverseStmtAsgnsM
collectStmtAsgnsM :: Monad m => CollectorM m (LHS, Expr) -> CollectorM m Stmt
collectStmtAsgnsM = collectify traverseStmtAsgnsM
traverseNestedModuleItemsM :: Monad m => MapperM m ModuleItem -> MapperM m ModuleItem
traverseNestedModuleItemsM mapper item = do
converted <-
traverseModuleItemsM mapper (Part [] False Module Nothing "DNE" [] [item])
let items' = case converted of
Part [] False Module Nothing "DNE" [] newItems -> newItems
_ -> error $ "redirected NestedModuleItems traverse failed: "
++ show converted
return $ case items' of
[item'] -> item'
_ -> Generate $ map GenModuleItem items'
traverseNestedModuleItems :: Mapper ModuleItem -> Mapper ModuleItem
traverseNestedModuleItems = unmonad traverseNestedModuleItemsM
collectNestedModuleItemsM :: Monad m => CollectorM m ModuleItem -> CollectorM m ModuleItem
collectNestedModuleItemsM = collectify traverseNestedModuleItemsM
traverseNestedStmts :: Mapper Stmt -> Mapper Stmt
traverseNestedStmts = unmonad traverseNestedStmtsM
collectNestedStmtsM :: Monad m => CollectorM m Stmt -> CollectorM m Stmt
collectNestedStmtsM = collectify traverseNestedStmtsM
traverseNestedExprs :: Mapper Expr -> Mapper Expr
traverseNestedExprs = unmonad traverseNestedExprsM
collectNestedExprsM :: Monad m => CollectorM m Expr -> CollectorM m Expr
collectNestedExprsM = collectify traverseNestedExprsM
-- Traverse all the declaration scopes within a ModuleItem. Note that Functions,
-- Tasks, Always and Initial blocks are all NOT passed through ModuleItem
-- mapper, and Decl ModuleItems are NOT passed through the Decl mapper. The
-- state is restored to its previous value after each scope is exited. Only the
-- Decl mapper may modify the state, as we maintain the invariant that all other
-- functions restore the state on exit. The Stmt mapper must not traverse
-- statements recursively, as we add a recursive wrapper here.
traverseScopesM
:: (Eq s, Show s)
=> Monad m
=> MapperM (StateT s m) Decl
-> MapperM (StateT s m) ModuleItem
-> MapperM (StateT s m) Stmt
-> MapperM (StateT s m) ModuleItem
traverseScopesM declMapper moduleItemMapper stmtMapper =
fullModuleItemMapper
where
nestedStmtMapper stmt =
stmtMapper stmt >>= traverseSinglyNestedStmtsM fullStmtMapper
fullStmtMapper (Block kw name decls stmts) = do
prevState <- get
decls' <- mapM declMapper decls
block <- nestedStmtMapper $ Block kw name decls' stmts
put prevState
return block
fullStmtMapper other = nestedStmtMapper other
redirectModuleItem (MIPackageItem (Function ml t x decls stmts)) = do
prevState <- get
t' <- do
res <- declMapper $ Variable Local t x [] Nothing
case res of
Variable Local newType _ [] Nothing -> return newType
_ -> error $ "redirected func ret traverse failed: " ++ show res
decls' <- mapM declMapper decls
stmts' <- mapM fullStmtMapper stmts
put prevState
return $ MIPackageItem $ Function ml t' x decls' stmts'
redirectModuleItem (MIPackageItem (Task ml x decls stmts)) = do
prevState <- get
decls' <- mapM declMapper decls
stmts' <- mapM fullStmtMapper stmts
put prevState
return $ MIPackageItem $ Task ml x decls' stmts'
redirectModuleItem (AlwaysC kw stmt) =
fullStmtMapper stmt >>= return . AlwaysC kw
redirectModuleItem (Initial stmt) =
fullStmtMapper stmt >>= return . Initial
redirectModuleItem item =
moduleItemMapper item
-- This previously checked the invariant that the module item mappers
-- should not modify the state. Now we simply "enforce" it but resetting
-- the state to its previous value. Comparing the state, as we did
-- previously, incurs a noticeable performance hit.
fullModuleItemMapper item = do
prevState <- get
item' <- redirectModuleItem item
put prevState
return item'
-- applies the given decl conversion across the description, and then performs a
-- scoped traversal for each ModuleItem in the description
scopedConversion
:: (Eq s, Show s)
=> MapperM (State s) Decl
-> MapperM (State s) ModuleItem
-> MapperM (State s) Stmt
-> s
-> Description
-> Description
scopedConversion traverseDeclM traverseModuleItemM traverseStmtM s description =
runIdentity $ scopedConversionM traverseDeclM traverseModuleItemM traverseStmtM s description
scopedConversionM
:: (Eq s, Show s)
=> Monad m
=> MapperM (StateT s m) Decl
-> MapperM (StateT s m) ModuleItem
-> MapperM (StateT s m) Stmt
-> s
-> Description
-> m Description
scopedConversionM traverseDeclM traverseModuleItemM traverseStmtM s description =
evalStateT (initialTraverse description >>= scopedTraverse) s
where
initialTraverse = traverseModuleItemsM traverseMIPackageItemDecl
scopedTraverse = traverseModuleItemsM $
traverseScopesM traverseDeclM traverseModuleItemM traverseStmtM
traverseMIPackageItemDecl (MIPackageItem (Decl decl)) =
traverseDeclM decl >>= return . MIPackageItem . Decl
traverseMIPackageItemDecl other = return other
-- convert a basic mapper with an initial argument to a stateful mapper
stately :: (Eq s, Show s) => (s -> Mapper a) -> MapperM (State s) a
stately mapper thing = do
s <- get
return $ mapper s thing
-- In many conversions, we want to resolve items locally first, and then fall
-- back to looking at other source files, if necessary. This helper captures
-- this behavior, allowing a conversion to fall back to arbitrary global
-- collected item, if one exists. While this isn't foolproof (we could
-- inadvertently resolve a name that doesn't exist in the given file), many
-- projects rely on their toolchain to locate their modules, interfaces,
-- packages, or typenames in other files. Global resolution of modules and
-- interfaces is more commonly expected than global resolution of typenames and
-- packages.
traverseFilesM
:: (Monoid w, Monad m)
=> CollectorM (Writer w) AST
-> (w -> MapperM m AST)
-> MapperM m [AST]
traverseFilesM fileCollectorM fileMapperM files =
mapM traverseFileM files
where
globalNotes = execWriter $ mapM fileCollectorM files
traverseFileM file =
fileMapperM notes file
where
localNotes = execWriter $ fileCollectorM file
notes = localNotes <> globalNotes
traverseFiles
:: Monoid w
=> CollectorM (Writer w) AST
-> (w -> Mapper AST)
-> Mapper [AST]
traverseFiles fileCollectorM fileMapper files =
evalState (traverseFilesM fileCollectorM fileMapperM files) ()
where fileMapperM = (\w -> return . fileMapper w)