Before
remote cache not found for 0.0.0-7c40144bd1c774e6
After
remote cache artifact not found for org.gontard:sbt-test:0.0.0-7c40144bd1c774e6 Some(cached-compile)
Fixes#6720
Ref #5994
Problem
-------
Sometimes the compiler returns a fake position such as `<macro>`.
This causes this causes InvalidPathException on Windows if we try
to convert it into NIO path.
Solution
--------
Looks for less-than sign in the VirtualFileRef and skip those.
Since BSP requires the diagnostic info to be associated with
files, we probably can't do much.
Fixes#6592
Problem
-------
On Heroku there's timeout.
Solution
--------
This seems to be coming from supershell closing the executor.
Extend the timeout to 30s.
Migrates TreeView.scala to use Contraband from scala.util.parsing.json,
because this is now deprecated.
The TreeView logic is used in the dependencyBrowseTree task.
`systemOut` notifications are buffered so that they are sent at most
once every 20 millisecond. Other RPC messages are not buffered.
As a consequence, some RPC messages can pass in front of some
systemOut notifications.
That's why `sbt --client run` can exit before it receives all the logs.
In general I think it is safer to maintain the order of all messages.
To do so we can force the flush of systemOut before each RPC message.
Normally scripted tests are forked using the JVM that is running sbt.
If set `scripted / javaHome`, forked using it.
```
scripted / javaHome := Some(file("/path/to/jdk-x.y.z"))
```
Or use `java++` command before scripted.
```
sbt> java++ 11!
sbt> scripted
```
Fixes https://github.com/sbt/sbt/issues/6558
Problem
-------
sbt uses SecurityManager feature of JDK to trap `sys.exit` call during
`run`-like tasks, since we emulate `run` and `console` as function calls.
JDK 17 deprecated SecurityManager and it's printing warnings.
Solution
--------
About 10 years go, `exit` was a convenient way of quitting both Scala
REPL and sbt shell. Scala 2.11 broke this by removing the `Predef.exit`.
We still need to worry about `run` potentially calling `sys.exit`
but that can be handled using fork feature.
In the long-run, it probably is better to be JDK 17 compatible.
Currently crossSbtVersions is incorrectly generating a warning that it
is an unused setting (see https://github.com/sbt/sbt/pull/5153). This
PR fixes this by adding it to the list of excluded lint keys.
Fixes#6571.
Ref #6592
When there's an issue like timeout, currently it throws a
ClassCastException because I made some assumption about the underlying
error. This removes the unnecessary casting.
This fixes the closed channel exception generated when running
sbt -timings help. This bug was introduced in sbt 1.4 where a wrapper
was created (Terminal.scala) around the terminal. This meant that the
shutdown hook which had been used previously was no longer working.
This has been fixed by avoiding the use of the JVM shutdown hook and
instead manually running the thunk at a place in the code where
the programme is still able to respond.
The request of the form buildTarget/* often take a sequence of build
targets as parameter. So far if there is an error on a single build
target, the entire request fails.
This is not the best because the client wants the result of the other
build targets anyway:
For example:
- workspace/buildTargets: if one build target has an invalid Scala
version we still want to import the other ones
- buildTarget/scalacOptions: if a dependency cannot be resolved we still
want to import the build targets that do not depend on it
- buildTarget/scalaMainClasses: if buildTarget does not compile we still
want the main classes of the other targets
...
The change is to respond to BSP requests with the successful
build targets and to ignore the failed ones.
This is implemented the same in Bloop since before BSP in sbt.
In https://github.com/build-server-protocol/build-server-protocol/issues/204,
I made a proposal to also add the failed build targets in the response.
Since build.sbt is compiled/evaluated in `sbt.compiler.Eval`,
this commit introduces a `BuildServerEvalReporter` to redirect
the compiler errors to the BSP clients.
A new `finalReport` method is added in the new `EvalReporter` base class
to reset the old diagnostics.
- Restore old type of `bspWorkspace` key for backwards compat.
Instead, introduce `bspFullWorkspace` that includes the
SBT targets
- Log a warning if the client requests, e.g. `scalaMainClasses`
for a SBT target
- Refactor the code that creates the SBT build targets so it
doesn't depend on `sbtFullWorkspace`.
- Add a setting `bspSbtEnabled` to let the user opt-opt of
SBT target export (e.g. to compensate for a client that does
not yet support them)
What is the problem?
When using remote caching, the resource files are not tracked so if they
have changed, pullRemoteCache will deliver both the old resource file
as well as the changed one.
This is a problem, because it's not the behaviour that our users will
expect and it's not in keeping with the contract of this feature.
Why is this happening?
Zinc, sbt's incremental compiler, keeps track of changes that have
been made. It keeps this in what is called the Analysis file.
However, resource files are not tracked in the Analysis file, so
remote caching is not invalidating the unchanged resource file in
place of the latest version.
What is the solution?
PullRemoteCache deletes all of the resources files. After this,
copyResources is called by PackageBin, which puts the latest
version of the resources back.
If the user runs foo/runMain in a project with multiple main classes,
sbt will still warn the user about their being multiple main classes
even though this is a pointless warning since the user either is running
runMain which requires a main class. The run task is also excluded since
by default it prompts the user with a main class selector. The previous
logic for doing this filtering was bad because it only looked at the
first command in a sequence and couldn't handle the foo/runMain case
since it was looking for an exact match with `run` or `runMain`. This
commit relaxes those restrictions to look at all of the strings in the
command as well as splitting the string to check if the last part of the
key ends in run or runMain. This logic could theoretically be incorrect
if the user wrote an input task that was expecting run or runMain as
user input but even in that case the only consequence would be that they
wouldn't see the multiple main class warning which generally isn't all
the helpful unless you are packaging a jar that expects there to be only
one main class. It seems unlikely that that the user would be running a
custom input task that is both packaging a jar and expecting run or
runMain as input strings.
Fixes#6430.
What is the problem?
As detailed in #6430, the @nowarn annotation was not suppressing
warnings, even after the first attempt to fix this in PR#6431.
This first PR fixed the problem for projects using
enablePlugins(SbtPlugin), but not for those using sbtPlugin := true.
Why is this a valuable problem to solve?
The annotation was not working as users would expect.
What is this solution?
I have moved the scalacOptions change from SbtPlugin.projectSettings
to the scalacOptions in the JvmPlugin settings.
Has this been tested?
Yes, a test has been added. Also, this branch was tested successfully
on the twinagle repo (https://github.com/soundcloud/twinagle/pull/224).
The problem was that -client was different from --client, which
makes for a confusing user experience. So, this change makes
them the same and re-names -client to --java-client. The value
of this is that hopefully -client and --client being the same
feels more logical to users.
Fixes#2835
Somehow the fix in #4033 due to various initialization.
Here's a bit more aggressive rebasing of the base directory
that should fix the `project` and `target` directory created during sbt
new.
Add `testReportsDirectory` setting to allow output directory for
JUnitXmlTestsListener to be configured.
Add `testReportSettings` which provides defaults values:
- by default this uses the build configuration name as a prefix so
`target/test-reports` for `Test` config, but `target/it-reports`
for `IntegrationTest` (previously this was hardcoded to always
use `target/test-reports`). To override this set e.g.
`Test / testReportsDirectory := target.value / "my-custom-dir"`
- the `JunitXmlTestsListener` is now only attached to the `Test`
and `IntegrationTest` configs by default (previously it was added
to the global configuration object). Any configs which inherit
from one of these will continue to have the listener attached;
but completely custom configurations will need to re-add with:
`project.settings(testReportSettings)`
Fixes#2853
Fixes https://github.com/sbt/sbt/issues/5206
Problem
--------
Coursier uses directories-jvm to determine its default cache directory.
Currently directories-jvm shells out to Powershell to call the [Known Folders API](https://docs.microsoft.com/en-us/windows/win32/shell/knownfolderid), which doesn't work in various environments, and instead of an error, it apparently returns `null/Coursier/cache` as the directory name.
Solution
--------
With due respect to the heroic effort directories-jvm is making to comply to the directory standards on all operating systems, including that of Microsoft, I don't think the majority of the sbt users care exactly where that directory is as long as it is well-documented, and calculated in a fast and predictable way.
Instead of shelling out to Powershell, or using JNI, to hit the Known Folders API, I propose we first look at `LOCALAPPDATA` environment variable. When it is not found, it will fall back to `$HOME/AppData/Local`. Per discussion in https://github.com/dirs-dev/directories-jvm/issues/43, `LOCALAPPDATA` environment variable may NOT represent the one-true Known Folders API value of the AppData directory in case the user happened to have set the `LOCALAPPDATA` environmental variable. For the purpose of picking a directory for Coursier cache, I don't find that to be a problem because it will be faster, more reliable, and predictable.
The processing log is sent when a command issued by a request is being
processed, if the request has not yet been responded. In particular,
the processing log of sbtReportResult is filtered out if the client has
already received a response.
The processing log severity is the lowest so that it can be ignored by
the BSP client.
The inputFileChanges, inputFiles and outputFiles macros all used the now
deprecated `in` syntax, which causes warnings for builds that use these
apis. SlashSyntax doesn't naively work in these macros so it was easier
to just reimplement the logic in this file.
Fixes#6330
Fixes https://github.com/sbt/sbt/issues/5934
In #5886 adpi2 reported that Test / scalacOptions could have unwanted duplicated flags from Compile / scalacOptions. So #5887 added
```diff
+ // remove duplicated semanticdbOptions
+ scalacOptions --= (Compile / semanticdbOptions).value
```
Notice that it's subtracting (Compile / semanticdbOptions).value regardless of the semanticdbEnabled value. If semanticdbEnabled is set to true I am guessing that it would all work out, but when it's false, it's just subtracting "-Yrangepos".
This fixes that by checking for semanticdbEnabled.
Second take at https://github.com/sbt/sbt/issues/5886, which fixed the
problem for Test specifically but not for custom configurations.
* Any child of Compile (like Custom in the scripted) had to use
testSettings, whether they were related to testing or not
* Custom configurations with grand parents (like SystemTest in the
scripted) would get duplicated scalacOptions no matter what they used
Scala compiler changed the implementation of reporter in 2.12.13 such that overriding `info0` no longer increments the error count in the delegating reporter.
See https://github.com/scala/bug/issues/12317 for details.
Fixes https://github.com/sbt/sbt/issues/6235
In sbt 1.4.0 (https://github.com/sbt/sbt/pull/5344) we started wiping out the timestamps in JAR
to make the builds more repeatable.
This had an unintended consequence of breaking Play's last-modified response header (https://github.com/playframework/playframework/issues/10572).
This adds a global setting called `packageTimestamp`, which is
initialized as follows:
```scala
packageTimestamp :== Package.defaultTimestamp,
```
Here the `Package.defaultTimestamp` would pick either the value from the
`SOURCE_DATE_EPOCH` environment variable or 2010-01-01.
To opt out of this default, the user can use:
```scala
ThisBuild / packageTimestamp := Package.keepTimestamps
// or
ThisBuild / packageTimestamp := Package.gitCommitDateTimestamp
```
Before (sbt 1.4.6)
------------------
```
$ ll example
total 32
-rw-r--r-- 1 eed3si9n wheel 901 Jan 1 1970 Greeting.class
-rw-r--r-- 1 eed3si9n wheel 3079 Jan 1 1970 Hello$.class
-rw-r--r-- 1 eed3si9n wheel 738 Jan 1 1970 Hello$delayedInit$body.class
-rw-r--r-- 1 eed3si9n wheel 875 Jan 1 1970 Hello.class
```
After (using Package.gitCommitDateTimestamp)
--------------------------------------------
```
$ unzip -v target/scala-2.13/root_2.13-0.1.0-SNAPSHOT.jar
Archive: target/scala-2.13/root_2.13-0.1.0-SNAPSHOT.jar
Length Method Size Cmpr Date Time CRC-32 Name
-------- ------ ------- ---- ---------- ----- -------- ----
288 Defl:N 136 53% 01-25-2021 03:09 888682a9 META-INF/MANIFEST.MF
0 Stored 0 0% 01-25-2021 03:09 00000000 example/
901 Defl:N 601 33% 01-25-2021 03:09 3543f377 example/Greeting.class
3079 Defl:N 1279 59% 01-25-2021 03:09 848b4386 example/Hello$.class
738 Defl:N 464 37% 01-25-2021 03:09 571f4288 example/Hello$delayedInit$body.class
875 Defl:N 594 32% 01-25-2021 03:09 ad295259 example/Hello.class
-------- ------- --- -------
5881 3074 48% 6 files
```
Ref https://github.com/scala/scala-parallel-collections/issues/22
Parallel collection got split off without source-compatible library, so apparently we need to roll our own compat hack, which causes import not used, so it needs to be paired with silencer.
The bytecode generated by 2.13 compiler contains scala.runtime.BoxedUnit in the constant pool. To avoid referencing scala-library, port XMainConfiguration to Java.
Contrary to Scala 2, Scala 3 compiler bridges are tied to the compiler
version. There is one compiler bridge foreach compiler version.
Scala compiler bridges are pure java so they are binary compatible with
all Scala version. Consequently, we can fetch the binary module directly
without using the ZincCompilerBridgeProvider.
Fixes https://github.com/sbt/sbt/issues/5976
Ref https://eed3si9n.com/enforcing-semver-with-sbt-strict-update
This removes the guess-based EvictionWarning, and runs EvictionError instead.
EvictionError uses the `ThisBuild / versionScheme` information supplied by the library authors in addition to `libraryDependencySchemes` that the build users could provide:
```scala
ThisBuild / libraryDependencySchemes += "com.example" %% "name" % "early-semver"
```
as the version scheme "early-semver", "semver-spec", "pvp", "strict", or "always" may be used.
Here's an example of `update` failure:
```
[error] * org.typelevel:cats-effect_2.13:3.0.0-M4 (early-semver) is selected over {2.2.0, 2.0.0, 2.0.0, 2.2.0}
[error] +- com.example:use2_2.13:0.1.0-SNAPSHOT (depends on 3.0.0-M4)
[error] +- org.http4s:http4s-core_2.13:0.21.11 (depends on 2.2.0)
[error] +- io.chrisdavenport:vault_2.13:2.0.0 (depends on 2.0.0)
[error] +- io.chrisdavenport:unique_2.13:2.0.0 (depends on 2.0.0)
[error] +- co.fs2:fs2-core_2.13:2.4.5 (depends on 2.2.0)
[error]
[error]
[error] this can be overridden using libraryDependencySchemes or evictionErrorLevel
```
This catches the violation of cats-effect_2.13:3.0.0-M4 version scheme (early-semver) without user setting additional overrides. If the user wants to opt-out of this, the user can do so per module:
```scala
ThisBuild / libraryDependencySchemes += "org.typelevel" %% "cats-effect" % "always"
```
or globally as:
```
ThisBuild / evictionErrorLevel := Level.Info
```
Made the bspConfig task dependendant on the bspConfig value.
Changed the bspConfig setting to use a attributeKey so we can use it in the server as well.
The waitWatch command is very similar to shell in that it should
override the onFailure command to be itself. It also enqueues itself to
remaining commands whenever it reads a new command which made it
unnecessary to append waitWatch to the runCommmand in Continuous.
When a user returns to the shell with 's' in recent versions of sbt, the
prompt is not initially displayed. This ends up being because MainLoop
was incorrectly setting the terminal prompt to Prompt.Watch when it
exited watch. I realized in debugging the issue that it didn't make
sense to restort the terminal prompt to the initial value before task
evaluation. By removing that logic, the 's' option option started
working correctly again.
There isn't yet a version of the jna available that works with the new
apple silicon using arm64. To workaround this, we can use the jni
implementation by default on arm64 macs. If the user wants to force the
jni implementation for any supported platform, they can opt in with the
`sbt.ipcsocket.jni` system property and/or by setting the serverUseJni
setting.
When the sbt server is running a task, it presents all connected clients
with a message that instructs them that they cancel the running task.
Unfortunately, this often didn't work and the task would keep running
after cancel was entered. The reason for this was because the exec id
passed in to NetworkChannel did not necessarily match the exec id of the
running task. Because cancel in this case is not really exec specific,
this commit adds a flag to NetworkChannel.cancel that forces it to
cancel the running task regardless of what execID is passed in.
In https://github.com/sbt/sbt/pull/5981 I tried to work around the spruious post-macro "a pure expression does nothing" warning (https://github.com/scala/bug/issues/12112) by trying to remove some pure-looking expressions out of the tree.
This quickly backfired when it was reported that sbt 1.4.3 was not evaluating some code. This backs out the macro-level manipulation, and instead try to silence the warning at the reporter level. This feels safer, and it seems to work just as well.
Fixes https://github.com/sbt/sbt/issues/6102https://github.com/sbt/sbt/pull/6026 changed the implementation of remote cache to NOT use dependency resolution (Coursier), and directly use Ivy resolver for efficiency. This was good, but when I made the change, I've changed the cache directory to be `crossTarget.value / "remote-cache"`. This was ok for local testing purpose, but not great for real usage since we don't want the cache to be wiped out either in the CI machines or on a local laptop.
This adds a new Global key called `localCacheDirectory`. Similar to Coursier cache, this is meant to be shared across all builds running on a machine. Also similar to Coursier cache this will try to follow the operating system specifc caching directory.
### localCacheDirectory location
- Environment variable: `SBT_LOCAL_CACHE`
- System property: `sbt.global.localcache`
- Windows: %LOCALAPPDATA%\sbt\v1
- macOS: $HOME/Library/Caches/sbt/v1
- Linux: $HOME/.cache/sbt/v1
In #6091, we updated the ScriptedPlugin to set scriptedBatchExecution :=
true for all 1.x versions but not 0.13. This commit further restricts
the setting so that it is only set for sbt >= 1.4, which seems necessary
based on the comments in #6094.
When using the launcher's classpath for the metabuild, the
scala-compiler jar can be missing. This is because the managedJars only
method returns the scala-library jar and not the rest of the scala
instance. To fix this, we can always prepend the scala instance jars to
the classpath.
In order to simulate the issue in scripted, I had to manually remove the
scala-compiler.jar from the scripted classpath or else the scripted test
that I added doesn't actually do anything because the scala-compiler.jar
would end up on the app.provider.mainClasspath.
Fixes#4452
A periodic stacktrace showed that scripted tests were still hanging in ci
trying to shutdown the background job service (I had previously thought
that I'd fixed that in 16bef0cfc8). It
appears that there is a logical bug that prevents some jobs from being
removed from the jobSet even though they have finished. If that happens,
the shutdown will never exit. That is highly undesirable and can be
avoided by adding a timeout and also only trying to shutdown the job if
it is actually running.
I discovered that the metals bsp implementation worked very badly with
continuous builds. The problem was that metals is able to trigger a bsp
compile slightly before the continuous build would trigger. This would
cause the ui to get in a bad state. The worst case was that it would
actually cause sbt (or the thin client) to exit. A less catastrophic
issue was that it was possible for the wrong count to be printed by the
continuous message.
This commit fixes the issue by more carefully managing the prompt state
and only resetting the ui when the prompt is not in the Prompt.Watch
state.
If the sbt server is launched by the remote client, it should not have a
console ui thread because there is no way to even feed input to it once
the server has launched. Having the ui thread can cause the server to
exit unexpectedly if an EOF is read from the console input stream.
Network client already supports the -bsp command (since
65ab7c94d0). This commit reworks the
BspClient.run method so that it delegates to the NetworkClient. The
advantage to doing it this way is that improvements to starting up the
sbt server by the thin client will automatically propagate to the -bsp
command. The way that it is implemented, all of the output generated
during server startup will be redirected to System.err which is useful
for debugging without messing up the bsp protocol, which relies on only
bsp messages being written to System.out.
The boot server socket was not working correctly when the sbt server was
started by the thin client. This was because it is necessary for us to
create a ConsoleTerminal in order for System.out and System.err to be
properly forwarded to the clients connected over the boot server socket.
As a result, if you started a server instance of sbt with the thin
client, you wouldn't see any output util you connected to the server.
The fix is to just make sure that we create a console terminal if sbt is
run as a subprocess.
When a user enters shutdown in the thin client console, it only exits
the thin client, it does not actually shutdown sbt. Running `sbtn
shutdown` did work to shutdown the server, however. It turned out that
this was because there was special handling for shutdown when processed
through jline. We would enqueue the shutdown command and also close the
client connection. Closing the client connection though removed all of
the enqueued commands for the client, which included the shutdown
command. To fix this, we just make sure that we don't remove the
shutdown command when clearing the client commands.
We no longer need to use the forked version of jline because they have
merged in our required changes. The latest version of jline does upgrade
jansi, however, and some of the apis we were relying on for windows were
removed so they had to be manually implemented. I verified that console
input still worked on my windows vm after this change.
The launcher embeds a fixed version of jansi above the rest of the
classpath on windows. This causes problems for the scala 2.12 console
because it tries to load methods that don't exist from the old jansi
jar. This can be fixed by excluding all jansi classes from the top
loader.
We also need to exclude jansi classes in the scala instance top class
loader to make the 2.10 console work because scala 2.10 uses a shaded
jline that requires a very old jansi version. Due to the shading, the
thin client doesn't work with the 2.10 console.
On terminals with virtual io disabled, we'd spin up a thread for each
watch iteration that performed a blocking read from the terminal input
stream. This thread could not be joined which would cause the triggered
execution to be delayed by 1 second while sbt blocked trying to join
that thread. It also meant that input probably didn't work correctly
since the user would end up with many threads polling from system in.
The fix to this problem is to poll the terminal input stream if it is
unsafe to do a blocking read, which is the case for dumb terminals or if
virtual io is disabled.
Ref https://github.com/sbt/sbt/pull/4443
Fixes https://github.com/sbt/sbt/issues/5750
In #4443 I implemented an optimization where the metabuild would no longer re-resolve numerous sbt artifacts for metabuilds each time, and instead use whatever the JARs provided by the launcher. At the time, this technique didn't work for Coursier so I've placed in some workarounds for it. Now that Coursier's resolution has improved, it seems like the workaround is actually causing more harm. This removes the bandaid, and local testing shows that it seems to be working.
For instance, we no longer need to put in `ThisBuild / useCoursier := false` in sbt/sbt's `project/plugins.sbt`.
* Refactor so as to be testable
* Queue stores the _beginning_ timestamp of each GC time delta
* Message states the correct time over which the GC time was recorded
* Add heap stats from java.lang.Runtime to the message
sbt itself effectively runs its scripted test with
scriptedBatchExecution true and scriptedParallelInstances 1. The
performance is much better when this works. This can cause issues, see
https://github.com/sbt/sbt/issues/6042, but we inadvertently made this
behavior the default in 1.4.0 and it took about a month before #6042 was
reported so I think most users would benefit from this default.
If there are two sbt instances and one of them is running a server, the
other instance is presently prevented from ever starting a server. If an
sbt instance is unable to start a local server because of the presence
of another server, we can monitor the active.json file for changes and,
if it is deleted, we can then try again to start a new server instance.
Refactor remote caching to be scoped to configuration.
In addition, this avoid the use of dependency resolver (since I'm not resolving anything) and directly invoke the Ivy resolver for the artifact, somewhat analogus to publishing process.
This should speed up the `pullRemoteCache` since it avoids the POM download as well.
For sbt-binrary-remote-cache this created a bit of complication since the (publishing) resolver doesn't act correctly as (downloading) resolver in terms of the credentials, so I had to create a new key `remoteCacheResolvers` to have asymmetric resolver.
This test works fine locally on all platforms but there are issues in
CI. I think that it might work ok with 1.4.2 without a lot of extra
effort so I'm going to disable it for now.
This commit adds a wizard for installing sbtn along with tab completions
for bash, fish, powershell and zsh. It introduces the `installSbtn`
command which installs sbtn into ~/.sbt/1.0/bin/sbtn(.exe) depending on
the platform. It also can optionally install completions. The
completions are installed into ~/.sbt/1.0/completions. The sbtn native
executable is installed by downloading the sbt universal zip for the
version (which can be provided as an input argument with a fallback to
the running sbt version) and extracting the platform specific binary
into ~/.sbt/1.0/bin. After installing the executable, it offers to setup
the path and completions for the four shells. With the user's consent,
it adds a line to the shell config that updates the path to include
~/.sbt/1.0/bin and another line to source the appropriate completion
file for the shell from ~/.sbt/1.0/completions.
With the thin client, when running the command `exit`, it is often the
case that the log message `[info] disconnected` is printed on the same
line as the prompt. This is because there is a small flush delay on the
network client's output stream channel that causes the disconnected info
message to be logged before the the newline that jline 3 echoes to the
client has been printed. To fix this we can manually flush the terminal
output stream before exiting.
A user reported that the watchBeforeCommand callback was not being
invoked in sbt 1.4.{0, 1}. This was an oversight that occurred when
refactoring watch for the thin client and there previously had been no
regression test for that callback.
EvaluateTask was holding references to SafeState that could be quite
large. This was reported as #5992. In that project, I ran the `ci` task
and observed the OOM as reported. I took a heap dump prior to OOM and
got the retained size graph from visualvm (which took hours to compute).
The lastEvaluatedState was holding a reference to SafeState that was
1.7GB. The project max heap size was set to 2GB. Instead of using the
lastEvaluatedState, we can just use StandardMain.exchange.withState.
The cached instances of state were used for task cancellation and
completions. While it is possible that early on in booting
StandardMain.exchange.withState could return a null state, in practice
this won't happen because it is set early on during the sbt boot
commands.
After this change, I successfully ran the `ci` task in the #5992 issue
project with the same memory parameters as their ci config.
The ConsoleAppender formatEnabledInEnv field was being used both as an
indicator that ansi codes were supported and that color codes are
enabled. There are cases in which general ansi codes are not supported
but color codes are and these use cases need to be handled separately.
To make things more explicit, this commit adds isColorEnabled and
isAnsiSupported to the Terminal companion object so that we can be more
specific about what the requirements are (general ansi escape codes or
just colors). There are a few cases in ConsoleAppender itself where
formatEnabledInEnv was used to set flags for both color and ansi codes.
When that is the case, we use Terminal.isAnsiSupported because when that
is true, colors should at least work but there are terminals that
support color but not general ansi escape codes.
Some of the sbt scripted tests somewhat frequently hang in CI. I added a
patch that printed a stack trace of the sbt process every 30 seconds. I
discovered that the main thread was stuck in DefaultBackgroundJobService
shutdown. To avoid the hangs, I updated the awaitTermination methods to
take a timeout parameter and we timeout shutdown if 10 seconds have
elapsed.
I noticed that when using the scala 2.12 console with the thin client
that there was weird behavior for the first few seconds of the session.
When prompted with 'scala> ' I would type a letter, say v, and the
output would be 'scala>v' instead of 'scala> v'. It turned out that this
was because the NetworkChannel was returning a stale value for
isEchoEnabled. This happened because NetworkChannel has a method
getProperties that is rate limited under the assumption that the
properties rarely change. This made sense for things like
isAnsiSupported or isSuperShellEnabled but not isEchoEnabled. It is
straightforward to fix this by actually getting the terminal attributes
and checking if the echo flag is set.
It is possible for an InterruptedException to be thrown here because of
logic in NetworkClient. This seemed to be the root cause of the fix I
tried in ca251eb7c8 so I'm reverting that
commit.
Revert "Catch interrupted exception in shell"
This reverts commit ca251eb7c8.
In 64c0f0acdd, I attempted to safely close
all of the completion services when the user inputs ctrl+c. I have
noticed though that sometimes sbt crashes in CI with the
RejectedExecutionException thrown by submit. To avoid throwing when
there was no cancellation, I slightly modified the shutdown logic to not
shutdown the completion service whil still shutting down the underlying
thread pool.
It can be useful for plugin and build authors to have access to some of
the virtual terminal properties. For instance, when writing a task that
needs a password, the author may wish to put the terminal in raw mode
with echo disabled. This commit introduces a new Terminal trait at the
sbt level and a corresponding task, terminal, that provides a basic
terminal api. The Terminal returned by the terminal task will correspond
to the terminal that initiated the task so that it should work with sbtn
as well as in console mode.
Neither NetworkTerminal.getAttributes nor NetworkTerminal.setAttributes
worked correctly because they were sending the wrong json method name.
This wasn't noticeable because neither of these methods had previously
been used by sbt.
I noticed that no-op compile was slower in
https://github.com/sbt/sbt/issues/5508 using 1.4.0-RC2 than 1.4.0-RC1.
It took around 400ms with 1.4.0-RC2 and 200-250ms on RC1. Git bisect
brought me to 41afe9fbdb which I
remembered I'd been slightly concerned about from a performance
perspective but didn't get around to testing. The problem is that we
were blocking the task from running while determing whether or not we
should force a progress report. We can do that work on the background
thread instead so the task can begin running immediately.
The conditional for whether to make task progress events repeatable was
inverted. This wasn't actually noticeable because the function
doReport() was being schedule which had a guard to prevent it from
running more frequently than the report period.
Certain tasks may prefer to have the input set to raw mode and/or have
echo off. The specific use case is that it is difficult to get the
ammonite console to work correctly with the thin client. The problem is
that the ammonite console runs some tty commands. These commands will
only work on the tty of the thin client when the thin client itself has
launched the sbt server session (since they share the same tty). Once
the thin client that launched the server exits, the ammonite console
will never work again with that server session. A workaround is to
launch sbt separately and leave that server session open. Then, if the
run task is configured with canonical input set to false and echo
disabled, the thin client will work. In the future, it's possible that
ammonite could be updated to not rely on calling stty commands and then
the thin client could work with the ammonite console even after the
initial thin client session has exited provided canonical input and echo
are disabled.
There were a number of issues with swithcing between raw and canonical
issues that affected both the server and the thin client. These were
reported in #5863 and #5856. In both cases, there were issues with
reading input or having the input be displayed. Debugging those issues
revealed a number of issues with how we were using the jline 3 system
terminal and the hybrid interaction with the jline 2 terminal. This
commit eliminates all of our internal jline 2 usage. The only remaining
jline 2 usage is that we create and override the global terminal for the
scala console for scala versions < 2.13. By moving away from jline 2, I
was also able to fix#5828, which reported that the home, end and delete
keys were not working.
One of the big issues that this commit addresses is that the
NetworkClient was always performing blocking reads on System.in. This
was problematic because it turns out that you can't switch between raw
and canonical modes when there is a read present. To fix this, the
server now sends a message to the client when it wants to read bytes and
only then does the client create a background thread to read a single
byte.
I also figured out how to set the terminal type properly for the thin
client on windows where we had been manually setting the capabilities to
ansi, which only worked for some keys. This fix required switching to
the WindowsInputStream that I introduced in a prior commit. Before we
were using the jline 2 wrapped input stream which was converting some
system events, like home and end, to the wrong escape sequence mappings.
The remainder of the commit is mostly just converting from jline 2 apis
to jline 3 apis.
I verified that tab completions, the scala console, the ammonite console
and a run task that read from System.in all work with both the server
and the thin client on mac, linux and windows after these changes.
Fixes#5828, #5863, #5856
The old sbt launcher uses jansi 1.11, which is incompatible with jline3.
To work around this, we can use the jna terminal implementation for the
jline system terminal. This commit also switches to using the jline
TerminalBuilder for all system terminals except for the windows system
terminal with the thin client. The jline terminal builder uses
reflection that is difficult to make work with the thin client and it is
much easier to just manually construct the thin client. This is only
necessary for windows because on posix the thin client will fall back to
an implementation that shells out for stty commands.
The thin client needs to do its own success reporting because in batch
mode it's possible for the task to exit before success is logged by the
server. If the server also prints success, there can be double printing.
Unfortunately, the Prompt.Batch check is not reliable because MainLoop
will change the prompt to Running during task evaluation. The
interactive flag is set in the NetworkChannel when the client explicitly
registers itself as an interactive session, so this should be more
reliable.
I noticed in CI that sometimes the client tests exit with an interrupted
exception printed. I tracked it down the exception to the call to
getExec, which delegateds to CommandExchange.blockUntilNextExec.
In a continuous build in sbt 1.4.0-RC1, if the user enters an invalid
option, it causes the input thread to exit which means the watch would
no longer accept input commands (including <enter> to exit). This fixes
that behavior.
In sbt 1.4.0-RC1, if a user ran `sbt console`, the progress lines would
be printed after they had entered the console. This was because the
prompt state was incorrect. To get the prompt in the correct state, we
initialize the prompt to batch and then switch to pending when either
sbt enters the shell or the network client attaches in interactive mode.
We also will now immediately print progress as soon as we enter a skip
task to clear out the progress lines and display the warning about a
running task if there is another client connected while the task is
running.
The clean task was previously deleting the contents of directories that
were symlinked into the target directory. This was an oversight because
it never occurred to me that users might symlink a directory whose
contents they did not want deleted into the target directory.
Fixes https://github.com/sbt/sbt/issues/5822
Currently the entire shell gets stuck when there's a compilation error with pipelining.
This at least returns to sbt shell.
Together with https://github.com/sbt/zinc/pull/920 this fixes most of the mixed pipelining issues.
1. Previous values are carried from `compileScalaBackend` in `compileJavaTask`.
2. `compileJava / compileOptions ` now uses `compile / compileOptions` to avoid unintentional change of javac or scalac options.
3. Hooks up early compile analysis store.
Ref https://github.com/sbt/sbt/issues/5665
This adds `--server` command that is immediately filtered out in Main.scala.
The purpose of `--server` is so we can invoke thin client from `sbt` script at some point in the future when Bash script can parse `project/build.properties`.
`sbtn` would need to call `sbt` again to start the server, and at that point the shell script would need to actually invoke the server. The intent of `--server` is to be used as the tie breaker.
Also build users may want to sometimes call `sbt --server`.
I introduced the terminalShellPrompt so that we could generate a prompt
that was colored only if the terminal supported color. Rather than
expose the terminal implementation detail, we can just use a boolean
flag that toggles whether or not color is enabled and sbt can pass in
the value of terminal.isColorEnabled into the function.
It shouldn't be the case that a RejectedExecutionException is thrown
by TaskProgress. If that assumption is violated, log the exception but
don't crash sbt.
The play plugin seems to do out of band task evaluation on a stale State
object in the `run` task. As a result, when sbt tries to schedule tasks
to run, they tried to register the work with a closed TaskProgress
instance. There was no guard against this and it ended up causing a
RejectedExecutionException.
sbt 1.4.0 generates the shell prompt using the terminal properties for
the specific terminal for which the prompt is rendered. The mechanism
for doing this broke the prompt for projects that overrode the
shellPrompt key, notably the play plugin. After this change, the play
custom prompt is correctly rendered with 1.4.0-SNAPSHOT.
The RelayAppender should not log directly to console out since it is
supposed to be relaying json log messages to connected clients. This was
manifesting as double printing on some success messages.
Running publishLocal in the zinc project can cause gc thrashing with the
default parallelgc collector using jdk8 on my laptop. If I switch to
G1GC, it does not thrash even if I leave the heap the same size.
The java GarbageCollectorMXBean.getCollectionTime returns the cumulative
amount of time the collector has run during the jvm session. The GC
monitor is tracking how much time has been spent in garbage collection
during each task evaluation run. In order for this calculation to work
correctly, it is necessary to set the initial elapsed time to the bean's
current collection time when we create the gc monitor. Without doing
this, we can get completely incorrect results that are reporting based
on the total gc time for the entire process, not just in the last 10
seconds.
Should fix https://github.com/sbt/sbt/issues/5818
It is not uncommon in large projects for the jvm to silently be running
frequent full gcs in the background. This can slow progress to a crawl.
Usually the fix is to bump the -Xmx parameter but if the users do not
realize that their tasks are slow because of gc thrashing, they may not
think to do that. This PR adds a monitor that hooks into the jvm's event
notification system to keep track of how much time is spent in GC. If
the ratio of the amount of time in gc to the total elapsed time exceeds
some threshold, we emit a warning.
I was motivated to do this because publishLocal can take forever in the
zinc project because a 1G heap isn't big enough.
These tasks show up during task progress and they clutter up the
display. Since my understanding is that both of these tasks are more or
less just waiting for other work to complete, I don't think they are
helpful for debugging.
The zinc scripted project depends on all of the compiler bridges. As a
result the introduction of the strict scala binary version check in
f8139da192 broke zinc scripted. This
commit reverts to the old behavior in the non scala sandwich case.
I also switched to a for comprehension instead of a pattern match
because this is a rare case where I think it made the code significantly
more readable.
While in a continuous build, when the user enters ctrl+c into the sbt
server console (not a thin client connection) when sbt has been launched
in interactive mode, the server exits. This commit makes it so that
instead we just cancel the watch. As a result, if sbt was started in
batch mode, e.g. `sbt ~compile`, ctrl+c will still exit sbt but in
interactive mode ctrl+c will take the user back to the shell.
I occassionally end up in a state where watch input does not seem to be
read. To rule out the possibility that the background thread that reads
input has not successfully started, this commit makes it so that we
block until the thread signals that it has started via a CountDownLatch.
The diff is superficially big because of an indentation change at the
bottom.
The sbt Server is initialized with a callback onIncomingSocket. That
callback was created in CommandExchange and held references to a build
structure and a state. Neither the state nor structure would ever go out
of scope so they effectively leaked. It is possible for each
NetworkChannel to access a recent instance of state through the
CommandExchange.withState method. Using this, we can eliminate the
references to state and build structure in the onIncomingSocket
callback. In the sbt project, this reduced the memory utilization by
about 50mb on startup.
On linux and mac, entering ctrl+c will automatically kill any forked
processes that were created by the sbt server because sigint is
automatically forwarded to the child process. This is not the case on
windows where it is necessary to forcibly kill these processes.
The intellij import currentlly works by forking an sbt process and
writing command input through the process input stream. To make this
work, we need the SimpleTerminal (which is used when sbt is run with
-Dsbt.log.noformat=true) to be able to read input.
Attaching the input to the simple terminal caused watch tests to fail on
windows. This can be fixed by checking if the byte read from the input
stream is -1 and ignoring it if so.
The sbt.log.noformat parameter should be treated very similarly to
sbt.io.virtual. When it is true, we should just use the raw io streams
for the process. This came up because of
https://github.com/sbt/sbt/issues/5784 which reported that intellij
imports were not working and that ansi control characters were being
written to the output.
There can be race conditions where we try to interrupt and join a ui
thread before it becomes interruptible by blockign on a queue. To
workaround this, we can add the JoinThread class which adds an
extension method Thread.joinFor that takes a FiniteDuration parameter.
This variant of join will repeatedly interrupt and attempt to join the
thread for up to 10 milliseconds before retrying until the limit is
reached. If the limit is reached, we print a noisy error to the console.
I'm not 100% sure if we are leaking threads in the latest sbt version
but this gives me more piece of mind that either we are always
successfully joining the threads or we will be alerted if the joining
fails.