sbt/util/appmacro/Instance.scala

229 lines
9.9 KiB
Scala

package sbt
package appmacro
import Classes.Applicative
import Types.Id
/** The separate hierarchy from Applicative/Monad is for two reasons.
*
* 1. The type constructor is represented as an abstract type because a TypeTag cannot represent a type constructor directly.
* 2. The applicative interface is uncurried.
*/
trait Instance
{
type M[x]
def app[K[L[x]], Z](in: K[M], f: K[Id] => Z)(implicit a: AList[K]): M[Z]
def map[S,T](in: M[S], f: S => T): M[T]
def pure[T](t: () => T): M[T]
}
trait Convert
{
def apply[T: c.WeakTypeTag](c: scala.reflect.macros.Context)(in: c.Tree): c.Tree
}
trait MonadInstance extends Instance
{
def flatten[T](in: M[M[T]]): M[T]
}
import scala.reflect._
import macros._
object InputWrapper
{
/** The name of the wrapper method should be obscure.
* Wrapper checking is based solely on this name, so it must not conflict with a user method name.
* The user should never see this method because it is compile-time only and only used internally by the task macro system.*/
final val WrapName = "wrap_\u2603\u2603"
// This method should be annotated as compile-time only when that feature is implemented
def wrap_\u2603\u2603[T](in: Any): T = error("This method is an implementation detail and should not be referenced.")
/** Wraps an arbitrary Tree in a call to the `wrap` method of this module for later processing by an enclosing macro.
* The resulting Tree is the manually constructed version of:
*
* `c.universe.reify { InputWrapper.<WrapName>[T](ts.splice) }`
*/
def wrapKey[T: c.WeakTypeTag](c: Context)(ts: c.Expr[Any]): c.Expr[T] =
{
import c.universe.{Apply=>ApplyTree,_}
val util = new ContextUtil[c.type](c)
val iw = util.singleton(InputWrapper)
val tpe = c.weakTypeOf[T]
val nme = newTermName(WrapName).encoded
val tree = ApplyTree(TypeApply(Select(Ident(iw), nme), TypeTree(tpe) :: Nil), ts.tree :: Nil)
tree.setPos(ts.tree.pos)
c.Expr[T](tree)
}
}
object Instance
{
final val ApplyName = "app"
final val FlattenName = "flatten"
final val PureName = "pure"
final val MapName = "map"
final val InstanceTCName = "M"
final class Input[U <: Universe with Singleton](val tpe: U#Type, val expr: U#Tree, val local: U#ValDef)
/** Implementation of a macro that provides a direct syntax for applicative functors and monads.
* It is intended to be used in conjunction with another macro that conditions the inputs.
*
* This method processes the Tree `t` to find inputs of the form `InputWrapper.wrap[T]( input )`
* This form is typically constructed by another macro that pretends to be able to get a value of type `T`
* from a value convertible to `M[T]`. This `wrap(input)` form has two main purposes.
* First, it identifies the inputs that should be transformed.
* Second, it allows the input trees to be wrapped for later conversion into the appropriate `M[T]` type by `convert`.
* This wrapping is necessary because applying the first macro must preserve the original type,
* but it is useful to delay conversion until the outer, second macro is called. The `wrap` method accomplishes this by
* allowing the original `Tree` and `Type` to be hidden behind the raw `T` type. This method will remove the call to `wrap`
* so that it is not actually called at runtime.
*
* Each `input` in each expression of the form `InputWrapper.wrap[T]( input )` is transformed by `convert`.
* This transformation converts the input Tree to a Tree of type `M[T]`.
* The original wrapped expression `wrap(input)` is replaced by a reference to a new local `val $x: T`, where `$x` is a fresh name.
* These converted inputs are passed to `builder` as well as the list of these synthetic `ValDef`s.
* The `TupleBuilder` instance constructs a tuple (Tree) from the inputs and defines the right hand side of the vals
* that unpacks the tuple containing the results of the inputs.
*
* The constructed tuple of inputs and the code that unpacks the results of the inputs are then passed to the `i`,
* which is an implementation of `Instance` that is statically accessible.
* An Instance defines a applicative functor associated with a specific type constructor and, if it implements MonadInstance as well, a monad.
* Typically, it will be either a top-level module or a stable member of a top-level module (such as a val or a nested module).
* The `with Singleton` part of the type verifies some cases at macro compilation time,
* while the full check for static accessibility is done at macro expansion time.
* Note: Ideally, the types would verify that `i: MonadInstance` when `t.isRight`.
* With the various dependent types involved, this is not worth it.
*
* The `t` argument is the argument of the macro that will be transformed as described above.
* If the macro that calls this method is for a multi-input map (app followed by map),
* `t` should be the argument wrapped in Left.
* If this is for multi-input flatMap (app followed by flatMap),
* this should be the argument wrapped in Right.
*/
def contImpl[T](c: Context, i: Instance with Singleton, convert: Convert, builder: TupleBuilder)(t: Either[c.Expr[T], c.Expr[i.M[T]]])(
implicit tt: c.WeakTypeTag[T], it: c.TypeTag[i.type]): c.Expr[i.M[T]] =
{
import c.universe.{Apply=>ApplyTree,_}
val util = ContextUtil[c.type](c)
val mTC: Type = util.extractTC(i, InstanceTCName)
val mttpe: Type = appliedType(mTC, tt.tpe :: Nil).normalize
// the tree for the macro argument
val (tree, treeType) = t match {
case Left(l) => (l.tree, tt.tpe.normalize)
case Right(r) => (r.tree, mttpe)
}
val instanceSym = util.singleton(i)
// A Tree that references the statically accessible Instance that provides the actual implementations of map, flatMap, ...
val instance = Ident(instanceSym)
val isWrapper: Tree => Boolean = util.isWrapper(InputWrapper.WrapName)
type In = Input[c.universe.type]
var inputs = List[In]()
// Local definitions in the macro. This is used to ensure references are to M instances defined outside of the macro call.
val defs = util.collectDefs(tree, isWrapper)
val checkQual: Tree => Unit = util.checkReferences(defs, isWrapper)
// transforms the original tree into calls to the Instance functions pure, map, ...,
// resulting in a value of type M[T]
def makeApp(body: Tree): Tree =
inputs match {
case Nil => pure(body)
case x :: Nil => single(body, x)
case xs => arbArity(body, xs)
}
// no inputs, so construct M[T] via Instance.pure or pure+flatten
def pure(body: Tree): Tree =
{
val typeApplied = TypeApply(Select(instance, PureName), TypeTree(treeType) :: Nil)
val p = ApplyTree(typeApplied, Function(Nil, body) :: Nil)
if(t.isLeft) p else flatten(p)
}
// m should have type M[M[T]]
// the returned Tree will have type M[T]
def flatten(m: Tree): Tree =
{
val typedFlatten = TypeApply(Select(instance, FlattenName), TypeTree(tt.tpe) :: Nil)
ApplyTree(typedFlatten, m :: Nil)
}
// calls Instance.map or flatmap directly, skipping the intermediate Instance.app that is unnecessary for a single input
def single(body: Tree, input: In): Tree =
{
val variable = input.local
val param = ValDef(util.parameterModifiers, variable.name, variable.tpt, EmptyTree)
val typeApplied = TypeApply(Select(instance, MapName), variable.tpt :: TypeTree(treeType) :: Nil)
val mapped = ApplyTree(typeApplied, input.expr :: Function(param :: Nil, body) :: Nil)
if(t.isLeft) mapped else flatten(mapped)
}
// calls Instance.app to get the values for all inputs and then calls Instance.map or flatMap to evaluate the body
def arbArity(body: Tree, inputs: List[In]): Tree =
{
val result = builder.make(c)(mTC, inputs)
val param = util.freshMethodParameter( appliedType(result.representationC, util.idTC :: Nil) )
val bindings = result.extract(param)
val f = Function(param :: Nil, Block(bindings, body))
val ttt = TypeTree(treeType)
val typedApp = TypeApply(Select(instance, ApplyName), TypeTree(result.representationC) :: ttt :: Nil)
val app = ApplyTree(ApplyTree(typedApp, result.input :: f :: Nil), result.alistInstance :: Nil)
if(t.isLeft) app else flatten(app)
}
// called when transforming the tree to add an input
// for `qual` of type M[A], and a selection qual.value,
// the call is addType(Type A, Tree qual)
// the result is a Tree representing a reference to
// the bound value of the input
def addType(tpe: Type, qual: Tree): Tree =
{
qual.foreach(checkQual)
val vd = util.freshValDef(tpe, qual.symbol)
inputs ::= new Input(tpe, qual, vd)
util.refVal(vd)
}
def sub(tpe: Type, qual: Tree): Tree =
{
val tag = c.WeakTypeTag(tpe)
addType(tpe, convert(c)(qual)(tag) )
}
// applies the transformation
// resetting attributes must be: a) local b) done here and not wider or else there are obscure errors
val tr = makeApp( c.resetLocalAttrs( util.transformWrappers(tree, isWrapper, (tpe, tr) => sub(tpe, tr)) ) )
c.Expr[i.M[T]](tr)
}
import Types._
implicit def applicativeInstance[A[_]](implicit ap: Applicative[A]): Instance { type M[x] = A[x] } = new Instance
{
type M[x] = A[x]
def app[ K[L[x]], Z ](in: K[A], f: K[Id] => Z)(implicit a: AList[K]) = a.apply[A,Z](in, f)
def map[S,T](in: A[S], f: S => T) = ap.map(f, in)
def pure[S](s: () => S): M[S] = ap.pure(s())
}
type AI[A[_]] = Instance { type M[x] = A[x] }
def compose[A[_], B[_]](implicit a: AI[A], b: AI[B]): Instance { type M[x] = A[B[x]] } = new Composed[A,B](a,b)
// made a public, named, unsealed class because of trouble with macros and inference when the Instance is not an object
class Composed[A[_], B[_]](a: AI[A], b: AI[B]) extends Instance
{
type M[x] = A[B[x]]
def pure[S](s: () => S): A[B[S]] = a.pure(() => b.pure(s))
def map[S,T](in: M[S], f: S => T): M[T] = a.map(in, (bv: B[S]) => b.map(bv, f))
def app[ K[L[x]], Z ](in: K[M], f: K[Id] => Z)(implicit alist: AList[K]): A[B[Z]] =
{
val g: K[B] => B[Z] = in => b.app[K, Z](in, f)
type Split[ L[x] ] = K[ (L B)#l ]
a.app[Split, B[Z]](in, g)(AList.asplit(alist))
}
}
}