This commit makes it possible for the sbt server to render the same ui
to multiple clients. The network client ui should look nearly identical
to the console ui except for the log messages about the experimental
client.
The way that it works is that it associates a ui thread with each
terminal. Whenever a command starts or completes, callbacks are invoked
on the various channels to update their ui state. For example, if there
are two clients and one of them runs compile, then the prompt is changed
from AskUser to Running for the terminal that initiated the command
while the other client remains in the AskUser state. Whenever the client
changes uses ui states, the existing thread is terminated if it is
running and a new thread is begun.
The UITask formalizes this process. It is based on the AskUser class
from older versions of sbt. In fact, there is an AskUserTask which is
very similar. It uses jline to read input from the terminal (which could
be a network terminal). When it gets a line, it submits it to the
CommandExchange and exits. Once the next command is run (which may or
may not be the command it submitted), the ui state will be reset.
The debug, info, warn and error commands should work with the multi
client ui. When run, they set the log level globally, not just for the
client that set the level.
In order to support a multi-client sbt server ux, we need to factor
`Terminal` out into a class instead of a singleton. Each terminal provides
and outputstream and inputstream. In all of the places where we were
previously relying on the `Terminal` singleton we need to update the
code to use `Terminal.get`, which will redirect io to the terminal whose
command is currently running.
This commit does not implement the server side ui for network clients.
It is just preparatory work for the multi-client ui.
The Terminal implementations have thread safe access to the output
stream. For this reason, I had to remove the sychronization on the
ConsoleOut lockObject. There were code paths that led to deadlock when
synchronizing on the lockObject.
This commit makes it so that the scalaVersion, sbtVersion and classpath
are always passed in as parameters to any method that creates an sbt
server -- either for scripted or for the sbt server tests. By making
that change, I was able to change the implementation of scripted in the
sbt project to use publishLocalBin instead of publishLocal. This makes
the scripted tests start much faster (doc alone can easily take 30
second) with messing with the build to exclude slow tasks from
publishLocal.
As part of this change, I removed the test dependency on scriptedSbtRedux for
sbtProj and instead had scriptedSbtRedux depend on sbtProj. This allowed
me to remove some messy LocalProject logic in the resourceGenerators for
scriptedSbtReduxProj. I also had to remove a number of imports in the
scriptedSbtReduxProj because the definitions available in the sbt
package object became available.
I also removed the dependency on sbt-buildinfo and instead pass the
values from the build into test classes using scalatest properties. I
ran into a number of minor issues with the build info plugin, namely
that I couldn't get fullClasspathAsJars to reliably run as a BuildInfo
key. It also is somewhat more clear to me to just rely on the built in
scalatest functionality. The big drawback is that the scalatest
properties can only be strings, but that restriction isn't really a
problem here (strangely the TestData structure has a field configMap
which is effectively Map[String, Any] but Any is actually always String
given how the TestData is created as part of framework initialization.
Since scripted no longer publishes, scriptedUnpublished is now
effectively an alias for scripted.
To get publishLocalBin working, I had to copy private code from
IvyXml.scala into PublishBinPlugin. Once we publish a new version of
sbt, we can remove the copied code and invoke IvyXml.makeIvyXmlBefore
directly.
The main reason for having both the RunFromSourceMain and LauncherBased
scripted tests was that RunFromSourceMain would fail for any test that
ended up accessing the sbt.Package$ object. This commit fixes this bug
by reworking the classloader generated by RunFromSourceMain to invoke
sbt, switching from the classpath to jar classpath (by setting exportJars =
true) and entering sbt by calling `new xMain().run` rather than
`xMain.run`.
The reason for switching to the jar classpath is that the jvm seems to
have issues when there are two classes provided in different directories
that have the same case insensitive name, e.g. `sbt.package$` and
`sbt.Package$`. If those classes are instead provided in different
jars, the jvm seems to be able to handle it.
Exporting the jars is not enough though, I had to rework the
ClassLoader created in the launch method to have a layout that was
recognized by xMainConfiguration. I reimplemented the AppConfiguration
in java so that it could bootstrap itself in a single jar classloader
(the only needed jar is the Scripted.
If we export the jars in the build, then the NoClassDefErrors for
`sbt.Package$` go away during scripted tests using RunSourceFromMain.
This might make running tests in subprojects slightly slower but I think
its a worthy tradeoff.
In order for the sbt launcher to be able to resolve a local version of
sbt, we must publish the main jar, the sources jar, the doc jar, the pom
and an ivy.xml file. The publish and publishLocal tasks are wired in
IvyXml.scala to create an ivy.xml file before running publish. This
wasn't done with publishLocalBin which made it not work when no ivy.xml
file was already present (which was the case after running clean).
The swoval javafmt plugin uses the google java formatter (which I
believe is the only widely used java formatter) to format source files.
It does not provide an automatic javafmtOnCompile method like the
scalafmt plugin so I had to manually implement that functionality. In
general the java formatter is much faster than scalafmt so the impact of
having javafmtOnCompile set to true is very low.
Intellij has problems with older versions of scalafmt (see
https://github.com/scalameta/scalafmt/issues/1630). Not sure if this a
scalafmt issue or an intellij issue. I pinned the edition to October
2019 to avoid reformatting tons of files. Once development stabilizes,
we may wish to drop the edition but, for now, it's disruptive to change
the formatting.
The completions were generating page numbers that didn't make sense if
there were a small number of scripted tests. For example, suppose that
there were only two tests defined, it would generate *1of3 *2of3 and
*3of3 completions even though there weren't even three tests.
To avoid reliance on jvm global variables, we need to share the super
shell state with each of the console appenders that write to the console
out. We only set the progress state for the console appenders for the
screen. This prevents messages that are below the global logging level
from modifying the progress state without preventing them from being
written to other appenders.
The ability to set the ProgressState for each of the console appenders
is added in a companion util PR.
I verified that the test output of io/test was correctly written to the
streams after this change (there were no progress lines in the output).
The tab completions for scripted have long been broken. They display a
number of non-sensical pages like '*0of9' or '*1of0'. Some of the
multiparser changes seem to have caused these invalid
Ref https://github.com/sbt/sbt/issues/4905
This is a companion PR to https://github.com/sbt/librarymanagement/pull/318.
This will print the following warnings:
```
sbt:hello> compile
[warn] insecure HTTP request is deprecated 'Artifact(jsoup, jar, jar, None, Vector(), Some(http://jsoup.org/packages/jsoup-1.9.1.jar), Map(), None, false)'; switch to HTTPS or opt-in using from(url(...), allowInsecureProtocol = true) on ModuleID or .withAllowInsecureProtocol(true) on Artifact
[warn] insecure HTTP request is deprecated 'http://repo.typesafe.com/typesafe/releases/'; switch to HTTPS or opt-in as ("Typesafe Releases" at "http://repo.typesafe.com/typesafe/releases/").withAllowInsecureProtocol(true)
[warn] insecure HTTP request is deprecated 'http://repo.typesafe.com/typesafe/releases/'; switch to HTTPS or opt-in as ("Typesafe Releases" at "http://repo.typesafe.com/typesafe/releases/").withAllowInsecureProtocol(true)
[warn] insecure HTTP request is deprecated 'http://repo.typesafe.com/typesafe/releases/'; switch to HTTPS or opt-in as ("Typesafe Releases" at "http://repo.typesafe.com/typesafe/releases/").withAllowInsecureProtocol(true)
[warn] insecure HTTP request is deprecated 'Patterns(ivyPatterns=Vector(), artifactPatterns=Vector(http://repo.typesafe.com/typesafe/releases/[organisation]/[module](_[scalaVersion])(_[sbtVersion])/[revision]/[artifact]-[revision](-[classifier]).[ext]), isMavenCompatible=true, descriptorOptional=false, skipConsistencyCheck=false)'; switch to HTTPS or opt-in as Resolver.url("Typesafe Ivy Releases", url(...)).withAllowInsecureProtocol(true)
[warn] insecure HTTP request is deprecated 'Patterns(ivyPatterns=Vector(), artifactPatterns=Vector(http://repo.typesafe.com/typesafe/releases/[organisation]/[module](_[scalaVersion])(_[sbtVersion])/[revision]/[artifact]-[revision](-[classifier]).[ext]), isMavenCompatible=true, descriptorOptional=false, skipConsistencyCheck=false)'; switch to HTTPS or opt-in as Resolver.url("Typesafe Ivy Releases", url(...)).withAllowInsecureProtocol(true)
[warn] insecure HTTP request is deprecated 'Patterns(ivyPatterns=Vector(), artifactPatterns=Vector(http://repo.typesafe.com/typesafe/releases/[organisation]/[module](_[scalaVersion])(_[sbtVersion])/[revision]/[artifact]-[revision](-[classifier]).[ext]), isMavenCompatible=true, descriptorOptional=false, skipConsistencyCheck=false)'; switch to HTTPS or opt-in as Resolver.url("Typesafe Ivy Releases", url(...)).withAllowInsecureProtocol(true)
```
Fixes#4964
Together with https://github.com/sbt/util/pull/211, this brings back stack trace supression for custom tasks by default.
Debug levels logs are available in `last`, and this prints a message informing the user of the fact. BLUE on dark background is difficult to read, so I am chaning the color hilight to MAGENTA.
This new versions layers the classpath so that the
test-interface-1.0.jar appears before the scala library. This allows us
to bypass reconstructing the AppConfiguration at startup which reduces
the metaspace utilization of sbt.