Ref #2634
updateSbtClassifiers uses an artificially created dependency graph set
in classifiersModule. The problem is that ivyScala instance is reused
from the outer scope that has the user project's scalaVersion as
demonstrated as follows:
scala> val is = (ivyScala in updateSbtClassifiers).eval
is: Option[sbt.IvyScala] =
Some(IvyScala(2.9.3,2.9.3,List(),true,false,true,org.scala-lang))
This change fixes#2686 by redefining ivyScala with scalaVersion and
scalaBinaryVersion scoped to updateSbtClassifiers task. The existing
scripted test was modified to reproduce the bug.
Def.make could take 10099ms for 100 subprojects. This would display
logs probably for projects with more than 10 subprojects, which might
pause for a few seconds during load.
LogManager implementation is modified to use ManagedLogger, which can swap out backing Appenders without re-creating the log instance.
The State was also changed to track `currentCommand: Option[Exec]`. `Exec` knows the origin of the command invocation, and using that we can now send the network-originated events only to the network clients.
Combined together, this implements log splitting between the sbt clients (channels).
This is the beginning of a lightweight client, which talks to the
server over Contraband-generated JSON API. Given that the server is
started on port 5173:
```
$ cd /tmp/bogus
$ sbt client localhost:5173
> compile
StatusEvent(Processing, Vector(compile, server))
StatusEvent(Ready, Vector())
StatusEvent(Processing, Vector(, server))
StatusEvent(Ready, Vector())
```
This adds support to generate synthetic subprojects from an auto plugin.
In addition, a method called `projectOrigin` is added to distinguish
Organic, BuildExtra, ProjectExtra, and GenericRoot.
Forward-port of #2717 and #2738
PR #2469 added build keys to tab completion, with the side effect of
considering as available candidate in key selection, thus making sbt
think that some inputs were ambiguous (e.g. `baseDirectory`): should it
apply to the current project or to the build level key?
This commit fixes this issue by improving the key selection:
- If there's no candidate, we return the default key
- If there's a single possible project level key, and zero or more
build level keys, then we select the project level key.
- If there are zero project level key, and a single build level key,
then we select the build level key
- If there are multiple candidates, sbt says that the input is
ambiguous.
Fixes#2707
sbt's shell provided completion only for keys that were relative to a
defined project, but didn't provide completion for keys that belong to
the build definition only.
This commit fixes this issue by defining a new kind of `Parser` (from
which completions are generated) which runs its input simultaneously on
distinct parsers. We now define a parser for project-level keys and
another parser for build-level keys. These two parsers are eventually
combined, and we get the completions of both parsers.
Fixessbt/sbt#2460
The definition of `DefinesClass` has changed from being a function
`File => String => Boolean` to just a function `String => Boolean`. The
changes in this commit reflect that fact.
Also, this commit implements a newly introduced PerClasspathEntryLookup.
When running a sbt script, this change lets the user on UNIX and
Windows platforms to use native file extensions like none/.sh or
.bat/.cmd. The code copies the file to the sbt boot/hash/src_managed
directory with a .scala extension.
Adds `trackInternalDependencies` and `exportToInternal` settings. These
can be used to control whether to trigger compilation of a dependent
subprojects when you call `compile`. Both keys will take one of three
values: `TrackLevel.NoTracking`, `TrackLevel.TrackIfMissing`, and
`TrackLevel.TrackAlways`. By default they are both set to
`TrackLevel.TrackAlways`.
When `trackInternalDependencies` is set to `TrackLevel.TrackIfMissing`,
sbt will no longer try to compile internal (inter-project) dependencies
automatically, unless there are no `*.class` files (or JAR file when
`exportJars` is `true`) in the output directory. When the setting is
set to `TrackLevel.NoTracking`, the compilation of internal
dependencies will be skipped. Note that the classpath will still be
appended, and dependency graph will still show them as dependencies.
The motivation is to save the I/O overhead of checking for the changes
on a build with many subprojects during development. Here's how to set
all subprojects to `TrackIfMissing`.
lazy val root = (project in file(".")).
aggregate(....).
settings(
inThisBuild(Seq(
trackInternalDependencies := TrackLevel.TrackIfMissing,
exportJars := true
))
)
The `exportToInternal` setting allows the dependee subprojects to opt
out of the internal tracking, which might be useful if you want to
track most subprojects except for a few. The intersection of the
`trackInternalDependencies` and `exportToInternal` settings will be
used to determine the actual track level. Here's an example to opt-out
one project:
lazy val dontTrackMe = (project in file("dontTrackMe")).
settings(
exportToInternal := TrackLevel.NoTracking
)
This addresses 0.13.10 regression, which currently warns users about
Maven incompatibility on a private configuration. This adds a config
class so the build user can control the level of the warning as well as
the target configuration to be monitored.
By default, we are only going to look at `Compile` and `Runtime`.
Fixes#2464 and Fixes#2465
appResolvers is a set of resolvers specified in the launcher
configuration.
This list fluctuates depending on the version of sbt, and sbt 0.13.10
meant to stabilize it by weeding out JCenter even when it includes it,
which failed when I applied the filter on the wrong list. This should
correct it.
Adds a new setting `useJCenter`, which is set to `false` by default.
When set to `true`, JCenter will be placed as the first external
resolver to find library dependencies.
The implementation of `externalResolvers` is changed to incorporate the
setting by calling `Resolver.reorganizeAppResolvers`. These changes
were required because `externalResolvers` uses whatever that's in the
launchconfig, which the build user may not upgrade.
Previously, the autoimports for globally defined plugins were not
imported for global configuration files, although they were imported for
project configuration files.
This patch causes an additional plugin discovery phase to happen during
global config evaluation, so that auto-plugins can be detected and their
imports subsequently included.
Forward-port of #2337.
As described in #2336, I noticed that when using 0.13 nightly from
Bintray, sbt was unable to locate the compiler source.
Since `updateSbtClassifiers` is already set up to download sbt's own
sources, the `ivyConfiguration` should be reused. However, `compilers`
is a derived task, which is unable to depend on a scoped key.
To workaround this I had to create a new key called
`bootIvyConfiguration`. This should now use the metabuild's resolvers
to download the compiler bridge source.
In order to restore reproducibility of builds, we no longer cascade over
the possibly available versions of the compiler bridge sources (a
specific version of the bridge sources may not be available one day, but
exist on the next day), but rather let the build definition configure
which module to use.
Fixessbt/sbt#2196
This allows for the same functionality that using SettingsDefinition in
Project#settings allows (specifying either bare Setting[_] or a Seq[Setting[_]])
to be available outside of the settings for a project, for instance when
defining a val.
In short, it allows:
val modelSettings = Def.settings(
sharedSettings,
libraryDependencies += foo
)
This commit introduces a mechanism that allows sbt to find the most
specific version of the compiler interface sources that exists using
Ivy.
For instance, when asked for a compiler interface for Scala 2.11.8-M2,
sbt will look for sources for:
- 2.11.8-M2 ;
- 2.11.8 ;
- 2.11 ;
- the default sources.
This commit also modifies the build definition by removing the
precompiled projects and configuring the compiler-interface project so
that it publishes its source artifacts in a Maven-friendly format.
This provides a convenience function for running an input task from the
extracted state. This is particularly useful for commands, release steps
etc that may want to run input tasks, like scripted.
This maintains old, existing ways of configurating project settings,
while adding the possibility to:
* Define add a sequence of settings, between other individual settings
* Pass a Seq[Setting[_]] to Project.settings without having to do
"varargs expansion", ie. ": _*"
Enumerations always need to start with the same number, otherwise
Scaladoc doesn't recognize them as enumeration (no idea why).
Code blocks need to be surrounded by {{{}}}. The indentation of the
larger code block is still not correctly displayed, but I couldn't find
out why.
A TODO comment is moved out of the Scaladoc comment.
This allows attaching unmanaged sources on `per-ScalaVersion` basis.
Sources from `src/{main,test}/scala-<scalaBinaryVersion>` is collected
in addition to `src/{main,test}/scala` by default.
Note that the treatment of `scalaBinaryVersion` would vary depending on
`scalaVersion` pre-2.10 and 2.10 onwards.
For example:
- with `scalaVersion` `2.9.3`, the `scalaBinaryVersion` is set to `2.9.3`
thus the files in `src/{main,test}/scala-2.9.3` as well
`src/{main,test}/scala` would be available in the `sources` list.
- with `scalaVersion` `2.10.1`, the `scalaBinaryVersion` is set to `2.10`
thus the files in `src/{main,test}/scala-2.10` as well
`src/{main,test}/scala` would be available in the `sources` list.
Adds project-level dependency exclusions:
excludeDependencies += "org.apache.logging.log4j"
excludeDependencies += "com.example" %% "foo"
In the first example, all artifacts from the organization
`"org.apache.logging.log4j"` are excluded from the managed dependency.
In the second example, artifacts with the organization `"com.example"`
and the name `"foo"` cross versioned to the current `scalaVersion` are
excluded.
- Fixes cached resolution being too verbose
- Adds new UpdateLogging named "Default"
- When global logLevel or logLevel in update is Debug, Default will
bump up to Full UpdateLogging.
* Force CompileSetup Equiv typeclass to use Equiv relations defined locally.
* Add toString methods on many of the incremental compiler datatypes.
* Remove remaining binary compatibility issues in Defaults.scala.
* Removed as many binary incompatibilities as I could find.
* Deprecating old APIs
* Attempt to construct new nomenclature that fits the design of Incremental API.
* Add as much documentation as I was comfortable writing (from my understanding of things).
This breaks the loading/saving of the incremental compiler analysis out
into separate task, thereby providing the necessary hooks for byte code
enhancement tasks to enhance bytecode and update the analysis before the
analysis gets stored to disk.
* Attempt to set publication date to last modified time, if the stars align
* Issue warning about undefined resolution behavior otherwise
* Add scripted test which exercises the NPE issue in resolving -SNAPSHOTs.
* Commit scalariform style edit in Act.scala
* After parsing and transforming the pom, check for pub date.
* If we don't have a pub date, try to grab lastModified from the URL
* If we can't do anything, issue a warning about the problem artifact.
The optimization, and therefore the change in the behavior
of Relation, is now needed by the class Logic, and cannot
be reverted.
This patch (written by Josh) therefore changes the
implementation of setAll() so that _1s is no longer used.
Fixes#1568.
This is the fallout of attempting not to leak config-file classes. Since
we DO NOT have valid incremental compiler for config-classes, we've instituted
workaround to ensure that regular incremental compilation *AND* our own
sbt loader do not hose each other. A full solution will eventually be
to find a way for .sbt files to participate in regular compilation of a
project.
For now, we fix the tracking of generated.class files throughout an sbt
"loadProjects" call, and then clean any .class files that were not
generated for a full reload. This commit just fixes
a minor tracking issue.
#1525 removes unused *.class files created by the metabuid.
The implementation currently prints out a long list of *.class files
it’s about to remove. Unless something bad happens, this information is
not very useful to the user, so I suggest we don’t display it.
Scala instance is added to the Ivy graph via autoLibraryDependency.
For metabuilds, scala-library is scoped under “provided” configuration,
which does not seem to evict modules on “compiled” configuration.
This commit turns overrideScalaVersion flag to true for the metabuilds,
so override rules are added for the following modules:
- scala-library
- scala-compiler
- scala-reflect
Fixes#1524
* Track generated .class files from Eval
* While loading, join all classfiles throughout Load, lots of bookkeeping.
* When a given build URI is done loading, we can look at its
project/target/config-classes directory and clean out any extra items
that are lingering from previous build definitions.
* Add TODOs to handle the same thing in global directories. Right now,
given the shared nature of these projects, it's a bit too dangerous to
do so.
Fixes#1455
* Add a mechanism to detect if a plugin clause includes/excludes
a particular plugin.
* Add a filter for our "enabling" clauses so that user-excluded
root plugins do not show up.
* Add a test to ensure this succeed.
UnresolvedWarning is moved back to IvyActions.scala where it belongs.
The mapping between ModuleID and SourcePosition is passed in as UnresolvedWarningConfiguration.
This is calculated once in Defaults using State and is cached to filesystem.
Unresolved dependency warning is moved to UnresolvedDependencyWarning class including
the fail path that was added in #1467.
To display the source position, I need to access the State, so I had to move the
error processing out of IvyActions and add UnresolvedDependencyWarning, which is
aware of State.
* Ensure the ++ command stores its changes on the sbt session.
* Make sure `session clear-all` will clear out ++ changes
* Validate that `set` command doesn't undo `++` changes
Note: There is some autogenerated Setting[_] delegate optimisation
work that could be done in the future.
* Migrate weak reference into logger class so we can test clearing it.
* Ensure new state.log is propoagted into settings on `set` command.
* Fix set test so that it ensures the sLog is relatively stable when
reloading on set command.
This implements all stories from https://github.com/sbt/sbt/wiki/User-Stories%3A-Conflict-Warning.
When scalaVersion is no longer effective an eviction warning will display.
Scala version was updated by one of library dependencies:
* org.scala-lang:scala-library:2.10.2 -> 2.10.3
When there're suspected incompatibility in directly depended Java libraries,
eviction warnings will display.
There may be incompatibilities among your library dependencies.
Here are some of the libraries that were evicted:
* commons-io:commons-io:1.4 -> 2.4
When there's suspected incompatiblity in directly depended Scala libraries,
eviction warnings will display.
There may be incompatibilities among your library dependencies.
Here are some of the libraries that were evicted:
* com.typesafe.akka:akka-actor_2.10:2.1.4 -> 2.3.4
This also adds 'evicted' task, which displays more detailed eviction warnings.
This adds a new setting key called updateOptions, which can enable
consolidated resolution for update task.
The consolidated resolution automatically generates an artificial
module descriptor based on the SHA-1 of all external dependencies.
This consolidates the Ivy resolution of identical Ivy dependency
graph across multiple subprojects.
This is how it's enabled:
updateOptions := updateOptions.value.withConsolidatedResolution(true)
* Expose the values PAST the Eval/sbt.compiler package.
* Find projects using the name API rather than finding htem and dropping all values immediately.
* Adds a test to make sure the .sbt values are discovered and set-able
* Expose .sbt values in Set command and inside BuildUnit methods.
* Ensure `consoleProject` can see build.sbt values.
* Add notes for where we can look in the build if we want to expose .sbt values between files.