Fixes#4964
Together with https://github.com/sbt/util/pull/211, this brings back stack trace supression for custom tasks by default.
Debug levels logs are available in `last`, and this prints a message informing the user of the fact. BLUE on dark background is difficult to read, so I am chaning the color hilight to MAGENTA.
This new versions layers the classpath so that the
test-interface-1.0.jar appears before the scala library. This allows us
to bypass reconstructing the AppConfiguration at startup which reduces
the metaspace utilization of sbt.
The new io verion removes the PathFinder <-> Glob implicit translations.
It also has a number of small bug fixes related to directory listing via
FileTreeView.
The newest version of io repackages a number of classes into the
sbt.nio.* packages. It also changes some of the semantics of glob
related apis. This commit updates all of the usages of the updated apis
within sbt but should have no functional difference.
This adds dependency to LM implemented using Coursier.
I had to copy paste a bunch of code from sbt-coursier-shared to break the dependency to sbt.
`Global / useCoursier := false` or `-Dsbt.coursier=false` be used to opt-out of using Coursier for the dependency resolution.
This is a huge refactor of Watched. I produced this through multiple
rewrite iterations and it was too difficult to separate all of the
changes into small individual commits so I, unfortunately, had to make a
massive commit. In general, I have tried to document the source code
extensively both to facilitate reading this commit and to help with
future maintenance.
These changes are quite complicated because they provided a built-in
like api to a feature that is implemented like a plugin. In particular,
we have to manually do a lot of parsing as well as roll our own
task/setting evaluation because we cannot infer the watch settings at
project build time because we do not know a priori what commands the
user may watch in a given session. The dynamic setting and task
evaluation is mostly confined to the WatchSettings class in Continuous.
It feels dirty to do all of this extraction by hand, but it does seem to
work correctly with scopes.
At a high level this commit does four things:
1) migrate the watch implementation to using the InputGraph to collect
the globs that it needs to monitor during the watch
2) simplify WatchConfig to make it easier for plugin authors to write
their own custom watch implementations
3) allow configuration of the watch settings based on the task(s) that
is/are being run
4) adds an InputTask implemenation of watch.
Point #1 is mostly handled by Point #3 since I had to overhaul how _all_
of the watch settings are generated. InputGraph already handles both
transitive inputs and triggers as well as legacy watchSources so not
much additional logic is needed beyond passing the correct scoped keys
into InputGraph.
Point #3 require some structural changes. The watch settings cannot in
general be defined statically because we don't know a priori what tasks
the user will try and watch. To address this, I added code that will
extract the task keys for all of the commands that we are running. I
then manually extract the relevant settings for each command. Finally, I
aggregate those settings into a single WatchConfig that can be used to
actually implement the watch. The aggregation is generally
straightforward: we run all of the callbacks for each task and choose
the next watch state based on the highest priority Action that is
returned by any of the callbacks.
Because I needed Extracted to pull out the necessary settings, I was
forced to move a lot of logic out of Watched and into a new singleton,
Continuous, that exists in the main project (Watched is in the command
project). The public footprint of Continuous is tiny. Even though I want
to make the watch feature flexible for plugin authors, the
implementation and api remain a moving target so I do not want to be
limited by future binary compatibility requirements. Anyone who wants to
live dangerously can access the private[sbt] apis via reflection or by
adding custom code to the sbt package in their plugin (a technique I've
used in CloseWatch).
Point #2 is addressed by removing the count and lastStatus from the
WatchConfig callbacks. While these parameters can be useful, they are
not necessary to implement the semantics of a watch. Moreover, a status
boolean isn't really that useful and the sbt task engine makes it very
difficult to actually extract the previous result of the tasks that were
run. After this refactor, WatchConfig has a simpler api. There are fewer
callbacks to implement and the signatures are simpler. To preserve the
_functionality_ of making the count accessible to the user specifiable
callbacks, I still provided settings like watchOnInputEvent that accept
a count parameter, but the count is actually tracked externally to
Watched.watch and incremented every time the task is run.
Moreover, there are a few parameters of the watch: the logger and
transitive globs, that cannot be provided via settings. I provide
callback settings like watchOnStart that mirror the WatchConfig
callbacks except that they return a function from Continuous.Arguments
to the needed callback. The Continuous.aggregate function will check if
the watchOnStart setting is set and if it is, will pass in the needed
arguments. Otherwise it will use the default watchOnStart implementation
which simulates the existing behavior by tracking the iteration count in
an AtomicInteger and passing the current count into the user provided
callback. In this way, we are able to provide a number of apis to the
watch process while preserving the default behavior.
To implement #4, I had to change the label of the `watch` attribute key
from "watch" to "watched". This allows `watch compile` to work at the
sbt command line even thought it maps to the watchTasks key. The actual
implementation is almost trivial. The difference between an
InputTask[Unit] and a command is very small. The tricky part is that the
actual implementation requires applying mapTask to a delegate task that
overrides the Task's info.postTransform value (which is used to
transform the state after task evaluation). The actual postTransform
function can be shared by the continuous task and continuous command.
There is just a slightly different mechanism for getting to the state
transformation function.