With the current supershell implementation, the progress display
flickers when there is heavy console logging during task evaluation.
This is because the console appender clears out the task progress and it
isn't restored until the next periodic super shell report (which
runs every 100ms by default). To remove the flickering, I reworked the
implementation to interlace the log lines with progress reports. In
order to ensure that the log lines remained contiguous, I had to apply
padding at the bottom of the supershell region whenever the new report
contained fewer lines than the old report. The report shifts down as new
log lines are appended. This isn't optimal, but I think removing
the flickering while preserving contiguous log lines is worth it.
It is redundant and slow to restamp all of the dependency classpath
files when they have likely already been stamped by a subproject.
For the classfiles of subprojects, we fill the managedFileStampCache
with the values returned by the zinc compile analysis product stamps.
This is why they are probably already in the managed cache and should be
up to date so long as zinc is working correctly.
I noticed that various outputFileStamps tasks were showing up in the
task timing report when I ran Test / definedTests in the main sbt project.
That task became about 400ms faster after this change.
I noticed that the reports generated when using sbt.task.timings=true
made very little sense. They were displaying timings for tests that
couldn't possibly have been run. I tracked this down to the TaskTimings
be stored in the progressReport setting which meant they were reused
across multiple task runs. After this change, the reports made a lot
more sense.
The tab completions for scripted have long been broken. They display a
number of non-sensical pages like '*0of9' or '*1of0'. Some of the
multiparser changes seem to have caused these invalid
In 5eab9df0df, I updated the
outputFileStamps task to compute all of the stamps for a directory
recursively if an output file is a directory. Prior to that, it had only
computed the stamp for the directory itself. This caused a significant
performance regression in creating the test classloader because it was
computing the last modified time for all of the classfiles in the class path.
The test for 5000 source files in
https://github.com/eatkins/scala-build-watch-performance was running roughly
400ms slower due to this regression.
Ref https://github.com/sbt/sbt/issues/4905
This is a companion PR to https://github.com/sbt/librarymanagement/pull/318.
This will print the following warnings:
```
sbt:hello> compile
[warn] insecure HTTP request is deprecated 'Artifact(jsoup, jar, jar, None, Vector(), Some(http://jsoup.org/packages/jsoup-1.9.1.jar), Map(), None, false)'; switch to HTTPS or opt-in using from(url(...), allowInsecureProtocol = true) on ModuleID or .withAllowInsecureProtocol(true) on Artifact
[warn] insecure HTTP request is deprecated 'http://repo.typesafe.com/typesafe/releases/'; switch to HTTPS or opt-in as ("Typesafe Releases" at "http://repo.typesafe.com/typesafe/releases/").withAllowInsecureProtocol(true)
[warn] insecure HTTP request is deprecated 'http://repo.typesafe.com/typesafe/releases/'; switch to HTTPS or opt-in as ("Typesafe Releases" at "http://repo.typesafe.com/typesafe/releases/").withAllowInsecureProtocol(true)
[warn] insecure HTTP request is deprecated 'http://repo.typesafe.com/typesafe/releases/'; switch to HTTPS or opt-in as ("Typesafe Releases" at "http://repo.typesafe.com/typesafe/releases/").withAllowInsecureProtocol(true)
[warn] insecure HTTP request is deprecated 'Patterns(ivyPatterns=Vector(), artifactPatterns=Vector(http://repo.typesafe.com/typesafe/releases/[organisation]/[module](_[scalaVersion])(_[sbtVersion])/[revision]/[artifact]-[revision](-[classifier]).[ext]), isMavenCompatible=true, descriptorOptional=false, skipConsistencyCheck=false)'; switch to HTTPS or opt-in as Resolver.url("Typesafe Ivy Releases", url(...)).withAllowInsecureProtocol(true)
[warn] insecure HTTP request is deprecated 'Patterns(ivyPatterns=Vector(), artifactPatterns=Vector(http://repo.typesafe.com/typesafe/releases/[organisation]/[module](_[scalaVersion])(_[sbtVersion])/[revision]/[artifact]-[revision](-[classifier]).[ext]), isMavenCompatible=true, descriptorOptional=false, skipConsistencyCheck=false)'; switch to HTTPS or opt-in as Resolver.url("Typesafe Ivy Releases", url(...)).withAllowInsecureProtocol(true)
[warn] insecure HTTP request is deprecated 'Patterns(ivyPatterns=Vector(), artifactPatterns=Vector(http://repo.typesafe.com/typesafe/releases/[organisation]/[module](_[scalaVersion])(_[sbtVersion])/[revision]/[artifact]-[revision](-[classifier]).[ext]), isMavenCompatible=true, descriptorOptional=false, skipConsistencyCheck=false)'; switch to HTTPS or opt-in as Resolver.url("Typesafe Ivy Releases", url(...)).withAllowInsecureProtocol(true)
```
I inadvertently changed the semantics of clean so that cleanFiles would
only delete the file if it was a regular file. In older versions of sbt,
if a file in cleanFiles was a directory, it would be recursively
deleted.
During refactoring of Continuous, I inadvertently changed the semantics
of `~` so that all multi commands were run regardless of whether or not
an earlier command had failed. I fixed the issue and added a regression
test.
It was reported in https://github.com/sbt/sbt/issues/4973 that the
scalaVersion setting was not being correctly set in a script running
with ScriptMain using 1.3.0-RC4. Using git bisect, I found that the
issue was introduced in
73cfd7c8bd.
That commit manipulates the classloaders passed in by the launcher, but
only for the xMain entry point. I found that the script ran correctly if
I updated the classloader for ScriptedMain as well.
After these changes, the example script in #4973 correctly prints 2.13.0
for the scala version with a locally published sbt.
Bonus: rename xMainImpl object xMain. It was private[sbt] anyway.
https://github.com/sbt/sbt/issues/4986 reported that +compile would
always recompile everything in the project even when the sources hadn't
changed. This was because the dependency classpath was changing between
calls to compile, which caused the external hooks cache introduced in
32a6d0d5d7 to invalidate the scala
library. To fix this, I cache the file stamps on a per scala version
basis. I added a scripted test that checks that there is no
recompilation in two consecutive calls to `+compile` in a multi scala
version build. It failed prior to these changes.