In order to make the console task work with scala 2.13 and the thin
client, we need to provide a way for the scala repl to use an sbt
provided jline3 terminal instead of the default terminal typically built
by the repl. We also need to put jline 3 higher up in the classloading
hierarchy to ensure that two versions of jline 3 are not loaded (which
makes it impossible to share the sbt terminal with the scala terminal).
One impact of this change is the decoupling of the version of
jline-terminal used by the in process scala console and the version
of jline-terminal specified by the scala version itself. It is possible
to override this by setting the `useScalaReplJLine` flag to true. When
that is set, the scala REPL will run in a fully isolated classloader. That
will ensure that the versions are consistent. It will, however, for sure
break the thin client and may interfere with the embedded shell ui.
As part of this work, I also discovered that jline 3 Terminal.getSize is
very slow. In jline 2, the terminal attributes were automatically cached with a
timeout of, I think, 1 second so it wasn't a big deal to call
Terminal.getAttributes. The getSize method in jline 3 is not cached and
it shells out to run a tty command. This caused a significant
performance regression in sbt because when progress is enabled, we call
Terminal.getSize whenever we log any messages. I added caching of
getSize at the TerminalImpl level to address this. The timeout is 1
second, which seems responsive enough for most use cases. We could also
move the calculation onto a background thread and have it periodically
updated, but that seems like overkill.
This commit upgrades sbt to using jline3. The advantage to jline3 is
that it has a significantly better tab completion engine that is more
similar to what you get from zsh or fish.
The diff is bigger than I'd hoped because there are a number of
behaviors that are different in jline3 vs jline2 in how the library
consumes input streams and implements various features. I also was
unable to remove jline2 because we need it for older versions of the
scala console to work correctly with the thin client. As a result, the
changes are largely additive.
A good amount of this commit was in adding more protocol so that the
remote client can forward its jline3 terminal information to the server.
There were a number of minor changes that I made that either fixed
outstanding ui bugs from #5620 or regressions due to differences between
jline3 and jline2.
The number one thing that caused problems is that the jline3 LineReader
insists on using a NonBlockingInputStream. The implementation ofo
NonBlockingInputStream seems buggy. Moreover, sbt internally uses a
non blocking input stream for system in so jline is adding non blocking
to an already non blocking stream, which is frustrating.
A long term solution might be to consider insourcing LineReader.java
from jline3 and just adapting it to use an sbt terminal rather than
fighting with the jline3 api. This would also have the advantage of not
conflicting with other versions of jline3. Even if we don't, we may want to
shade jline3 if that is possible.
The sbtc client can provide a ux very similar to using the sbt shell
when combined with tab completions. In fact, since some shells have a
better tab completion engine than that provided by jilne2, the
experience can be even better. To make this work, we add another entry
point to the thin client that is capable of generating completions for
an input string. It queries sbt for the completions and prints the
result to stdout, where they are consumed by the shell and fed into its
completion engine.
In addition to providing tab completions, if there is no server running
or if the user is completing `runMain`, `testOnly` or `testQuick`, the
thin client will prompt the user to ask if they would like to start an
sbt server or if they would like to compile to generate the main class
or test names. Neither powershell nor zsh support forwarding input to
the tab completion script. Zsh will print output to stderr so we
opportunistically start the server or complete the test class names.
Powershell does not print completion output at all, so we do not start a
server or fill completions in that case*. For fish and bash, we prompt
the user that they can take these actions so that they can avoid the
expensive operation if desired.
* Powershell users can set the environment variable SBTC_AUTO_COMPLETE
if they want to automatically start a server of compile for run and test
names. No output will be displayed so there can be a long latency
between pressing <tab> and seeing completion results if this variable is
set.
This commit adds support for remote clients to connect to the sbt server
and attach themselves as a virtual terminal. In order to make this work,
each connection must send a json rpc request to attach to the server.
When this is received, the server will periodically query the remote
client to get the terminal properties and capabilities that allow the
remote client to act as a jline terminal proxy. There is also support
for json messages with ids sbt/systemIn and sbt/systemOut that allow io
to be relayed from the remote terminal to the sbt server and back.
Certain commands such as `exit` should be evaluated immediately. To make
this work, we add the concept of a MaintenanceTask. The CommandExchange
has a background thread that reads MaintenanceTasks and evaluates them
on demand. This allows maintenance tasks to be evaluated even when sbt
is evaluating an exec. If it weren't done this way, when the user typed
exit while a different remote connection was running a command, they
wouldn't be able to exit until the command completed.
The ServerIntents in ServerHandler did not handle
JsonRpcResponseMessage because prior to this commit, sbt clients were
primarily making requests to the server. But now the server sends
requests to the client for the terminal properties and terminal
capabilities so it was necessary to add an onResponse handler to
ServerIntent.
I had to move the network channel publishBytes method to run on a
background thread because there were scenarios in which the client
socket would get blocked because the server was trying to write on the
same thread that the read the bytes from the client.
To make the console command work, it is necessary to hijack the
classloader for JLine. In MetaBuildLoader, we put a custom forked JLine
that has a setter for the TerminalFactory singleton. This allows us to
change the terminal that is used by JLine in ConsoleReader. Without this
hack, the scala console would not work for remote clients.
The collectAnalysis task an be a bit slow and delays client connections
from running commands. This commit adds an option to skip the analysis
if it isn't needed. The default behavior is left as it was.
Try parse the required semanticdbVersion in the initialization request metadata
Issue a warning if the semanticdb plugin is not enabled
Issue a warning if the semanticdb version is lower than the required
Initial draft for bsp support.
This shows two communication pattern around BSP.
First, if the request can be handled with the build knowledge is readily available in `NetworkChannel` we can reply immediately. `BuildServerImpl#onBspBuildTargets` is an example for that.
Second, if the request requires `State`, then we can forward the parameter into a custom command, and reply back from a command. `BuildServerProtocol.bspBuildTargetSources` is an example of that since it needs to invoke tasks to generate sources.
Fixes https://github.com/sbt/sbt/issues/3112
This unpacks Extracted as State's extension methods.
In addition this provides a way of responding via LSP.
This is an implementation of `textDocument/definition` request.
Supports types only, and only in case when type is found in Zinc Analysis. When source(s) are found then editor opens potential source(s).
This simple implementation does not use semantic data.
During the processing of `textDocument/didSave`, we will start collecting the location of Analysis files via `lspCollectAnalyses`.
Later on, when the user asked for `textDocument/definition`, sbt server will invoke a Future call to lspDefinition, which direct reads the files to locate the definition of a class.
This is the first cut for the Language Server Protocol on top of server that is still work in progress.
With this change, sbt is able to invoke `compile` task on saving files in VS Code.
This implements JSON-based port file. Thoughout the lifetime of the sbt server there will be `cwd / "project" / "target" / "active.json"`, which contains `url` field.
Using this `url` the potential client, such as IDEs can find out which port number to hit.
Ref #3508