It is useful to store a buffer of the lines written to each terminal. We
can use those lines to replay the terminal log lines to a different
client. This is particularly nice when a remote client connects to sbt
while it's booting. We can show the remote client all the lines
displayed by the console prior to the client connecting.
This commit upgrades sbt to using jline3. The advantage to jline3 is
that it has a significantly better tab completion engine that is more
similar to what you get from zsh or fish.
The diff is bigger than I'd hoped because there are a number of
behaviors that are different in jline3 vs jline2 in how the library
consumes input streams and implements various features. I also was
unable to remove jline2 because we need it for older versions of the
scala console to work correctly with the thin client. As a result, the
changes are largely additive.
A good amount of this commit was in adding more protocol so that the
remote client can forward its jline3 terminal information to the server.
There were a number of minor changes that I made that either fixed
outstanding ui bugs from #5620 or regressions due to differences between
jline3 and jline2.
The number one thing that caused problems is that the jline3 LineReader
insists on using a NonBlockingInputStream. The implementation ofo
NonBlockingInputStream seems buggy. Moreover, sbt internally uses a
non blocking input stream for system in so jline is adding non blocking
to an already non blocking stream, which is frustrating.
A long term solution might be to consider insourcing LineReader.java
from jline3 and just adapting it to use an sbt terminal rather than
fighting with the jline3 api. This would also have the advantage of not
conflicting with other versions of jline3. Even if we don't, we may want to
shade jline3 if that is possible.
If there is no system console available, then there is no point in
making an ask user thread. An ask user thread can only be created when
the terminal prompt is in the Prompt.Running or Prompt.Loading state.
The console channel will now set itself to be in the Prompt.NoPrompt
state if it detects that there is no System.console available.
The motivation for this change is that jline was printing a lot of extra
text during scripted and server tests. Whenever a jline3 linereader is
closed, it prints a newline so the logs were filled with unnecessary
newlines.
In the situation where sbt was started in server mode and a client is
running a `~` command and a project reload is triggered by a change to
a build source, the console terminal looks like
sbt:foo>
[info] received remote command: ~compile
sbt:foo>
[info] welcome to sbt 1.4.0-SNAPSHOT (Azul Systems, Inc. Java 1.8.0_252)
sbt:foo>
[info] loading global plugins from ~/.sbt/1.0/plugins
sbt:foo>
[info] loading settings for project foo-build from metals.sbt ...
sbt:foo>
[info] loading project definition from
~/foo/project
sbt:foo>
[info] loading settings for project root from build.sbt ...
sbt:foo>
[info] loading settings for project macros from build.sbt ...
sbt:foo>
[info] loading settings for project main from build.sbt ...
sbt:foo>
[info] set current project to foo (in build file:~/foo)
sbt:foo>
This change fixes that by unprompting all channels during project
loading and reprompting them when it completes.
The continuous command recompiles the setting graph into a CompiledMap
data structure so that it can determine which files it needs to
transitively monitor during watch. Generating the CompiledMap can be
very slow for large projects (5 seconds or so on my computer in the sbt
project) and this startup cost is paid every time the user enters a
watch with `~`. To avoid this, we can cache the compile map that is
generated during the initial settings evaluation.
The only real drawback I can see is that the compiled map is guaranteed
to remain in memory so long as the BuildStructure instance that holds it
is alive. Given the performance benefit, this seems like a worthwhile
tradeoff.
In a few places, I used this pattern in an attempt to debug some ui
issues. It is incorrect because it doesn't use System.lineSeparator
and is also pointless.
When running reboot at the console, the first character that the user
enters after the reboot has completed is lost. This is because it isn't
possible to interrupt System.in and we have a thread that is blocking on
reads to System.in in WriteableInputStream. That thread cannot be
shutdown during normal sbt shutdown while it is reading. When sbt next
starts up (in the same jvm), the previous thread gets the byte but has
nowhere to write it so the byte is lost. This commit fixes that behavior
by ensuring that we only poll from System.in when there is actually a
downstream consumer.
The behavior of reboot is still a little wonky if the user issues a
reboot from a network client and then tries to input commands at the
console. In that case, sbt will have been polling System.in in the ask
user thread prior to the reboot and the ask user thread will be
uninterruptible for the reason described above so the first byte will
again by swallowed by the previous sbt instance. This use case is
sufficiently pathological that it doesn't feel worth the effort to fix.
As annoying as it is, it doesn't break the sbt session. The user will
either submit an invalid command with the missing leading character or
notice the character is missing, possibly think they missed the key,
type backspace a few times and re-type the command.
On windows, it is sometimes possible to leak an sbt process if two
processes are started simultaneously by a remote client at the same
time. When this happens, the second process is unable to create a
server because of the first process and it also has no io streams
because the the client detaches its streams. We can detect this
in the shell command and prevent the process from persisting as a
zombie.
One issue with the remote client approach is that it is possible for
multiple clients to start multiple servers concurrently. I encountered
this in testing where in one tmux pane I'd start an sbt server and in
another I might run sbtc before the server had finished loading. This
can actually cause java processes to leak because the second process is
unable to start a server but it doesn't necessarily die after the client
that spawned it exits. This commit prevents this scenario by creating a
server socket before it loads the build and closes once the build is
complete. The client can then receive output bytes and forward input to
the booting server.
The socket that is created during boot is always a local socket, either
a UnixDomainServerSocket or a Win32NamedPipeServerSocket. At the moment,
I don't see any reason to support TCP. This socket also has no impact at
all on the normal sbt server that is started up after the project has
loaded.
The socket is hardcoded to be located at the relative path
project/target/$SOCK_NAME or the named pipe $SOCK_NAME where SOCK_NAME
is a farm hash of the absolute path of the project base directory. There
is no portfile json since there is no need since we don't support TCP.
After the socket is created it listens for clients to whom it relays
input to the console's input stream and relays the process output back
to the client. See the javadoc in BootServerSocket.java for further
details.
The process for forking the server is also a bit more complicated after
this change because the client will read the process output and error
streams until the socket is created and thereafter will only read output
from the socket, not the process.
Supershell does not work correctly when the sbt server is started by the
remote client on windows because it incorrectly calculates the terminal
dimensions. To work around this, we can pass in the dimensions from the
remote client as an environment variable. I tried to do this as a system
property but had all kinds of problems with windows stripping delimeters
from the command. It was much easier to get working with an environment
variable and should really only be set by the sbtc client anyway.
It seemed like a good idea to avoid printing the progress lines if they
were the same as last time. Unfortunately there is a scenario where the
user has multiple clients open and while one of the clients is running a
command, the user presses enter in the inactive client. When this
happens the message that warns that the server is running a different
command gets overwritten. Always printing keeps the message visible.
JLine will spam the console with error messages if certain commands get
interrupted. This is very noticeable and annoying in tab completions.
We can stop doing work in background as well since we've silenced the
jline logging.
This commit makes it possible for a remote client to cancel a running
task initiated by a different client by typing `cancel` into the shell.
It can be useful if the remote client has run something blocking like
console.
The console task can't safely be interrupted, so instead we write some
newlines filed by ctrl+d to exit the console.
This commit makes it possible for the sbt server to render the same ui
to multiple clients. The network client ui should look nearly identical
to the console ui except for the log messages about the experimental
client.
The way that it works is that it associates a ui thread with each
terminal. Whenever a command starts or completes, callbacks are invoked
on the various channels to update their ui state. For example, if there
are two clients and one of them runs compile, then the prompt is changed
from AskUser to Running for the terminal that initiated the command
while the other client remains in the AskUser state. Whenever the client
changes uses ui states, the existing thread is terminated if it is
running and a new thread is begun.
The UITask formalizes this process. It is based on the AskUser class
from older versions of sbt. In fact, there is an AskUserTask which is
very similar. It uses jline to read input from the terminal (which could
be a network terminal). When it gets a line, it submits it to the
CommandExchange and exits. Once the next command is run (which may or
may not be the command it submitted), the ui state will be reset.
The debug, info, warn and error commands should work with the multi
client ui. When run, they set the log level globally, not just for the
client that set the level.
In order to support a multi-client sbt server ux, we need to factor
`Terminal` out into a class instead of a singleton. Each terminal provides
and outputstream and inputstream. In all of the places where we were
previously relying on the `Terminal` singleton we need to update the
code to use `Terminal.get`, which will redirect io to the terminal whose
command is currently running.
This commit does not implement the server side ui for network clients.
It is just preparatory work for the multi-client ui.
The Terminal implementations have thread safe access to the output
stream. For this reason, I had to remove the sychronization on the
ConsoleOut lockObject. There were code paths that led to deadlock when
synchronizing on the lockObject.
Rather than going through the console appender logging to make
TaskProgress work, we can instead use the CommandExchange. This will be
useful in future commits where there are multiple terminals that all
need to receive progress. By organizing the TaskProgress this way, we
can store a separate progress state for each terminal and update the
progress for all of the active terminals. We also can set the current
running command in command exchange which will be useful in future
commits to show what command is currently running.
This commit also reworks TaskProgress to always kill its thread when
there are no active tasks. It will start a new thread as soon as there
is another active task.
This commit adds a number of functions for stripping ansi escape
characters and/or finding the position of the cursor in a line that may
contain colors and moves. The motivation for EscHelpers.cursorPosition
is that when printing progress lines, we need to know the visual
dimensions of the last line printed to the prompt. The
EscHelpers.stripColorsAndMoves can be used to remove all ansi escape
sequences. Finally EscHelpers.stripMoves leaves colors but strips out
all other escape sequences. This is so we can reprint the terminal
prompt during supershell. If we didn't strip out the escape sequences,
we could inadvertently blow away everything below the cursor in cases
where we actually want the lines below the cursor to persist.
This implements Selective functor for `Either[A, B]` "task" (`Initialize[Task[Either[A, B]]]`).
The selective functor allows an encoding of if-expression:
```
def ifS[A](
x: Def.Initialize[Task[Boolean]]
)(t: Def.Initialize[Task[A]])(e: Def.Initialize[Task[A]]): Def.Initialize[Task[A]]
```
The benefit of this approach is that task dependencies are still visible to inspect command.
This file somehow got stuck in the repo although it wasn't actually
used. In fact, it fails to compile at all because
sbt.internal.util.TaskProgress is defined in main, not util-logging. I
noticed this because metals wasn't working well because it was failing
to compile util-logging because of this file. I think the file was
checked in by accident in e28e052b5b.
In order to make supershell work with println, this commit introduces a
virtual System.out to sbt. While sbt is running, we override the default
java.lang.System.out, java.lang.System.in, scala.Console.out and
scala.Console.in (unless the property `sbt.io.virtual` is set to
something other than true). When using virtual io, we buffer all of the
bytes that are written to System.out and Console.out until flush is
called. When flushing the output, we check if there are any progress
lines. If so, we interleave them with the new lines to print.
The flushing happens on a background thread so it should hopefully not
impede task progress.
This commit also adds logic for handling progress when the cursor is not
all the way to the left. We now track all of the bytes that have been
written since the last new line. Supershell will then calculate the
cursor position from those bytes* and move the cursor back to the
correct position. The motivation for this was to make the run command
work with supershell even when multiple main classes were specified.
* This might not be completely reliable if the string contains ansi
cursor movement characters.
It is better that sbt not expose the implementation detail that
LineReader is implemented by JLine. Other terminal related apis should
be handled by sbt.internal.util.Terminal.
Presently if a server command comes in while in the shell, the client
output can appear on the same line as the command prompt and the command
prompt will not appear again until the user hits enter. This is a
confusing ux. For example, if I start an sbt server and type
the partial command "comp" and then start up a client and run the clean
command followed by a compile, the output looks like:
[info] sbt server started at local:///Users/ethanatkins/.sbt/1.0/server/51cfad3281b3a8a1820a/sock
sbt:scala-compile> comp[info] new client connected: network-1
[success] Total time: 0 s, completed Dec 12, 2019, 7:23:24 PM
[success] Total time: 0 s, completed Dec 12, 2019, 7:23:27 PM
[success] Total time: 2 s, completed Dec 12, 2019, 7:23:31 PM
Now, if I type "ile\n", I get:
[info] sbt server started at local:///Users/ethanatkins/.sbt/1.0/server/51cfad3281b3a8a1820a/sock
ile
[success] Total time: 0 s, completed Dec 12, 2019, 7:23:34 PM
sbt:scala-compile>
Following the same set of inputs after this change, I get:
[info] sbt server started at local:///Users/ethanatkins/.sbt/1.0/server/51cfad3281b3a8a1820a/sock
sbt:scala-compile> comp
[info] new client connected: network-1
[success] Total time: 0 s, completed Dec 12, 2019, 7:25:58 PM
sbt:scala-compile> comp
[success] Total time: 0 s, completed Dec 12, 2019, 7:26:14 PM
sbt:scala-compile> comp
[success] Total time: 1 s, completed Dec 12, 2019, 7:26:17 PM
sbt:scala-compile> compile
[success] Total time: 0 s, completed Dec 12, 2019, 7:26:19 PM
sbt:scala-compile>
To implement this change, I added the redraw() method to LineReader
which is a wrapper around ConsoleReader.drawLine; ConsoleReader.flush().
We invoke LineReader.redraw whenever the ConsoleChannel receives a
ConsolePromptEvent and there is a running thread.
To prevent log lines from being appended to the prompt line, in the
CommandExchange we print a newline character whenever a new command is
received from the network or a network client connects and we believe
that there is an active prompt.
The ask user thread is a background thread so it's fine for it to block
on System.in. By blocking rather than polling, the cpu utilization of
sbt drops to 0 on idle. We have to explicitly handle <ctrl+d> if we
block though because the JLine console reader will return null both if
the input stream returns -1
This commit aims to centralize all of the terminal interactions
throughout sbt. It also seeks to hide the jline implementation details
and only expose the apis that sbt needs for interacting with the
terminal.
In general, we should be able to assume that the terminal is in
canonical (line buffered) mode with echo enabled. To switch to raw mode
or to enable/disable echo, there are apis: Terminal.withRawSystemIn and
Terminal.withEcho that take a thunk as parameter to ensure that the
terminal is reset back to the canonical mode afterwards.
Stripping quotation marks makes it impossible to cleanly test certain
sbt features without resorting to weird hacks. For example:
> set Compile / scalacOptions += "-Xfatal-warnings"
did not work while
> set Compile / scalacOptions += '"-Xfatal-warnings"'
did.
I leave the single quote parser unchanged since single quotes are not
really used in sbt and so there is utility in leaving them as a way to
group arguments that should not be split apart.
This change should only affect the scripted tests in the sbt repo. We
can consider making stripQuotes = false the default for the plugin as
well.
Fixes https://github.com/sbt/sbt/issues/5063
This fixes "sbt new" on Ubuntu by restoring the terminal state after supershell querying for the terminal width.
A StringBuilder is a mutable data structure to create a String.
When the String is created, the new String does not share any
storage with the StringBuilder. Thus, we can keep a same
StringBuilder, and reuse its internal storage between different
iterations.
To demonstrate [-Yno-lub](http://eed3si9n.com/stricter-scala-with-ynolub), this shows the code changes that removes lubing (Not all subprojects are done).
After I made the changes, I switched the Scala back to normal 2.12.10.
I incorrectly included the DeleteLine in the progress line length and
this could cause certain progress lines to be incorrectly reported as
multi line when they actually fit on a single terminal line.
On the off chance that in some configurations the terminal width is set
to zero, avoid an exception by returning 0 for terminal lines. It is
likely that supershell will not work well if terminal width is zero, but
that's better than a potential crash (I think the crash would be in the
progress background thread, so I'm not sure how bad it would be, but
still its good to avoid).
Sometimes if the progress lines are wider than the terminal width,
the supershell blank zone can expand indefinitely because be do not move
the cursor far enough up to properly re-fill the blank zone.
It takes about a second to load scala.reflect.runtime.universe. If we
lazy load here, we can load scala.relect.runtime.universe in the
background to speed up the sbt start up time. See
0ebb7a5662.
The previous implementation of supershell log line interlacing with
regular line interlacing relied on state in a global object. A somewhat
better approach is for each appender to hold a reference to a state
object. Every time tasks run, new appenders are created, so the state
should always reflect the current progress state.
Supershell actually works quite well in no color mode. On the sbt side,
we still want to disable supershell automatically if the output is not a
terminal or no color is set, but this commit allows the user to force
supershell through -Dsbt.supershell or the useSuperShell setting even
when no color is set.
With this commit, I improved the padding management so that padding is
now added above the progress report. Whenever a line is logged at the
info or greater level, we can reduce the padding level by one since that
line has effectively filled in the padding.
With the current supershell implementation, the progress display
flickers when there is heavy console logging during task evaluation.
This is because the console appender clears out the task progress and it
isn't restored until the next periodic super shell report (which
runs every 100ms by default). To remove the flickering, I reworked the
implementation to interlace the log lines with progress reports. In
order to ensure that the log lines remained contiguous, I had to apply
padding at the bottom of the supershell region whenever the new report
contained fewer lines than the old report. The report shifts down as new
log lines are appended. This isn't optimal, but I think removing
the flickering while preserving contiguous log lines is worth it.
During akka startup, addLocal was caused twice and prior to this change,
it took roughly 200ms per call on my computer. After this change, it
took about 100ms.
At the suggestion of @eed3si9n, instead of specifying the file cache
size in bytes, we now specify it in a formatted string. For example,
instead of specifying 128 megabytes in bytes (134217728), we can specify
it with the string "128M".
In some cases, comp.append could be an empty string. This would happen
if a parser was something like `(token(foo) <~ ;).+ <~ fo.?` because there were
no completions for the `fo` available anchor. The effect of this was
that tab would never complete foo;f to foo;foo, even though that was the
only possible completion. It would, _display_, foo as a possible
completion though.
This came up because the multi parser has a similar parser to that
described above and it broke tab completion to the right of a semi
colon.
We run into issues if we naively split the command input on ';' and
treat each part as a separate command unless the ';' is inside of a
string because it is also valid to have ';'s inside of braced
expressions, e.g. `set foo := { val x = 1; x + 1 }`. There was no parser
for expressions enclosed in braces. I add one that should parse any
expression wrapped in braces so long as each opening brace is matched by a
closing brace. The parser returns the original expression. This allows
the multi parser to ignore ';' inside of '{...}'.
I had to rework the scripted tests to individually run 'reload' and
'setUpScripted' because the new parser rejects setUpScripted because it
isn't a valid command until reload has run.
In my recent changes to watch, I have been moving towards a world in
which sbt manages the file inputs and outputs at the task level. The
main idea is that we want to enable a user to specify the inputs and
outputs of a task and have sbt able to track those inputs across
multiple task evaluations. Sbt should be able to automatically trigger a
build when the inputs change and it also should be able to avoid task
evaluation if non of the inputs have changed.
The former case of having sbt automatically watch the file inputs of a
task has been present since watch was refactored. In this commit, I
make it possible for the user to retrieve the lists of new, modified and
deleted files. The user can then avoid task evaluation if none of the
inputs have changed.
To implement this, I inject a number of new settings during project
load if the fileInputs setting is defined for a task. The injected
settings are:
allPathsAndAttributes -- this retrieves all of the paths described by
the fileInputs for the task along with their attributes
fileStamps -- this retrieves all of the file stamps for the files
returned by allPathsAndAttributes
Using these two injected tasks, I also inject a number of derived tasks,
such as allFiles, which returns all of the regular files returned by
allPathsAndAttributes and changedFiles, which returns all of the regular
files that have been modified since the last run.
Using these injected settings, the user is able to write tasks that
avoid evaluation if the inputs haven't changed.
foo / fileInputs += baseDirectory.value.toGlob / ** / "*.scala"
foo := {
foo.previous match {
case Some(p) if (foo / changedFiles).value.isEmpty => p
case _ => fooImpl((foo / allFiles).value
}
}
To make this whole mechanism work, I add a private task key:
val fileAttributeMap = taskKey[java.util.HashMap[Path, Stamp]]("...")
This keeps track of the stamps for all of the files that are managed by
sbt. The fileStamps task will first look for the stamp in the attribute
map and, only if it is not present, it will update the cache. This
allows us to ensure that a given file will only be stamped once per task
evaluation run no matter how the file inputs are specified. Moreover, in
a continuous build, I'm able to reuse the attribute map which can
significantly reduce latency because the default file stamping
implementation used by zinc is fairly expensive (it can take anywhere
between 300-1500ms to stamp 5000 8kb source files on my mac).
I also renamed some of the watch related keys to be a bit more clear.
Ref https://github.com/sbt/sbt/issues/4583
This moves the super shell rendering to ConsoleAppender with several improvements.
Instead of scrolling up, supershell is now changed to normal scrolling down, with more traditional cursor position. Before printing out the logs, last known progress reports are wiped out. In addition, there's now 5 lines of blank lines to accomodate for `println(...)` by tasks.
The usingTerminal method synchronizes the JLine object which can lead to
deadlock if multiple threads call it. When we just to want to read the
attributes of the terminal, but not modify it, there doesn't seem to be
any reason to use a lock.
I was seeing a number of compiler warnings about the type parameter
Scope:
Settings.scala:55:12: type parameter Scope defined in trait Init shadows class Scope defined in package util. You may want to rename your type parameter, or possibly remove it.
I'm not sure why I wasn't seeing these before, but the fix is simple.
Although this is technically in the internal package, it is exposed to
users when they write a custom input task. I do not think that we should
prevent users/plugin authors from writing their own parser
implementations if there is a different library they prefer. By my
count, there are 21 implementations of this interface in sbt, so it's
unlikely that there is much benefit from a pattern matching perspective.
While the AnyLeft and AnyRight types are necessary to make the extension
class work, I don't want to leak the AnyLeft or AnyRight traits into the
public api. It wasn't neceessary to annotate `some`, but it's good
practice to annotate anything public anyway.
This implements a new sbt.color flag that takes always/auto/never/true/false value as a replacement of current sbt.log.format=true/false flag.
When neither flags are set, the default behavior is to enable color when the terminal supports ANSI and it detects an stdout console (as opposed to redirects).
Fixes https://github.com/sbt/sbt/issues/4284