sbt/util/collection/src/test/scala/SettingsExample.scala

88 lines
2.6 KiB
Scala

package sbt
/** Define our settings system */
// A basic scope indexed by an integer.
final case class Scope(index: Int)
// Extend the Init trait.
// (It is done this way because the Scope type parameter is used everywhere in Init.
// Lots of type constructors would become binary, which as you may know requires lots of type lambdas
// when you want a type function with only one parameter.
// That would be a general pain.)
object SettingsExample extends Init[Scope]
{
// Provides a way of showing a Scope+AttributeKey[_]
val showFullKey: Show[ScopedKey[_]] = new Show[ScopedKey[_]] {
def apply(key: ScopedKey[_]) = key.scope.index + "/" + key.key.label
}
// A sample delegation function that delegates to a Scope with a lower index.
val delegates: Scope => Seq[Scope] = { case s @ Scope(index) =>
s +: (if(index <= 0) Nil else delegates(Scope(index-1)) )
}
// Not using this feature in this example.
val scopeLocal: ScopeLocal = _ => Nil
// These three functions + a scope (here, Scope) are sufficient for defining our settings system.
}
/** Usage Example **/
object SettingsUsage
{
import SettingsExample._
import Types._
// Define some keys
val a = AttributeKey[Int]("a")
val b = AttributeKey[Int]("b")
// Scope these keys
val a3 = ScopedKey(Scope(3), a)
val a4 = ScopedKey(Scope(4), a)
val a5 = ScopedKey(Scope(5), a)
val b4 = ScopedKey(Scope(4), b)
// Define some settings
val mySettings: Seq[Setting[_]] = Seq(
setting( a3, value( 3 ) ),
setting( b4, map(a4)(_ * 3)),
update(a5)(_ + 1)
)
// "compiles" and applies the settings.
// This can be split into multiple steps to access intermediate results if desired.
// The 'inspect' command operates on the output of 'compile', for example.
val applied: Settings[Scope] = make(mySettings)(delegates, scopeLocal, showFullKey)
// Show results.
/* for(i <- 0 to 5; k <- Seq(a, b)) {
println( k.label + i + " = " + applied.get( Scope(i), k) )
}*/
/** Output:
* For the None results, we never defined the value and there was no value to delegate to.
* For a3, we explicitly defined it to be 3.
* a4 wasn't defined, so it delegates to a3 according to our delegates function.
* b4 gets the value for a4 (which delegates to a3, so it is 3) and multiplies by 3
* a5 is defined as the previous value of a5 + 1 and
* since no previous value of a5 was defined, it delegates to a4, resulting in 3+1=4.
* b5 isn't defined explicitly, so it delegates to b4 and is therefore equal to 9 as well
a0 = None
b0 = None
a1 = None
b1 = None
a2 = None
b2 = None
a3 = Some(3)
b3 = None
a4 = Some(3)
b4 = Some(9)
a5 = Some(4)
b5 = Some(9)
**/
}