When a json rpc request is specified without any headers, the size of
the message may exceed the buffer that was created for reading hdeaders.
This would cause an exception to be thrown when creating a string from
the header buffer because the number of bytes requested would exceed the
capacity of the buffer. To fix this, we can expand the buffer
dynamically if needed. For the common case when the headers are
specified, this should be a no-op.
Ref https://github.com/sbt/sbt/issues/5665
This adds `--server` command that is immediately filtered out in Main.scala.
The purpose of `--server` is so we can invoke thin client from `sbt` script at some point in the future when Bash script can parse `project/build.properties`.
`sbtn` would need to call `sbt` again to start the server, and at that point the shell script would need to actually invoke the server. The intent of `--server` is to be used as the tie breaker.
Also build users may want to sometimes call `sbt --server`.
I introduced the terminalShellPrompt so that we could generate a prompt
that was colored only if the terminal supported color. Rather than
expose the terminal implementation detail, we can just use a boolean
flag that toggles whether or not color is enabled and sbt can pass in
the value of terminal.isColorEnabled into the function.
sbt 1.4.0 generates the shell prompt using the terminal properties for
the specific terminal for which the prompt is rendered. The mechanism
for doing this broke the prompt for projects that overrode the
shellPrompt key, notably the play plugin. After this change, the play
custom prompt is correctly rendered with 1.4.0-SNAPSHOT.
When starting sbt via the thin client with 1.4.0-RC1, there is no output
until sbt finishes booting up which is poor ux. The reason is that sbt
only uses virtual io when sbt.io.virtual == true or formatEnabledInEnv
== true and not ci. The default value for formatEnabledInEnv is set
based on whether color is enabled in the environment. This had copied
old logic that turned on color if ansi was enabled but it makes more
sense to check the color property (which is set by the thin client via
an environment variable when it launches sbt) and fall back to whether
or not java.lang.System.console is defined. We also can explicitly set
"-Dsbt.io.virtual=true" when the thin client launches sbt since the thin
client relies on this behavior. By doing it in both places, the sbtn
for 1.4.0-RC1 will display boot output for newer versions of sbt.
Bonus: don't call ConsoleAppender.formatEnabledInEnv which just calls
back to Terminal.formatEnabledInEnv
The sbt.log.noformat parameter should be treated very similarly to
sbt.io.virtual. When it is true, we should just use the raw io streams
for the process. This came up because of
https://github.com/sbt/sbt/issues/5784 which reported that intellij
imports were not working and that ansi control characters were being
written to the output.
There can be race conditions where we try to interrupt and join a ui
thread before it becomes interruptible by blockign on a queue. To
workaround this, we can add the JoinThread class which adds an
extension method Thread.joinFor that takes a FiniteDuration parameter.
This variant of join will repeatedly interrupt and attempt to join the
thread for up to 10 milliseconds before retrying until the limit is
reached. If the limit is reached, we print a noisy error to the console.
I'm not 100% sure if we are leaking threads in the latest sbt version
but this gives me more piece of mind that either we are always
successfully joining the threads or we will be alerted if the joining
fails.
When exiting the thin client, an interrupted exception stack trace ends
up being printed because NonFatal doesn't include interrupted
exceptions.
Fixes https://github.com/sbt/sbt/issues/5759
Fixes https://github.com/sbt/sbt/issues/5039
Fixes https://github.com/sbt/sbt/issues/4989
This is take 2 on the semicolon fix by emptying out the completion examples in the multi parser.
```
> set scalaV
```
would complete to
```
> set scalaVersion
```
and more importantly
```
coursierUseSbtCredentials := true
```
errors to
```
sbt:hello> coursierUseSbtCredentials := true
[error] Expected ID character
[error] Not a valid command: coursierUseSbtCredentials
[error] Expected project ID
[error] Expected configuration
[error] Expected ':'
[error] Expected key
[error] Not a valid key: coursierUseSbtCredentials (similar: csrExtraCredentials, credentials)
[error] coursierUseSbtCredentials := true
[error] ^
```
With the latest sbt snapshot, the ui would get stuck if the user entered
an empty command. They would be presented with an empty prompt and could
not input any commands. This was caused by the change in
d569abe70a that reset the prompt after a
line was read. I had tried to optimize line reading by ignoring empty
commands in UITask.readline so we wouldn't have to make a new thread.
This optimization wasn't really buying much since it only affects how
quickly the user is reprompted after entering an empty command. Unless a
user is spamming the <enter> key, they shouldn't notice a difference.
It was a bit tricky to reason about the state of the prompt for a
terminal. To help make things more clear, I reworked things so that the
LineReader always sets the prompt to Pending after it reads a command.
In MainLoop, we cache the prompt value and temporarily set it to Running
while the command is running, which is really how it should have always
been.
In order to make the console task work with scala 2.13 and the thin
client, we need to provide a way for the scala repl to use an sbt
provided jline3 terminal instead of the default terminal typically built
by the repl. We also need to put jline 3 higher up in the classloading
hierarchy to ensure that two versions of jline 3 are not loaded (which
makes it impossible to share the sbt terminal with the scala terminal).
One impact of this change is the decoupling of the version of
jline-terminal used by the in process scala console and the version
of jline-terminal specified by the scala version itself. It is possible
to override this by setting the `useScalaReplJLine` flag to true. When
that is set, the scala REPL will run in a fully isolated classloader. That
will ensure that the versions are consistent. It will, however, for sure
break the thin client and may interfere with the embedded shell ui.
As part of this work, I also discovered that jline 3 Terminal.getSize is
very slow. In jline 2, the terminal attributes were automatically cached with a
timeout of, I think, 1 second so it wasn't a big deal to call
Terminal.getAttributes. The getSize method in jline 3 is not cached and
it shells out to run a tty command. This caused a significant
performance regression in sbt because when progress is enabled, we call
Terminal.getSize whenever we log any messages. I added caching of
getSize at the TerminalImpl level to address this. The timeout is 1
second, which seems responsive enough for most use cases. We could also
move the calculation onto a background thread and have it periodically
updated, but that seems like overkill.
There are cases where if the ui state is changing rapidly, that an
AskUserThread can be created and cancelled in a short time windows. This
could cause problems if the AskUserThread is interrupted during
`LineReader.createReader` which I think can shell out to run some
commands so it is relatively slow. If the thread was interrupted during
the call to `LineReader.createReader` and the interruption was not
handled, then the thread would go into `LineReader.readLine`, which
wouldn't exit until the user pressed enter. This ultimately caused the
ui to break until enter because this zombie line reader would be holding
the lock on the terminal input stream.
Rather than relying on a command, I realized it makes more sense to
explicitly set the terminal for the calling channel in MainLoop. By
doing it this way, we can also ensure that we always reset it to the
previous value.
This reverts commit b1dcf031a5.
I found that b1dcf031a5 had some
unintended consequences that seemed to mess up the prompt state. The
real problem that it was trying to address was that the prompt was being
interleaved with log messages in some scenarios. There was a different
way to fix that in ProgressState that was both simpler and more
reliable.
I noticed that when reloading the build, that certain errors are logged
by sbt to System.err. These were not shown to a thin client because we
weren't forwarding System.err. This change remedies that.
System.err is handled more simply than System.out. We do not put
System.err through the progress state because generally System.err is
tends to be unbuffered. I had hesitated to add System.err to the
Terminal interface at all to give users an escape hatch but I couldn't
get project loading to work well with the thin client without it.
It is useful to store a buffer of the lines written to each terminal. We
can use those lines to replay the terminal log lines to a different
client. This is particularly nice when a remote client connects to sbt
while it's booting. We can show the remote client all the lines
displayed by the console prior to the client connecting.
This commit upgrades sbt to using jline3. The advantage to jline3 is
that it has a significantly better tab completion engine that is more
similar to what you get from zsh or fish.
The diff is bigger than I'd hoped because there are a number of
behaviors that are different in jline3 vs jline2 in how the library
consumes input streams and implements various features. I also was
unable to remove jline2 because we need it for older versions of the
scala console to work correctly with the thin client. As a result, the
changes are largely additive.
A good amount of this commit was in adding more protocol so that the
remote client can forward its jline3 terminal information to the server.
There were a number of minor changes that I made that either fixed
outstanding ui bugs from #5620 or regressions due to differences between
jline3 and jline2.
The number one thing that caused problems is that the jline3 LineReader
insists on using a NonBlockingInputStream. The implementation ofo
NonBlockingInputStream seems buggy. Moreover, sbt internally uses a
non blocking input stream for system in so jline is adding non blocking
to an already non blocking stream, which is frustrating.
A long term solution might be to consider insourcing LineReader.java
from jline3 and just adapting it to use an sbt terminal rather than
fighting with the jline3 api. This would also have the advantage of not
conflicting with other versions of jline3. Even if we don't, we may want to
shade jline3 if that is possible.
If there is no system console available, then there is no point in
making an ask user thread. An ask user thread can only be created when
the terminal prompt is in the Prompt.Running or Prompt.Loading state.
The console channel will now set itself to be in the Prompt.NoPrompt
state if it detects that there is no System.console available.
The motivation for this change is that jline was printing a lot of extra
text during scripted and server tests. Whenever a jline3 linereader is
closed, it prints a newline so the logs were filled with unnecessary
newlines.
In the situation where sbt was started in server mode and a client is
running a `~` command and a project reload is triggered by a change to
a build source, the console terminal looks like
sbt:foo>
[info] received remote command: ~compile
sbt:foo>
[info] welcome to sbt 1.4.0-SNAPSHOT (Azul Systems, Inc. Java 1.8.0_252)
sbt:foo>
[info] loading global plugins from ~/.sbt/1.0/plugins
sbt:foo>
[info] loading settings for project foo-build from metals.sbt ...
sbt:foo>
[info] loading project definition from
~/foo/project
sbt:foo>
[info] loading settings for project root from build.sbt ...
sbt:foo>
[info] loading settings for project macros from build.sbt ...
sbt:foo>
[info] loading settings for project main from build.sbt ...
sbt:foo>
[info] set current project to foo (in build file:~/foo)
sbt:foo>
This change fixes that by unprompting all channels during project
loading and reprompting them when it completes.
Reboot is a bit tricky for the remote client because the sbt server is
actually shut down during reboot. When sbt shuts down the client, it can
notify the client that the reason is a reboot. The client can then
connect to the recently introduced boot control socket to display the
reboot output and supply input in case the build fails to load. Once the
server has brought back up the server, the client can reconnect. When
the client session is interactive, we're done once we reconnect. When
it's a batch session, the client needs to resend the remaing commands
that have submitted that it hasn't yet run.
When running reboot at the console, the first character that the user
enters after the reboot has completed is lost. This is because it isn't
possible to interrupt System.in and we have a thread that is blocking on
reads to System.in in WriteableInputStream. That thread cannot be
shutdown during normal sbt shutdown while it is reading. When sbt next
starts up (in the same jvm), the previous thread gets the byte but has
nowhere to write it so the byte is lost. This commit fixes that behavior
by ensuring that we only poll from System.in when there is actually a
downstream consumer.
The behavior of reboot is still a little wonky if the user issues a
reboot from a network client and then tries to input commands at the
console. In that case, sbt will have been polling System.in in the ask
user thread prior to the reboot and the ask user thread will be
uninterruptible for the reason described above so the first byte will
again by swallowed by the previous sbt instance. This use case is
sufficiently pathological that it doesn't feel worth the effort to fix.
As annoying as it is, it doesn't break the sbt session. The user will
either submit an invalid command with the missing leading character or
notice the character is missing, possibly think they missed the key,
type backspace a few times and re-type the command.
Shutdown was being handled as a special case in CommandExchange. This
promotes it to a full fledged command. Also replace instance of
hard-coded strings with constants.
When a remote client sent the command `shutdown` through the shell, the
client would log an error and exit with a nonzero exit code because
before shutting down, the server would notify the client that it was
disconnecting it due to shutdown. In this scenario, we actually do not
want the client to log an error since they initiated the shutdown, so
before doing the full shutdown, we shutdown the client that inititated
the shutdown with the flag that tells the client not to log the shutdown
or return a nonzero exit code.
One issue with the remote client approach is that it is possible for
multiple clients to start multiple servers concurrently. I encountered
this in testing where in one tmux pane I'd start an sbt server and in
another I might run sbtc before the server had finished loading. This
can actually cause java processes to leak because the second process is
unable to start a server but it doesn't necessarily die after the client
that spawned it exits. This commit prevents this scenario by creating a
server socket before it loads the build and closes once the build is
complete. The client can then receive output bytes and forward input to
the booting server.
The socket that is created during boot is always a local socket, either
a UnixDomainServerSocket or a Win32NamedPipeServerSocket. At the moment,
I don't see any reason to support TCP. This socket also has no impact at
all on the normal sbt server that is started up after the project has
loaded.
The socket is hardcoded to be located at the relative path
project/target/$SOCK_NAME or the named pipe $SOCK_NAME where SOCK_NAME
is a farm hash of the absolute path of the project base directory. There
is no portfile json since there is no need since we don't support TCP.
After the socket is created it listens for clients to whom it relays
input to the console's input stream and relays the process output back
to the client. See the javadoc in BootServerSocket.java for further
details.
The process for forking the server is also a bit more complicated after
this change because the client will read the process output and error
streams until the socket is created and thereafter will only read output
from the socket, not the process.
Supershell does not work correctly when the sbt server is started by the
remote client on windows because it incorrectly calculates the terminal
dimensions. To work around this, we can pass in the dimensions from the
remote client as an environment variable. I tried to do this as a system
property but had all kinds of problems with windows stripping delimeters
from the command. It was much easier to get working with an environment
variable and should really only be set by the sbtc client anyway.
It is inefficient to be constantly allocating and filling an
ArrayBuffer. The buffer is only used for reading headers that we mostly
discard anyway. My assumption is that since we only care about content
length, it's fine to put a fixed limit on the buffer size.
When the user ran a command like `testOnly foo -- bar`, the client was
incorrectly treating the `--` as an sbt argument. The assumption is that
once an argument is found that does not start with a `-`, then
everything following that argument is part of the command arguments.
The existing implementation of watch did not work with the thin client.
In sbt 1.3.0, watch was changed to be a blocking command that performed
manual task evaluation. This commit makes the implementation more
similar to < 1.3.0 where watch modifies the state and after running the
user specified command(s), it enters a blocking command. The new
blocking command is very similar to the shell command.
As part of this change, I also reworked some of the internals of watch
so that a number of threads are spawned for reading file and input
events. By using background threads that write to a single event queue,
we are able to block on the file events and terminal input stream rather
than polling. After this change, the cpu utilization as measured by ps
drops from roughly 2% of a cpu to 0.
To integrate with the network client, we introduce a new UITask that is
similar to the AskUserTask but instead of reading lines and adding execs
to the command queue, it reads characters and converts them into watch
commands that we also append to the command queue.
With this new implementation, the watch task that was added in 1.3.0 no
longer works. My guess is that no one was really using it. It wasn't
documented anywhere. The motivation for the task implementation was that
it could be called within another task which would let users define a
task that monitors for file changes before running. Since this had never
been advertised and is only of limited utility anyway, I think it's fine
to break it.
I also had to disable the input-parser and symlinks tests. I'm not 100%
sure why the symlinks test was failing. It would tend to work on my
machine but fail in CI. I gave up on debugging it. The input-parser test
also fails but would be a good candidate to be moved to the client test
in the serverTestProj. At any rate, it was testing a code path that was
only exercised if the user changed the watchInputStream method which is
highly unlikely to have been done in any user builds.
The WatchSpec had become a nuisance and wasn't really preventing from
any regressions so I removed it. The scripted tests are how we test
watch.
The sbtc client can provide a ux very similar to using the sbt shell
when combined with tab completions. In fact, since some shells have a
better tab completion engine than that provided by jilne2, the
experience can be even better. To make this work, we add another entry
point to the thin client that is capable of generating completions for
an input string. It queries sbt for the completions and prints the
result to stdout, where they are consumed by the shell and fed into its
completion engine.
In addition to providing tab completions, if there is no server running
or if the user is completing `runMain`, `testOnly` or `testQuick`, the
thin client will prompt the user to ask if they would like to start an
sbt server or if they would like to compile to generate the main class
or test names. Neither powershell nor zsh support forwarding input to
the tab completion script. Zsh will print output to stderr so we
opportunistically start the server or complete the test class names.
Powershell does not print completion output at all, so we do not start a
server or fill completions in that case*. For fish and bash, we prompt
the user that they can take these actions so that they can avoid the
expensive operation if desired.
* Powershell users can set the environment variable SBTC_AUTO_COMPLETE
if they want to automatically start a server of compile for run and test
names. No output will be displayed so there can be a long latency
between pressing <tab> and seeing completion results if this variable is
set.
This commit adds the ability for sbt to automatically shut itself down
if it has been idle for some duration of time. The motivation is that
if the user may not realize they have an sbt server running in the
background that is using resources. We don't want to be too aggressive
with the idle timeout because that can reduce the efficacy of the thin
client. A value of one week is chosen so that users can enjoy a long
weekend and when they return to their computer, they won't have to
restart sbt. If they haven't used the server in at least a week, it
seems prudent to just kill it.
The sbtipcsocket by default restricts win32 named pipes to only allow
connections from the same login session. This makes connecting to a
remote server not work over ssh. We relax the default slightly in sbt to
allow the owner of the pipe to connect over any logon shell. The user
could restore the old behavior with:
```
Global / windowsServerSecurityLevel := Win32SecurityLevel.LOGON_DACL
```
or, if YOLO
```
Global / windowsServerSecurityLevel := Win32SecurityLevel.NO_SECURITY
```
This project is used to create client executables. The implementation is
pure java but we can build graalvm native-images from the java main
class. There are two versions of the client. One of them uses the
ipcsocket jni implementation to connect to the sbt server while the
other uses jna. It is necessary to use jni for the graalvm native-image
tool to work. Otherwise the two approaches should be identical.
When we start sbt with the thin client, we want to close the server io
streams after it loads so that the client exiting won't crash the
server. When we are running the server as part of the server tests, it
is nice to have the server output. By setting the --close-io-streams
flag when we launch the server in the client, we are able to achieve
both.
Running multi commands (input commands delimited by semi-colons) did not
work with the thin client. The commands would actually run on the
server, but the thin client would exit immediately without displaying
the output. The reason was that MainLoop would report the exec complete
when all it had done was split the original command into its constituent
parts and prepended them to the state command list. To work around this,
when we detect a network source command, we can remap its exec id to a
different id and only report the original exec id after the commands
complete. We also have to keep track of whether or not the command
succeeded or failed so that the reporting command reports the correct
result.
The way its implemented is with the the following steps:
1. set the terminal to the network terminal
2. stash the current onFailure so that we can properly report failures
3. add the new exec id to a map of the original exec id to the generated
id
4. actually run the command
5. if the command succeeds, add the original exec id to a result map
6. pop the onFailure
7. restore the terminal to console
8. report the result -- if the original exec id is in the result map we
report success. Otherwise we report failure.
There is also logic in NetworkChannel for finding the original exec id
if reporting one of the artificially generated exec ids because the
client will not be aware of that id.
When the user presses ctrl+c, we want to cancel any running tasks that
were initiated by that client. This is a bit tricky because we may not
be sure what is running if the client is in interactive mode. To work
around this, we send a cancellation request with the special id
__CancelAll. When the NetworkChannel receives this request, it cancels
the active task if was initiated by the client that sent the
cancellation request. The result it returns to the client indicates if
there were any tasks to be cancelled. If there were and the client was
in interactive mode, we do not exit. Otherwise we exit.
This commit integrates the NetworkClient with the server side rendered
ui. Rather than implementing its own shell method, it will now connect
to the server and register itself as a virtual terminal. If there are
command arguments, those will be sent to the server as execs. Otherwise
it will enter a shell mode where it just acts as a relay for io.
In batch mode, it will return the exit code of the last exec sent to the
server. If the server disconnects, the client will exit with an error code.
This commit makes it possible for the sbt server to render the same ui
to multiple clients. The network client ui should look nearly identical
to the console ui except for the log messages about the experimental
client.
The way that it works is that it associates a ui thread with each
terminal. Whenever a command starts or completes, callbacks are invoked
on the various channels to update their ui state. For example, if there
are two clients and one of them runs compile, then the prompt is changed
from AskUser to Running for the terminal that initiated the command
while the other client remains in the AskUser state. Whenever the client
changes uses ui states, the existing thread is terminated if it is
running and a new thread is begun.
The UITask formalizes this process. It is based on the AskUser class
from older versions of sbt. In fact, there is an AskUserTask which is
very similar. It uses jline to read input from the terminal (which could
be a network terminal). When it gets a line, it submits it to the
CommandExchange and exits. Once the next command is run (which may or
may not be the command it submitted), the ui state will be reset.
The debug, info, warn and error commands should work with the multi
client ui. When run, they set the log level globally, not just for the
client that set the level.
In the previous version of the NetworkClient, there was no feedback
while the client was starting up. It was also possible that if the
server had exited abruptly and there was a dead active.json portfile
left over, that the client wouldn't be able to start the server.
This commit reworks things so that we launch the server with a java
process and we print out the stdout, stderr streams from the process. We
also forward the client's stdin in case the server couldn't be started
and the user wants to retry or print the stacktrace.
This commit adds support for remote clients to connect to the sbt server
and attach themselves as a virtual terminal. In order to make this work,
each connection must send a json rpc request to attach to the server.
When this is received, the server will periodically query the remote
client to get the terminal properties and capabilities that allow the
remote client to act as a jline terminal proxy. There is also support
for json messages with ids sbt/systemIn and sbt/systemOut that allow io
to be relayed from the remote terminal to the sbt server and back.
Certain commands such as `exit` should be evaluated immediately. To make
this work, we add the concept of a MaintenanceTask. The CommandExchange
has a background thread that reads MaintenanceTasks and evaluates them
on demand. This allows maintenance tasks to be evaluated even when sbt
is evaluating an exec. If it weren't done this way, when the user typed
exit while a different remote connection was running a command, they
wouldn't be able to exit until the command completed.
The ServerIntents in ServerHandler did not handle
JsonRpcResponseMessage because prior to this commit, sbt clients were
primarily making requests to the server. But now the server sends
requests to the client for the terminal properties and terminal
capabilities so it was necessary to add an onResponse handler to
ServerIntent.
I had to move the network channel publishBytes method to run on a
background thread because there were scenarios in which the client
socket would get blocked because the server was trying to write on the
same thread that the read the bytes from the client.
To make the console command work, it is necessary to hijack the
classloader for JLine. In MetaBuildLoader, we put a custom forked JLine
that has a setter for the TerminalFactory singleton. This allows us to
change the terminal that is used by JLine in ConsoleReader. Without this
hack, the scala console would not work for remote clients.
Neither The ConsoleAppender class nor the jni based ClientSocket can be
used in a graalvm native image. This commit reworks the NetworkClient so
that we can avoid those limitations. It also adds some additional
command line argument parsing and changes the value of the run method to
return Int rather than Unit for exit code support.
In order to support a multi-client sbt server ux, we need to factor
`Terminal` out into a class instead of a singleton. Each terminal provides
and outputstream and inputstream. In all of the places where we were
previously relying on the `Terminal` singleton we need to update the
code to use `Terminal.get`, which will redirect io to the terminal whose
command is currently running.
This commit does not implement the server side ui for network clients.
It is just preparatory work for the multi-client ui.
The Terminal implementations have thread safe access to the output
stream. For this reason, I had to remove the sychronization on the
ConsoleOut lockObject. There were code paths that led to deadlock when
synchronizing on the lockObject.
We had similar code for reading json frames from an input stream in
NetworkChannel and ServerConnection. I reworked and consolidated this
logic into a shared method in ReadJsonFromInputStream.
This commit also removes the ObjectMessage reporting methods that
weren't doing anything.
The collectAnalysis task an be a bit slow and delays client connections
from running commands. This commit adds an option to skip the analysis
if it isn't needed. The default behavior is left as it was.
Initial draft for bsp support.
This shows two communication pattern around BSP.
First, if the request can be handled with the build knowledge is readily available in `NetworkChannel` we can reply immediately. `BuildServerImpl#onBspBuildTargets` is an example for that.
Second, if the request requires `State`, then we can forward the parameter into a custom command, and reply back from a command. `BuildServerProtocol.bspBuildTargetSources` is an example of that since it needs to invoke tasks to generate sources.
It is better that sbt not expose the implementation detail that
LineReader is implemented by JLine. Other terminal related apis should
be handled by sbt.internal.util.Terminal.
Presently if a server command comes in while in the shell, the client
output can appear on the same line as the command prompt and the command
prompt will not appear again until the user hits enter. This is a
confusing ux. For example, if I start an sbt server and type
the partial command "comp" and then start up a client and run the clean
command followed by a compile, the output looks like:
[info] sbt server started at local:///Users/ethanatkins/.sbt/1.0/server/51cfad3281b3a8a1820a/sock
sbt:scala-compile> comp[info] new client connected: network-1
[success] Total time: 0 s, completed Dec 12, 2019, 7:23:24 PM
[success] Total time: 0 s, completed Dec 12, 2019, 7:23:27 PM
[success] Total time: 2 s, completed Dec 12, 2019, 7:23:31 PM
Now, if I type "ile\n", I get:
[info] sbt server started at local:///Users/ethanatkins/.sbt/1.0/server/51cfad3281b3a8a1820a/sock
ile
[success] Total time: 0 s, completed Dec 12, 2019, 7:23:34 PM
sbt:scala-compile>
Following the same set of inputs after this change, I get:
[info] sbt server started at local:///Users/ethanatkins/.sbt/1.0/server/51cfad3281b3a8a1820a/sock
sbt:scala-compile> comp
[info] new client connected: network-1
[success] Total time: 0 s, completed Dec 12, 2019, 7:25:58 PM
sbt:scala-compile> comp
[success] Total time: 0 s, completed Dec 12, 2019, 7:26:14 PM
sbt:scala-compile> comp
[success] Total time: 1 s, completed Dec 12, 2019, 7:26:17 PM
sbt:scala-compile> compile
[success] Total time: 0 s, completed Dec 12, 2019, 7:26:19 PM
sbt:scala-compile>
To implement this change, I added the redraw() method to LineReader
which is a wrapper around ConsoleReader.drawLine; ConsoleReader.flush().
We invoke LineReader.redraw whenever the ConsoleChannel receives a
ConsolePromptEvent and there is a running thread.
To prevent log lines from being appended to the prompt line, in the
CommandExchange we print a newline character whenever a new command is
received from the network or a network client connects and we believe
that there is an active prompt.
The ask user thread is a background thread so it's fine for it to block
on System.in. By blocking rather than polling, the cpu utilization of
sbt drops to 0 on idle. We have to explicitly handle <ctrl+d> if we
block though because the JLine console reader will return null both if
the input stream returns -1
This commit aims to centralize all of the terminal interactions
throughout sbt. It also seeks to hide the jline implementation details
and only expose the apis that sbt needs for interacting with the
terminal.
In general, we should be able to assume that the terminal is in
canonical (line buffered) mode with echo enabled. To switch to raw mode
or to enable/disable echo, there are apis: Terminal.withRawSystemIn and
Terminal.withEcho that take a thunk as parameter to ensure that the
terminal is reset back to the canonical mode afterwards.
To demonstrate [-Yno-lub](http://eed3si9n.com/stricter-scala-with-ynolub), this shows the code changes that removes lubing (Not all subprojects are done).
After I made the changes, I switched the Scala back to normal 2.12.10.
During refactoring, these warnings got out of date. I also added
scaladoc to the watchTriggeredMessage key.
Ref: https://github.com/sbt/sbt/issues/5051.
Sometimes turbo mode didn't work correctly for projects where resources
were modified. This was because it was possible for the resource
classloader to inadvertently evict the dependency classloader from the
classloader cache because they had the same file stamps. There were two
fixes:
1) remove expired entries from the cache based on the
(Parent, Classpath) pair rather than just classpath
2) do not close the classloaders during cache eviction. They may still
be in use when we evict them so we need to wait until they are
explicitly closed elsewhere or until the go out of scope and are
collected by the CleanupThread
I tested this change with a spark project in which I kept modifying the
resources. Prior to this change, I could get into a state where if I
modified the resources, the dependency layer would get evicted every
time so the benefits of turbo mode were not realized.
There have been numerous issues with the multi parser incorrectly
splitting commands like `alias foo = ; bar` into
`"alias foo =" :: "bar" :: Nil`. To fix this, I update the multi parser
implementation to accept a list of commands that cannot be part of a
multi command. For now, the only excluded command is "alias", but if
other issues come up, we can add more. I also thought about adding a
system property for excluding more commands but it didn't seem worth the
maintenance cost at this point.
In addition to adding a filter for the excluded commands, I also
reworked the multi parser so that I think its more clear (and should
hopefully have more predictable performance). I changed the cmdPart
parser to accept empty strings. Prior to this, the parser explicitly
handled the non-leading semicolon and leading semicolon cases
separately. With the relaxed cmdPart, we can handle both cases with a
single parser. We just have to strip any empty commands at the beginning
or end of the command list.
It was reported in https://github.com/sbt/sbt/issues/4890 that cosmetic
white space could cause problems for the paser. I tracked this down to
primarily being because of the
`val semi = token(OptSpace ~> ';' ~> OptSpace)` line. This would cause
excessive backtracking. I added a test for a multi line command with a
lot of cosmetic whitespace that was adapted from #4890 except that I
made it even more taxing by running adding 100 commands instead of the
roughly 10 in the report. Before the parser changes, the test would
more or less block indefinitely. I never saw it successfully complete.
After these changes, it completes in 30-50ms (which drops to about 2-3
ms if the number of commands is dropped from 100 to 3).
I verified manually in a different project that a number of different
multi command completions still worked. In particular, I tested that
`~foo/test; foo/tes` would expand to `~foo/test; foo/test` which is one
of the hardest cases to get right.
I also added a few extra test cases for the parser since I wasn't sure
what the impact of removing the OptSpace ~> from the semi parser would
be.
We tried to prevent users from doing something like running a multi
command "foo; bar" where foo is valid but bar is invalid so that we
wouldn't run foo only to discover bar was an invalid key. It isn't
possible to know in general if any command other than the first command
in a multi command is valid because it might update the state and add
the initially invalid command.
The validation caused the intellij plugin to not work with 1.3.0-RC3.
The recent changes to make the multi parser strict broke any multi
command, or alias, where the multi command contained a command or task
that was not yet defined, but was possibly added by reload. This was
reported as #4869. I had had to work around this issue in ScriptedTests
by running `reload` and `setUpScripted` separately instead of as a multi
command. This workaround doesn't work for aliasing boot, which has been
a recommended approach by Mark Harrah since 2011.
To fix this, I relax the strict parser. We don't require that the parser
be valid to create a multi command string. In the multiApplied state
transformation, however, we validate all of the commands up to 'reload'.
Since there is no way to validate any commands to the right of 'reload,
we optimistically allow those commands to run.
So long as there is no 'reload' in the multi commands, all of the
commands will be validated.
The multi parser had very poor performance if there were many commands.
Evaluating the expansion of something like "compile;" * 30 could cause
sbt to hang indefinitely. I believe this was due to excessive
backtracking due to the optional `(parser <~ semi.?).?` part of the
parser in the non-leading semicolon case.
I also reworked the implementation so that the multi command now has a
name. This allows us to partition the commands into multi and non-multi
commands more easily in State while still having multi in the command
list. With this change, builds and plugins can exclude the multi parser
if they wish.
Using the partitioned parsers, I removed the high/priority low priority
distinction. Instead, I made it so that the multi command will actually
check if the first command is a named command, like '~'. If it is, it
will pass the raw command argument with the named command stripped out
into the parser for the named command. If that is parseable, then we
directly apply the effect. Otherwise we prefix each multi command to the
state.
We run into issues if we naively split the command input on ';' and
treat each part as a separate command unless the ';' is inside of a
string because it is also valid to have ';'s inside of braced
expressions, e.g. `set foo := { val x = 1; x + 1 }`. There was no parser
for expressions enclosed in braces. I add one that should parse any
expression wrapped in braces so long as each opening brace is matched by a
closing brace. The parser returns the original expression. This allows
the multi parser to ignore ';' inside of '{...}'.
I had to rework the scripted tests to individually run 'reload' and
'setUpScripted' because the new parser rejects setUpScripted because it
isn't a valid command until reload has run.
It was reported in https://github.com/sbt/sbt/issues/4808 that compared
to 1.2.8, sbt 1.3.0-RC2 will truncate the command args of an input task
that contains semicolons. This is actually intentional, but not
completely robust. For sbt >= 1.3.0, we are making ';' syntactically
meaningful. This means that it always represents a command separator
_unless_ it is inside of a quoted string. To enforce this, the multi parser
will effectively split the input on ';', it will then validate that each
command that it extracted is valid. If not, it throws an exception. If
the input is not a multi command, then parsing fails with a normal
failure.
I removed the multi command from the state's defined commands and reworked
State.combinedParser to explicitly first try multi parsing and fall back
to the regular combined parser if it is a regular command. If the multi
parser throws an uncaught exception, parsing fails even if the regular
parser could have successfully parsed the command. The reason is so that
we do not ever allow the user to evaluate, say 'run a;b'. Otherwise the
behavior would be inconsitent when the user runs 'compile; run a;b'
There was an incomplete pattern match that assumed that the jars in the
scala provider included one with the name "scala-library.jar". In
practice, I think this is always true, but it's safer to have a fallback
case and it also removes the compiler warning.
At some point I noticed that projects with no scala sources in the build
loaded significantly faster than projects that had even a single scala
file -- no matter how simple that file was. This didn't really make
sense to me because *.sbt files _do_ have to be compiled. I finally
realized that classloading was a likely bottle neck because *.sbt
files are compiled on the sbt classpath while *.scala files are compiled
with a different classloader generated by the classloader cache. It then
occurred to me that we could pre-fill the classloader cache with the
scala layer of the sbt metabuild classloader.
I found that compared to 1.3.0-M5, a project with a simple scala file in
the project directory loaded about 2 seconds faster after this change.
Even if there are no scala sources in the build.sbt, there is a similar
performance improvement for running "sbt compile", which I found exited
2-3 seconds faster after this change.
The Reload exception that I added in the sbt package really wasn't
intended to be public. It's only meant to be used by
checkMetaBuildSources, which the users shouldn't override. I put it in
the top package though because I wanted it to be next to FullReload. I
also am not sure why the Reload object in Watch was private[sbt], but
while writing documentation, I realized that users couldn't access it.
The docs for ClassLoader,
https://docs.oracle.com/javase/8/docs/api/java/lang/ClassLoader.html
say that all non-hierarchical custom classloaders should be registered
as parallel capable. The docs also suggest that custom classloaders
should try to only override findClass so I reworked LayerdClassLoader to
only override findClass. I also added locking to the class loading to
make it safe for concurrent loading.
All of the custom classloaders besides LayeredClassLoader either
subclass URLClassLoader or LayeredClassLoader but don't override
loadClass. Because those two classloaders are parallel capable, the
subclasses should be as well. It isn't possible to make classloaders
that are implemented in scala parallel capable because scala 2 doesn't
support jvm static blocks (dotty does support this with an annotation).
To work around this, I re-worked some of the classloaders so that they
are either directly implemented in java or I subclassed a scala
implementation class in java.
I noticed that sbt 1.3.0 was using more cpu when idling (either at the
shell or while waiting for file events) than 1.2.8. This was because I'd
reduced a number of timeouts to 2 milliseconds which was causing a
thread to keep waking up every 2 milliseconds to poll a queue. I thought
that this was cheaper than it actually is and drove the cpu utilization
to O(10%) of a cpu on my mac.
To address this, I consolidated a number of queues into a single queue
in CommandExchange and Continuous. In the CommandExchange case, I
reworked CommandChannel to have a register method that passes in a Queue
of CommandChannels. Whenever it appends an exec, it adds itself to the
queue. CommandExchange can then poll that queue directly and poll the
returned CommandChannel for the actual exec. Since the main thread is
blocking on this queue, it does not need to frequently wake up and can
just poll more or less indefinitely until a message is received. This
also reduces average latency compared to older versions of sbt since
messages will be processed almost as soon as they are received.
The continuous case is slightly more complicated because we are polling
from two sources, stdin and FileEventMonitor. In my ideal world, I'd
have a reactive api for both of those sources and they would just write
events to a shared queue that we could block on. That is nontrivial to
implement, so instead I consolidated the FileEventMonitor instances into
a single FileEventMonitor. Since there is now only one FileEventMonitor
queue, we can block on that queue for 30 milliseconds and the poll
stdin. This reduces cpu utilization to O(2%) on my machine while still
having reasonably low latency for key input events (the latency of file
events should be close to zero since we are usually polling the
FileEventMonitor queue when waiting).
I actually had a TODO about the FileEventMonitor change that this
resolves.
This check doesn't actually make sense anymore with the new
ClassLoaderCache. In the old ClassLoaderCache, there were separate
layers for the snapshots and regular jars. The test was verifying that
only the snapshot layer was invalidated but now there is just one layer.
The dotty sbt-bridge module assumes that it's going to get a
URLClassLoader from which it can extract all of the classpath urls. That
doesn't work with the old wrapped classloader because its classpath was
empty. As a nasty workaround, I override the getURLs method, which is
where it gets the URLs from. After this change the
compiler-project/dotty-compiler-plugin test passes.
This commit adds a new ClassLoaderCache that builds on the
ClassLoaderCache that is present in zinc (and can be used to build an
instance of the zinc ClassLoaderCache to preserve compatibility). It
differs from the zinc classloader cache that it does not use direct
SoftReferences to classloaders. Instead, we create a wrapper loader
that can't load any classes and just delegates to its parent. This
allows us to add a thread that reaps the soft reference to the wrapper
loader. Crucially, we add a custom SoftReference class that has a strong
reference to the underlying classloader. This allows us to call close on
the strong reference.
The one issue with this approach is that we can't
rescue the jvm from crashing with an OOM: metaspace because the jvm
doesn't give us a chance to close and dereference the underlying
classloaders before it crashes. It WILL collect classloaders under
normal memory pressure, just not metaspace pressure. To fix this, I
check if the MaxMetaspaceSize is set via an MxBean and, if it is, we
fill the cache with regular soft references. We are going to change the
bash script to not set -XX:MaxMetaspaceSize by default so most builds
should probably end up correctly closing the classloaders after this
change. But we should break existing builds that set MaxMetaspaceSize
but don't crash.
As part of this commit, I audited all of the places where we were
instantiating ClassLoaderCache instances and instead pass in the
state's ClassLoaderCache instance. This reduces the total number of
classloaders created.
This commit finally fixes#241 by adding support for sbt to either
print a warning or automatically reload the project if the metabuild
sources have changed. To facilitate this, I introduce a new key,
metaBuildSourceOption which has three options:
1) IgnoreSourceChanges
2) WarnOnSourceChanges
3) ReloadOnSourceChanges
When the former is set, sbt will not check if the meta build sources
have changed. Otherwise, sbt will use the buildStructure / fileInputs to
get the ChangedFiles for the metabuild. If there are any changes, it
will either warn or reload the build depending on the value of
metaBuildSourceOption.
The mechanism for diffing the files is that I add a step to EvaluateTask
where, if the project has been loaded and
metaBuildSourceOption != IgnoreSourceChanges, we evaluate the needReload
task. If we need a reload, we return an error that indicates that a
Reload is necessary. When that error is detected, the MainLoop will
prepend "reload" to the pending commands for the state. Otherwise we
just print a warning and continue.
I benchmarked the overhead of this and it wasn't too bad. I generally
saw it taking 5-20ms to perform the check. Since this is only done once
per task evaluation run, I don't think it's a big deal. When
IgnoreSourceChanges is set, there is O(10us) overhead. If performance
does become a problem, we could add a global watch service and skip the
needReload evaluation if no files have been modified.
I removed the watchTrackMetaBuild key and made it so that the continuous
builds only track the meta build when
metaBuildSourceOption == ReloadOnSourceChanges
The newest version of io repackages a number of classes into the
sbt.nio.* packages. It also changes some of the semantics of glob
related apis. This commit updates all of the usages of the updated apis
within sbt but should have no functional difference.
Since the new watch implementation has yet to be widely deployed, we
should hold off on deprecating the old keys. They could still be
deprecated in a patch release or in 1.4.0.
This commit reworks the watch start message so that instead of printing
something like:
[info] [watch] 1. Waiting for source changes... (press 'r' to re-run the command, 'x' to exit sbt or 'enter' to return to the shell)
it instead prints something like:
[info] 1. Monitoring source files for updates...
[info] Project: filesJVM
[info] Command: compile
[info] Options:
[info] <enter>: return to the shell
[info] 'r': repeat the current command
[info] 'x': exit sbt
It will also print which path triggered the build.
I decided that it makes sense to move all of the new watch code out of
the Watched companion object since the Watched trait itself is now
deprecated. I don't really like having the new code in Watched.scala
mixed with the legacy code, so I pulled it all out and moved it into the
Watch object. Since we have to put all of the logic for the Continuous
object in main in order to access the sbt.Keys object, it makes sense to
move the logic out of main-command and into command so that most of the
watch related logic is in the same subproject.
This is a huge refactor of Watched. I produced this through multiple
rewrite iterations and it was too difficult to separate all of the
changes into small individual commits so I, unfortunately, had to make a
massive commit. In general, I have tried to document the source code
extensively both to facilitate reading this commit and to help with
future maintenance.
These changes are quite complicated because they provided a built-in
like api to a feature that is implemented like a plugin. In particular,
we have to manually do a lot of parsing as well as roll our own
task/setting evaluation because we cannot infer the watch settings at
project build time because we do not know a priori what commands the
user may watch in a given session. The dynamic setting and task
evaluation is mostly confined to the WatchSettings class in Continuous.
It feels dirty to do all of this extraction by hand, but it does seem to
work correctly with scopes.
At a high level this commit does four things:
1) migrate the watch implementation to using the InputGraph to collect
the globs that it needs to monitor during the watch
2) simplify WatchConfig to make it easier for plugin authors to write
their own custom watch implementations
3) allow configuration of the watch settings based on the task(s) that
is/are being run
4) adds an InputTask implemenation of watch.
Point #1 is mostly handled by Point #3 since I had to overhaul how _all_
of the watch settings are generated. InputGraph already handles both
transitive inputs and triggers as well as legacy watchSources so not
much additional logic is needed beyond passing the correct scoped keys
into InputGraph.
Point #3 require some structural changes. The watch settings cannot in
general be defined statically because we don't know a priori what tasks
the user will try and watch. To address this, I added code that will
extract the task keys for all of the commands that we are running. I
then manually extract the relevant settings for each command. Finally, I
aggregate those settings into a single WatchConfig that can be used to
actually implement the watch. The aggregation is generally
straightforward: we run all of the callbacks for each task and choose
the next watch state based on the highest priority Action that is
returned by any of the callbacks.
Because I needed Extracted to pull out the necessary settings, I was
forced to move a lot of logic out of Watched and into a new singleton,
Continuous, that exists in the main project (Watched is in the command
project). The public footprint of Continuous is tiny. Even though I want
to make the watch feature flexible for plugin authors, the
implementation and api remain a moving target so I do not want to be
limited by future binary compatibility requirements. Anyone who wants to
live dangerously can access the private[sbt] apis via reflection or by
adding custom code to the sbt package in their plugin (a technique I've
used in CloseWatch).
Point #2 is addressed by removing the count and lastStatus from the
WatchConfig callbacks. While these parameters can be useful, they are
not necessary to implement the semantics of a watch. Moreover, a status
boolean isn't really that useful and the sbt task engine makes it very
difficult to actually extract the previous result of the tasks that were
run. After this refactor, WatchConfig has a simpler api. There are fewer
callbacks to implement and the signatures are simpler. To preserve the
_functionality_ of making the count accessible to the user specifiable
callbacks, I still provided settings like watchOnInputEvent that accept
a count parameter, but the count is actually tracked externally to
Watched.watch and incremented every time the task is run.
Moreover, there are a few parameters of the watch: the logger and
transitive globs, that cannot be provided via settings. I provide
callback settings like watchOnStart that mirror the WatchConfig
callbacks except that they return a function from Continuous.Arguments
to the needed callback. The Continuous.aggregate function will check if
the watchOnStart setting is set and if it is, will pass in the needed
arguments. Otherwise it will use the default watchOnStart implementation
which simulates the existing behavior by tracking the iteration count in
an AtomicInteger and passing the current count into the user provided
callback. In this way, we are able to provide a number of apis to the
watch process while preserving the default behavior.
To implement #4, I had to change the label of the `watch` attribute key
from "watch" to "watched". This allows `watch compile` to work at the
sbt command line even thought it maps to the watchTasks key. The actual
implementation is almost trivial. The difference between an
InputTask[Unit] and a command is very small. The tricky part is that the
actual implementation requires applying mapTask to a delegate task that
overrides the Task's info.postTransform value (which is used to
transform the state after task evaluation). The actual postTransform
function can be shared by the continuous task and continuous command.
There is just a slightly different mechanism for getting to the state
transformation function.
I realized that Stamped.File was a bad interface that was really just an
implementation detail of external hooks. I updated the
GlobLister.{ all, unique } methods to return Seq[(Path, FileAttributes)]
rather than Stamped.File which is a much more natural api and one I
could see surviving the switch to nio based apis planned for
1.4.0/2.0.0. I also added a simple scripted test for glob listing. The
GlobLister.all method is implicitly tested all over the place since the
compile task uses it, but it's good to have an explicit test.
I decided that FileCacheEntry was a bad name because the methods did not
necessarily have anything to do with caching. Moreover, because it is
exposed in a public interface, it shouldn't be in the internal package.
Rather than exposing the FileEventMonitor.Event types, which are under
active development in the io repo, I am adding a new event trait to
FileCacheEntry. This trait doesn't expose any internal implementation
details.
The equals method didn't work exactly the way I thought. By delegating
to the equivStamp object in sbt we can be more confident that it is
actually comparing the stamp values and not object references or
some other equals implementation.
Right now, the sbt.internal.io.Source is something of a second class
citizen within sbt. Since sbt 0.13, there have been extension classes
defined that can convert a file to a PathFinder but no analog has been
introduced for sbt.internal.io.Source.
Given that sbt.internal.io.Source was not really intended to be part of
the public api (just look at its package), I think it makes sense to
just replace it with Glob. In this commit, I add extension
methods to Glob and Seq[Glob] that make it possible to easily
retrieve all of the files for a particular Glob within a task. The
upshot is that where previously, we'd have had to write something like:
watchSources += Source(baseDirectory.value / "src" / "main" / "proto", "*.proto", NothingFilter)
now we can write
watchGlobs += baseDirectory.value / "src" / "main" / "proto" * "*.proto"
Moreover, within a task, we can now do something like:
foo := {
val allWatchGlobs: Seq[File] = watchGlobs.value.all
println(allWatchSources.mkString("all watch source files:\n", "\n", ""))
}
Before we would have had to manually retrieve the files.
The implementation of the dsl uses the new GlobExtractor class which
proxies file look ups through a FileTree.Repository. This makes it so
that, by default, all file i/o using Sources will use the default
FileTree.Repository. The default is a macro that returns
`sbt.Keys.fileTreeRepository.value: @sbtUnchecked`. By doing it this
way, the default repository can only be used within a task definition
(since it delegates to `fileTreeRepository.value`). It does not,
however, prevent the user from explicitly providing a
FileTree.Repository instance which the user is free to instantiate
however they wish.
Bonus: optimize imports in Def.scala and Defaults.scala
The FileTreeViewConfig abstraction that I added was somewhat unwieldy
and confusing. The original intention was to provide users with a lot of
flexibility in configuring the global file tree repository used by sbt.
I don't think that flexibility is necessary and it was both conceptually
complicated and made the implementation complex. In this commit, I add a
new boolean flag enableGlobalCachingFileTreeRepository that toggles
which kind of FileTreeRepository to use globally.
There are actually three kinds of repositories that could be returned:
1) FileTreeRepository.default -- this caches the entire file system
tree it hooks into the cache's event callbacks to create a file event
monitor. It will be used if enableGlobalCachingFileTreeRepository is
true and Global / pollingGlobs := Nil
2) FileTreeRepository.hybrid -- similar to FileTreeRepository.default
except that it will not cache any files that are included in
Global / pollingGlobs. It will be used if
enableGlobalCachingFileTreeRepository is true and
Global / pollingGlobs is non empty
3) FileTreeRepository.legacy -- does not cache any of the file system
tree, but does maintain a persistent file monitoring process that is
implemented with a WatchServiceBackedObservable. Because it doesn't
poll, in general, it's ok to leave the monitoring on in the
background. One reason to use this is that if there are any issues
with the cache being unable to accurately mirror the underlying file
system tree, this repository will always poll the file system
whenever sbt requests the entries for a given glob. Moreover, the
file system tree implementation is very similar to the implementation
that was used in 1.2.x so this gives users a way to almost fully opt
back in to the old behavior.
This new version of io breaks source and binary compatibility everywhere
that uses the register(path: Path, depth: Int) method that is defined on
a few interfaces because I changed the signature to register(glob:
Glob). I had to convert to using a glob everywhere that register was
called.
I also noticed a number of places where we were calling .asFile on a
file. This is redundant because asFile is an extension method on File
that just returns the underlying file.
Finally, I share the IOSyntax trait from io in AllSyntax. There was more
or less a TODO suggesting this change. The one hairy part is the
existence of the Alternative class. This class has unfortunately somehow
made it into the sbt package object. While I doubt many plugins are
using this, it doesn't seem worth breaking binary compatibility to get
rid of it. The issue is that while Alternative is defined private[sbt],
the alternative method in IOSyntax is public, so I can't get rid of
Alternative without breaking binary compatibility.
I'm not deprecating Alternative for now because the sbtProj still has
xfatal warnings on. I think in many, if not most, cases, the Alternative
class makes the code more confusing as is often the case with custom
operators. The confusion is mitigated if the abstraction is used only in
the file in which it's defined.
Previously, we were leaking the internal details of incremental
compilation to users by defining FileTree(DataView|Repository)[Stamp].
To avoid this, I introduce the new class FileCacheEntry that is quite
similar to Stamp except defined using scala Options rather than java
Optionals. The implementation class just delegates to an actual Stamp
and I provided a private[sbt] ops class that adds a
method `stamp` to FileCacheEntry. This will usually just extract the
stamp from the implementation class. This allows us to use
FileCacheEntry almost interchangeably with Stamp while still avoiding
exposing users to Stamp.
In the FileTreeDataView use case, we were previously working with
FileTreeDataView[Stamped], which actually contained a lot of redundant
information because FileTreeDataView.Entry[_] has a toTypedPath method
that could be used to read the path related fields in Stamped. Instead,
we can just return the Stamp itself in FileTreeDataView.list* methods
and convert to Stamped.File where needed (i.e. in ExternalHooks).
Also move BasicKeys.globalFileTreeView to Keys since it isn't actually
used in the main-command project.
We want the user to be able to invalidate the classloader cache in the
event that it somehow gets in a bad state. The cache is, however,
defined in multiple configurations, so there are in fact many
ClassLoaderCache instances that are managed by sbt. To make this sane, I
add a global cache that is keyed by a TaskKey[_] and can return
arbitrary data back. Invalidating all of the ClassLoaderCache instances
is then as straightforward as just replacing the TaskRepository
instance.
I also went ahead and unified the management of the global file tree
repository. Instead of having to specifically clear the file tree
repository or the classloader cache, the user can now invalidate both
with the new clearCaches command.
I noticed that debugging settings that return functions is annoying
because often the setting is initialized as an anonymous function with a
useless toString method. To improve the debugging for users, I'm adding
a number of wrapper classes for functions that override the default
toString with a provided label.
I then used these functions to label all of the anonymous functions in
Watched.scala.
It was a mistake to disallow trailing semicolons for multi commands.
Firstly this was a mistake because previous versions of sbt supported a
trailing semi colon. It was also inconsistent with how commands work in
a regular shell (e.g. bash or zsh).
This file was littered with intellij warnings due to public members and
fields not having their types annotated. Although in this case it didn't
really matter, it is good practice to always annotate public methods and
fields so that they can evolve in a binary compatible way.
It has long been a frustration of mine that it is necessary to prepend
multiple commands with a ';'. In this commit, I relax that restriction.
I had to reorder the command definitions so that multi comes before act.
This was because if the multi command did not have a leading semicolon,
then it would be handled by the action parser before the multi command
parser had a shot at it. Sadness ensued.
Presently the multi command parser doesn't work correctly if one of the
commands includes a string literal. For example, suppose that there is
an input task defined name "bash" that shells out and runs the input.
Then the following does not work with the current multi command parser:
; bash "rm target/classes/Foo.class; touch src/main/scala/Foo.scala"; comple
Note that this is a real use case that has caused me issues in the past.
The problem is that the semicolon inside of the quote gets interpreted
as a command separator token. To fix this, I rework the parser so that
it consumes string literals and doesn't modify them. By using
StringEscapable, I allow the string to contain quotation marks itself.
I couldn't write a scripted test for this because in a command like
`; foo "bar"; baz`, the quotes around bar seem to get stripped. This
could be fixed by adding an alternative to StringEscapable that matches
an escaped string, but that is more work than I'm willing to do right
now.
I discovered that when I ran multi-commands with '~' that if there was a
space between the ';' and the command, then the parsing of the command
would fail and the watch would abort. To fix this, I refactor
Watched.watch to use the multi command parser and, if that parser fails,
we fallback on a single command.
Prior to this commit, there was no unit testing of the parser for
multiple commands. I wanted to make some improvements to the parser, so
I reworked the implementation to be testable. This change also allows
the multiParserImpl method to be shared with Watched.watch, which I will
also update in a subsequent commit.
There also were no explicit scripted tests for multiple commands, so I
added one that I will augment in later commits.