Tracking of used names is a component needed by the name hashing
algorithm. The extraction and storage of used names is active only when
`AnalysisCallback.nameHashing` flag is enabled and it's disabled by
default.
This change constists of two parts:
1. Modification of Relations to include a new `names` relation
that allows us to track used names in Scala source files
2. Implementation of logic that extracts used names from Scala
compilation units (that correspond to Scala source files)
The first part is straightforward: add standard set of methods in
Relations (along with their implementation) and update the logic which
serializes and deserializes Relations.
The second part is implemented as tree walk that collects all symbols
associated with trees. For each symbol we extract a simple, decoded name
and add it to a set of extracted names. Check documentation of
`ExtractUsedNames` for discussion of implementation details.
The `ExtractUsedNames` comes with unit tests grouped in
`ExtractUsedNamesSpecification`. Check that class for details.
Given the fact that we fork while running tests in `compiler-interface`
subproject and tests are ran in parallel which involves allocating
multiple Scala compiler instances we had to bump the default memory limit.
This commit contains fixes for gkossakowski/sbt#3, gkossakowski/sbt#5 and
gkossakowski/sbt#6 issues.
The previous name of the flag was rather specific: it indicated
whether the new source dependency tracking is supported by given Relations
object. However, there will be more functionality added to Relations that
is specific to name hashing algorithm. Therefore it makes sense to name
the flag as just `nameHashing`.
I decided to rename Relations implementation classes to be more
consistent with the name of the flag and with the purpose they serve.
The flag in AnalysisCallback (and classes implementing it) has been
renamed as well.
Previously incremental compiler was extracting source code
dependencies by inspecting `CompilationUnit.depends` set. This set is
constructed by Scala compiler and it contains all symbols that given
compilation unit refers or even saw (in case of implicit search).
There are a few problems with this approach:
* The contract for `CompilationUnit.depend` is not clearly defined
in Scala compiler and there are no tests around it. Read: it's
not an official, maintained API.
* Improvements to incremental compiler require more context
information about given dependency. For example, we want to
distinguish between dependency on a class when you just select
members from it or inherit from it. The other example is that
we might want to know dependencies of a given class instead of
the whole compilation unit to make the invalidation logic more
precise.
That led to the idea of pushing dependency extracting logic to
incremental compiler side so it can evolve indepedently from Scala
compiler releases and can be refined as needed. We extract
dependencies of a compilation unit by walking a type-checked tree
and gathering symbols attached to them.
Specifically, the tree walk is implemented as a separate phase that
runs after pickler and extracts symbols from following tree nodes:
* `Import` so we can track dependencies on unused imports
* `Select` which is used for selecting all terms
* `Ident` used for referring to local terms, package-local terms
and top-level packages
* `TypeTree` which is used for referring to all types
Note that we do not extract just a single symbol assigned to `TypeTree`
node because it might represent a complex type that mentions
several symbols. We collect all those symbols by traversing the type
with CollectTypeTraverser. The implementation of the traverser is inspired
by `CollectTypeCollector` from Scala 2.10. The
`source-dependencies/typeref-only` test covers a scenario where the
dependency is introduced through a TypeRef only.
As pointed out by @harrah in #705, both beginSource and endSource are
not used in sbt internally for anything meaningful.
We've discussed an option of deprecating those methods but since they
are not doing anything meaningful Mark prefers to have compile-time
error in case somebody implements or calls those methods. I agree with
that hence removal.
Reduce AnalysisCallback interface:
remove discovery
simplify dependency notification methods
Use map of classpath entry to Analysis for locating
source API for external dependencies
Handle classpath changes by locating class
on classpath and either locating Analysis/Source
as above or comparing Stamp. This requires storing
the class name of a binary dependency now.
Make this process aware of full classpath, including
boot classpath
* Added the top-level interface project for communicating across scala versions within a jvm.
* Added plugin project containing analysis compiler plugin
* Added component compiler to build xsbt components against required version of Scala on the fly
* Added interface to compiler that runs in the same version of Scala
* Added frontend that compiles against a given version of Scala with or without analysis.