The previous name of the flag was rather specific: it indicated
whether the new source dependency tracking is supported by given Relations
object. However, there will be more functionality added to Relations that
is specific to name hashing algorithm. Therefore it makes sense to name
the flag as just `nameHashing`.
I decided to rename Relations implementation classes to be more
consistent with the name of the flag and with the purpose they serve.
The flag in AnalysisCallback (and classes implementing it) has been
renamed as well.
Previously incremental compiler was extracting source code
dependencies by inspecting `CompilationUnit.depends` set. This set is
constructed by Scala compiler and it contains all symbols that given
compilation unit refers or even saw (in case of implicit search).
There are a few problems with this approach:
* The contract for `CompilationUnit.depend` is not clearly defined
in Scala compiler and there are no tests around it. Read: it's
not an official, maintained API.
* Improvements to incremental compiler require more context
information about given dependency. For example, we want to
distinguish between dependency on a class when you just select
members from it or inherit from it. The other example is that
we might want to know dependencies of a given class instead of
the whole compilation unit to make the invalidation logic more
precise.
That led to the idea of pushing dependency extracting logic to
incremental compiler side so it can evolve indepedently from Scala
compiler releases and can be refined as needed. We extract
dependencies of a compilation unit by walking a type-checked tree
and gathering symbols attached to them.
Specifically, the tree walk is implemented as a separate phase that
runs after pickler and extracts symbols from following tree nodes:
* `Import` so we can track dependencies on unused imports
* `Select` which is used for selecting all terms
* `Ident` used for referring to local terms, package-local terms
and top-level packages
* `TypeTree` which is used for referring to all types
Note that we do not extract just a single symbol assigned to `TypeTree`
node because it might represent a complex type that mentions
several symbols. We collect all those symbols by traversing the type
with CollectTypeTraverser. The implementation of the traverser is inspired
by `CollectTypeCollector` from Scala 2.10. The
`source-dependencies/typeref-only` test covers a scenario where the
dependency is introduced through a TypeRef only.
The fix was made possible by the very helpful information provided by @retronym.
This commit does two key things:
1. changes the owner when splicing original trees into new trees
2. ensures the synthetic trees that get spliced into original trees do not need typechecking
Given this original source (from Defaults.scala):
...
lazy val sourceConfigPaths = Seq(
...
unmanagedSourceDirectories := Seq(scalaSource.value, javaSource.value),
...
)
...
After expansion of .value, this looks something like:
unmanagedSourceDirectories := Seq(
InputWrapper.wrapInit[File](scalaSource),
InputWrapper.wrapInit[File](javaSource)
)
where wrapInit is something like:
def wrapInit[T](a: Any): T
After expansion of := we have (approximately):
unmanagedSourceDirectories <<=
Instance.app( (scalaSource, javaSource) ) {
$p1: (File, File) =>
val $q4: File = $p1._1
val $q3: File = $p1._2
Seq($q3, $q4)
}
So,
a) `scalaSource` and `javaSource` are user trees that are spliced into a tuple constructor after being temporarily held in `InputWrapper.wrapInit`
b) the constructed tuple `(scalaSource, javaSource)` is passed as an argument to another method call (without going through a val or anything) and shouldn't need owner changing
c) the synthetic vals $q3 and $q4 need their owner properly set to the anonymous function
d) the references (Idents) $q3 and $q4 are spliced into the user tree `Seq(..., ...)` and their symbols need to be the Symbol for the referenced vals
e) generally, treeCopy needs to be used when substituting Trees in order to preserve attributes, like Types and Positions
changeOwner is called on the body `Seq($q3, $q4)` with the original owner sourceConfigPaths to be changed to the new anonymous function.
In this example, no owners are actually changed, but when the body contains vals or anonymous functions, they will.
An example of the compiler crash seen when the symbol of the references is not that of the vals:
symbol value $q3 does not exist in sbt.Defaults.sourceConfigPaths$lzycompute
at scala.reflect.internal.SymbolTable.abort(SymbolTable.scala:49)
at scala.tools.nsc.Global.abort(Global.scala:254)
at scala.tools.nsc.backend.icode.GenICode$ICodePhase.genLoadIdent$1(GenICode.scala:1038)
at scala.tools.nsc.backend.icode.GenICode$ICodePhase.scala$tools$nsc$backend$icode$GenICode$ICodePhase$$genLoad(GenICode.scala:1044)
at scala.tools.nsc.backend.icode.GenICode$ICodePhase$$anonfun$genLoadArguments$1.apply(GenICode.scala:1246)
at scala.tools.nsc.backend.icode.GenICode$ICodePhase$$anonfun$genLoadArguments$1.apply(GenICode.scala:1244)
...
Other problems with the synthetic tree when it is spliced under the original tree often result in type mismatches or some other compiler error that doesn't result in a crash.
If the owner is not changed correctly on the original tree that gets spliced under a synthetic tree, one way it can crash the compiler is:
java.lang.IllegalArgumentException: Could not find proxy for val $q23: java.io.File in List(value $q23, method apply, anonymous class $anonfun$globalCore$5, value globalCore, object Defaults, package sbt, package <root>) (currentOwner= value dir )
...
while compiling: /home/mark/code/sbt/main/src/main/scala/sbt/Defaults.scala
during phase: global=lambdalift, atPhase=constructors
...
last tree to typer: term $outer
symbol: value $outer (flags: <synthetic> <paramaccessor> <triedcooking> private[this])
symbol definition: private[this] val $outer: sbt.BuildCommon
tpe: <notype>
symbol owners: value $outer -> anonymous class $anonfun$87 -> value x$298 -> method derive -> class BuildCommon$class -> package sbt
context owners: value dir -> value globalCore -> object Defaults -> package sbt
...
The problem here is the difference between context owners and the proxy search chain.
Fix the problem with unstable names synthesized for existential
types (declared with underscore syntax) by renaming type variables
to a scheme that is guaranteed to be stable no matter where given
the existential type appears.
The sheme we use are De Bruijn-like indices that capture both position
of type variable declarion within single existential type and nesting
level of nested existential type. This way we properly support nested
existential types by avoiding name clashes.
In general, we can perform renamings like that because type variables
declared in existential types are scoped to those types so the renaming
operation is local.
There's a specs2 unit test covering instability of existential types.
The test is included in compiler-interface project and the build
definition has been modified to enable building and executing tests
in compiler-interface project. Some dependencies has been modified:
* compiler-interface project depends on api project for testing
(test makes us of SameAPI)
* dependency on junit has been introduced because it's needed
for `@RunWith` annotation which declares that specs2 unit
test should be ran with JUnitRunner
SameAPI has been modified to expose a method that allows us to
compare two definitions.
This commit also adds `ScalaCompilerForUnitTesting` class that allows
to compile a piece of Scala code and inspect information recorded
callbacks defined in `AnalysisCallback` interface. That class uses
existing ConsoleLogger for logging. I considered doing the same for
ConsoleReporter. There's LoggingReporter defined which would fit our
usecase but it's defined in compile subproject that compiler-interface
doesn't depend on so we roll our own.
ScalaCompilerForUnit testing uses TestCallback from compiler-interface
subproject for recording information passed to callbacks. In order
to be able to access TestCallback from compiler-interface
subproject I had to tweak dependencies between interface and
compiler-interface so test classes from the former are visible in the
latter. I also modified the TestCallback itself to accumulate apis in
a HashMap instead of a buffer of tuples for easier lookup.
An integration test has been added which tests scenario
mentioned in #823.
This commit fixes#823.
As pointed out by @harrah in #705, both beginSource and endSource are
not used in sbt internally for anything meaningful.
We've discussed an option of deprecating those methods but since they
are not doing anything meaningful Mark prefers to have compile-time
error in case somebody implements or calls those methods. I agree with
that hence removal.
Incremental compiler didn't have any explicit logic to handle
cancelled compilation so it would go into inconsistent state.
Specifically, what would happen is that it would treat cancelled
compilation as a compilation that finished normally and try to
produce a new Analysis object out of partial information collected
in AnalysisCallback. The most obvious outcome would be that the
new Analysis would contain latest hashes for source files. The
next time incremental compiler was asked to recompile the same files
that it didn't recompile due to cancelled compilation it would think
they were already successfully compiled and would do nothing.
We fix that problem by following the same logic that handles compilation
errors, cleans up partial results (produced class files) and makes sure
that no Analysis is created out of broken state.
We do that by introducing a new exception `CompileCancelled`
and throwing it at the same spot as an exception signalizing compilation
errors is being thrown. We also modify `IncrementalCompile` to
catch that exception and gracefully return as there was no compilation
invoked.
NOTE: In case there were compilation errors reported _before_
compilation cancellations was requested we'll still report them
using an old mechanism so partial errors are not lost in case
of cancelled compilation.
The startup script should set sbt.cygwin=true if running from cygwin.
This will set the terminal type properly for JLine if not already set.
If sbt.cygwin=false or unset and os.name includes "windows", JAnsi is
downloaded by the launcher and installed on standard out/err.
The value for jline.terminal is transformed from explicit jline.X to
the basic types "windows", "unix", or "none". Now that sbt uses JLine
2.0, these types are understood by both sbt's JLine and Scala's.
Older Scala versions shaded the classes but not the terminal property
so both couldn't be configured with a class name at the same time.
Set sbt.task.timings=true to print timings for tasks.
This sample progress handler shows how to get names for tasks and
deal with flatMapped tasks. There are still some tasks that make
it through as anonymous, which needs to be investigated.
A setting to provide a custom handler should come in a subsequent commit.