sbt/util/appmacro/ContextUtil.scala

206 lines
8.6 KiB
Scala

package sbt
package appmacro
import scala.reflect._
import macros._
import scala.tools.nsc.Global
import ContextUtil.{DynamicDependencyError, DynamicReferenceError}
object ContextUtil {
final val DynamicDependencyError = "Illegal dynamic dependency"
final val DynamicReferenceError = "Illegal dynamic reference"
/** Constructs an object with utility methods for operating in the provided macro context `c`.
* Callers should explicitly specify the type parameter as `c.type` in order to preserve the path dependent types. */
def apply[C <: Context with Singleton](c: C): ContextUtil[C] = new ContextUtil(c)
/** Helper for implementing a no-argument macro that is introduced via an implicit.
* This method removes the implicit conversion and evaluates the function `f` on the target of the conversion.
*
* Given `myImplicitConversion(someValue).extensionMethod`, where `extensionMethod` is a macro that uses this
* method, the result of this method is `f(<Tree of someValue>)`. */
def selectMacroImpl[T: c.WeakTypeTag, S: c.WeakTypeTag](c: Context)(f: c.Expr[S] => c.Expr[T]): c.Expr[T] =
{
import c.universe._
c.macroApplication match {
case Select(Apply(_, t :: Nil), _) => f( c.Expr[S](t) )
case x => unexpectedTree(x)
}
}
def unexpectedTree[C <: Context](tree: C#Tree): Nothing = error("Unexpected macro application tree (" + tree.getClass + "): " + tree)
}
/** Utility methods for macros. Several methods assume that the context's universe is a full compiler (`scala.tools.nsc.Global`).
* This is not thread safe due to the underlying Context and related data structures not being thread safe.
* Use `ContextUtil[c.type](c)` to construct. */
final class ContextUtil[C <: Context](val ctx: C)
{
import ctx.universe.{Apply=>ApplyTree,_}
lazy val alistType = ctx.typeOf[AList[KList]]
lazy val alist: Symbol = alistType.typeSymbol.companionSymbol
lazy val alistTC: Type = alistType.typeConstructor
/** Modifiers for a local val.*/
lazy val localModifiers = Modifiers(NoFlags)
def getPos(sym: Symbol) = if(sym eq null) NoPosition else sym.pos
def atypeOf[T](implicit att: WeakTypeTag[T]): Type = att.tpe
/** Constructs a unique term name with the given prefix within this Context.
* (The current implementation uses Context.fresh, which increments*/
def freshTermName(prefix: String) = newTermName(ctx.fresh("$" + prefix))
/** Constructs a new, local ValDef with the given Type, a unique name,
* the same position as `sym`, and an empty implementation (no rhs). */
def freshValDef(tpe: Type, sym: Symbol): ValDef =
{
val vd = localValDef(TypeTree(tpe), EmptyTree)
vd setPos getPos(sym)
vd
}
/* Tests whether a Tree is a Select on `methodName`. */
def isWrapper(methodName: String): Tree => Boolean = {
case Select(_, nme) => nme.decoded == methodName
case _ => false
}
lazy val parameterModifiers = Modifiers(Flag.PARAM)
/** Collects all definitions in the tree for use in checkReferences.
* This excludes definitions in wrapped expressions because checkReferences won't allow nested dereferencing anyway. */
def collectDefs(tree: Tree, isWrapper: Tree => Boolean): collection.Set[Symbol] =
{
val defs = new collection.mutable.HashSet[Symbol]
// adds the symbols for all non-Ident subtrees to `defs`.
val process = new Traverser {
override def traverse(t: Tree) = t match {
case _: Ident => ()
case ApplyTree(TypeApply(fun, tpe :: Nil), qual :: Nil) if isWrapper(fun) => ()
case tree =>
if(tree.symbol ne null) defs += tree.symbol;
super.traverse(tree)
}
}
process.traverse(tree)
defs
}
/** A reference is illegal if it is to an M instance defined within the scope of the macro call.
* As an approximation, disallow referenced to any local definitions `defs`. */
def illegalReference(defs: collection.Set[Symbol], sym: Symbol): Boolean =
sym != null && sym != NoSymbol && defs.contains(sym)
/** A function that checks the provided tree for illegal references to M instances defined in the
* expression passed to the macro and for illegal dereferencing of M instances. */
def checkReferences(defs: collection.Set[Symbol], isWrapper: Tree => Boolean): Tree => Unit = {
case s @ ApplyTree(TypeApply(fun, tpe :: Nil), qual :: Nil) => if(isWrapper(fun)) ctx.error(s.pos, DynamicDependencyError)
case id @ Ident(name) if illegalReference(defs, id.symbol) => ctx.error(id.pos, DynamicReferenceError + ": " + name)
case _ => ()
}
/** Constructs a ValDef with a parameter modifier, a unique name, with the provided Type and with an empty rhs. */
def freshMethodParameter(tpe: Type): ValDef =
ValDef(parameterModifiers, freshTermName("p"), TypeTree(tpe), EmptyTree)
/** Constructs a ValDef with local modifiers and a unique name. */
def localValDef(tpt: Tree, rhs: Tree): ValDef =
ValDef(localModifiers, freshTermName("q"), tpt, rhs)
/** Constructs a tuple value of the right TupleN type from the provided inputs.*/
def mkTuple(args: List[Tree]): Tree =
{
val global: Global = ctx.universe.asInstanceOf[Global]
global.gen.mkTuple(args.asInstanceOf[List[global.Tree]]).asInstanceOf[ctx.universe.Tree]
}
/** Creates a new, synthetic type variable with the specified `owner`. */
def newTypeVariable(owner: Symbol, prefix: String = "T0"): TypeSymbol =
{
val global: Global = ctx.universe.asInstanceOf[Global]
owner.asInstanceOf[global.Symbol].newSyntheticTypeParam(prefix, 0L).asInstanceOf[ctx.universe.TypeSymbol]
}
/** The type representing the type constructor `[X] X` */
lazy val idTC: Type =
{
val tvar = newTypeVariable(NoSymbol)
polyType(tvar :: Nil, refVar(tvar))
}
/** A Type that references the given type variable. */
def refVar(variable: TypeSymbol): Type = variable.toTypeConstructor
/** Constructs a new, synthetic type variable that is a type constructor. For example, in type Y[L[x]], L is such a type variable. */
def newTCVariable(owner: Symbol): TypeSymbol =
{
val tc = newTypeVariable(owner)
val arg = newTypeVariable(tc, "x")
tc.setTypeSignature(PolyType(arg :: Nil, emptyTypeBounds))
tc
}
/** >: Nothing <: Any */
def emptyTypeBounds: TypeBounds = TypeBounds(definitions.NothingClass.toType, definitions.AnyClass.toType)
/** Create a Tree that references the `val` represented by `vd`. */
def refVal(vd: ValDef): Tree =
{
val t = Ident(vd.name)
assert(vd.tpt.tpe != null, "val type is null: " + vd + ", tpt: " + vd.tpt.tpe)
t.setType(vd.tpt.tpe)
t
}
/** Returns the Symbol that references the statically accessible singleton `i`. */
def singleton[T <: AnyRef with Singleton](i: T)(implicit it: ctx.TypeTag[i.type]): Symbol =
it.tpe match {
case SingleType(_, sym) if !sym.isFreeTerm && sym.isStatic => sym
case x => error("Instance must be static (was " + x + ").")
}
/** Returns the symbol for the non-private method named `name` for the class/module `obj`. */
def method(obj: Symbol, name: String): Symbol = {
val global: Global = ctx.universe.asInstanceOf[Global]
val ts: Type = obj.typeSignature
val m: global.Symbol = ts.asInstanceOf[global.Type].nonPrivateMember(global.newTermName(name))
m.asInstanceOf[Symbol]
}
/** Returns a Type representing the type constructor tcp.<name>. For example, given
* `object Demo { type M[x] = List[x] }`, the call `extractTC(Demo, "M")` will return a type representing
* the type constructor `[x] List[x]`.
**/
def extractTC(tcp: AnyRef with Singleton, name: String)(implicit it: ctx.TypeTag[tcp.type]): ctx.Type =
{
val global: Global = ctx.universe.asInstanceOf[Global]
val itTpe = it.tpe.asInstanceOf[global.Type]
val m = itTpe.nonPrivateMember(global.newTypeName(name))
val tc = itTpe.memberInfo(m).asInstanceOf[ctx.universe.Type]
assert(tc != NoType && tc.takesTypeArgs, "Invalid type constructor: " + tc)
tc
}
/** Substitutes wrappers in tree `t` with the result of `subWrapper`.
* A wrapper is a Tree of the form `f[T](v)` for which isWrapper(<Tree of f>) returns true.
* Typically, `f` is a `Select` or `Ident`.
* The wrapper is replaced with the result of `subWrapper(<Type of T>, <Tree of v>)` */
def transformWrappers(t: Tree, isWrapper: Tree => Boolean, subWrapper: (Type, Tree) => Tree): Tree =
{
// the main tree transformer that replaces calls to InputWrapper.wrap(x) with
// plain Idents that reference the actual input value
object appTransformer extends Transformer
{
override def transform(tree: Tree): Tree =
tree match
{
case ApplyTree(TypeApply(fun, targ :: Nil), qual :: Nil) if isWrapper(fun) =>
assert(qual.tpe != null, "Internal error: null type for wrapped tree with " + qual.getClass + "\n\t" + qual + "\n in " + t)
subWrapper(targ.tpe, qual)
case _ => super.transform(tree)
}
}
appTransformer.transform(t)
}
}