task setting macros for :=, +=, ++=

also, bump to 2.10.0-M6
This commit is contained in:
Mark Harrah 2012-07-31 11:52:10 -04:00
commit 087e386c99
6 changed files with 545 additions and 0 deletions

View File

@ -0,0 +1,104 @@
package sbt
package appmacro
import scala.reflect._
import makro._
import scala.tools.nsc.Global
object ContextUtil {
/** Constructs an object with utility methods for operating in the provided macro context `c`.
* Callers should explicitly specify the type parameter as `c.type` in order to preserve the path dependent types. */
def apply[C <: Context with Singleton](c: C): ContextUtil[C] = new ContextUtil(c)
}
/** Utility methods for macros. Several methods assume that the context's universe is a full compiler (`scala.tools.nsc.Global`).
* This is not thread safe due to the underlying Context and related data structures not being thread safe.
* Use `ContextUtil[c.type](c)` to construct. */
final class ContextUtil[C <: Context with Singleton](val ctx: C)
{
import ctx.universe.{Apply=>ApplyTree,_}
val alistType = ctx.typeOf[AList[KList]]
val alist: Symbol = alistType.typeSymbol.companionSymbol
val alistTC: Type = alistType.typeConstructor
/** Modifiers for a local val.*/
val localModifiers = Modifiers(NoFlags)
def getPos(sym: Symbol) = if(sym eq null) NoPosition else sym.pos
/** Constructs a unique term name with the given prefix within this Context.
* (The current implementation uses Context.fresh, which increments*/
def freshTermName(prefix: String) = newTermName(ctx.fresh("$" + prefix))
def typeTree(tpe: Type) = TypeTree().setType(tpe)
/** Constructs a new, local ValDef with the given Type, a unique name,
* the same position as `sym`, and an empty implementation (no rhs). */
def freshValDef(tpe: Type, sym: Symbol): ValDef =
{
val vd = localValDef(typeTree(tpe), EmptyTree)
vd setPos getPos(sym)
vd
}
/** Constructs a ValDef with local modifiers and a unique name. */
def localValDef(tpt: Tree, rhs: Tree): ValDef =
ValDef(localModifiers, freshTermName("q"), tpt, rhs)
/** Constructs a tuple value of the right TupleN type from the provided inputs.*/
def mkTuple(args: List[Tree]): Tree =
{
val global: Global = ctx.universe.asInstanceOf[Global]
global.gen.mkTuple(args.asInstanceOf[List[global.Tree]]).asInstanceOf[ctx.universe.Tree]
}
/** Creates a new, synthetic type variable with the specified `owner`. */
def newTypeVariable(owner: Symbol): Symbol =
{
val global: Global = ctx.universe.asInstanceOf[Global]
owner.asInstanceOf[global.Symbol].newSyntheticTypeParam().asInstanceOf[ctx.universe.Symbol]
}
/** The type representing the type constructor `[X] X` */
val idTC: Type =
{
val tvar = newTypeVariable(NoSymbol)
polyType(tvar :: Nil, refVar(tvar))
}
/** Constructs a new, synthetic type variable that is a type constructor. For example, in type Y[L[x]], L is such a type variable. */
def newTCVariable(owner: Symbol): Symbol =
{
val global: Global = ctx.universe.asInstanceOf[Global]
val tc = owner.asInstanceOf[global.Symbol].newSyntheticTypeParam()
val arg = tc.newSyntheticTypeParam("x", 0L)
tc.setInfo(global.PolyType(arg :: Nil, global.TypeBounds.empty)).asInstanceOf[ctx.universe.Symbol]
}
/** Returns the Symbol that references the statically accessible singleton `i`. */
def singleton[T <: AnyRef with Singleton](i: T)(implicit it: ctx.TypeTag[i.type]): Symbol =
it.tpe match {
case SingleType(_, sym) if !sym.isFreeTerm && sym.isStatic => sym
case x => error("Instance must be static (was " + x + ").")
}
/** Constructs a Type that references the given type variable. */
def refVar(variable: Symbol): Type = typeRef(NoPrefix, variable, Nil)
/** Returns the symbol for the non-private method named `name` for the class/module `obj`. */
def method(obj: Symbol, name: String): Symbol = {
val global: Global = ctx.universe.asInstanceOf[Global]
obj.asInstanceOf[global.Symbol].info.nonPrivateMember(global.newTermName(name)).asInstanceOf[ctx.universe.Symbol]
}
/** Returns a Type representing the type constructor tcp.<name>. For example, given
* `object Demo { type M[x] = List[x] }`, the call `extractTC(Demo, "M")` will return a type representing
* the type constructor `[x] List[x]`.
**/
def extractTC(tcp: AnyRef with Singleton, name: String)(implicit it: ctx.TypeTag[tcp.type]): ctx.Type =
{
val global: Global = ctx.universe.asInstanceOf[Global]
val itTpe = it.tpe.asInstanceOf[global.Type]
val m = itTpe.nonPrivateMember(global.newTypeName(name))
val tc = itTpe.memberInfo(m).asInstanceOf[ctx.universe.Type]
assert(tc != NoType && tc.isHigherKinded, "Invalid type constructor: " + tc)
tc
}
}

View File

@ -0,0 +1,260 @@
package sbt
package appmacro
import Classes.Applicative
import Types.Id
/** The separate hierarchy from Applicative/Monad is for two reasons.
*
* 1. The type constructor is represented as an abstract type because a TypeTag cannot represent a type constructor directly.
* 2. The applicative interface is uncurried.
*/
trait Instance
{
type M[x]
def app[K[L[x]], Z](in: K[M], f: K[Id] => Z)(implicit a: AList[K]): M[Z]
def map[S,T](in: M[S], f: S => T): M[T]
def pure[T](t: () => T): M[T]
}
trait Convert
{
def apply[T: c.TypeTag](c: scala.reflect.makro.Context)(in: c.Tree): c.Tree
}
trait MonadInstance extends Instance
{
def flatten[T](in: M[M[T]]): M[T]
}
object InputWrapper
{
def wrap[T](in: Any): T = error("This method is an implementation detail and should not be referenced.")
}
import scala.reflect._
import makro._
object Instance
{
final val DynamicDependencyError = "Illegal dynamic dependency."
final val DynamicReferenceError = "Illegal dynamic reference."
final val ApplyName = "app"
final val FlattenName = "flatten"
final val PureName = "pure"
final val MapName = "map"
final val InstanceTCName = "M"
final val WrapName = "wrap"
final class Input[U <: Universe with Singleton](val tpe: U#Type, val expr: U#Tree, val local: U#ValDef)
/** Implementation of a macro that provides a direct syntax for applicative functors and monads.
* It is intended to be used in conjunction with another macro that conditions the inputs.
*
* This method processes the Tree `t` to find inputs of the form `InputWrapper.wrap[T]( input )`
* This form is typically constructed by another macro that pretends to be able to get a value of type `T`
* from a value convertible to `M[T]`. This `wrap(input)` form has two main purposes.
* First, it identifies the inputs that should be transformed.
* Second, it allows the input trees to be wrapped for later conversion into the appropriate `M[T]` type by `convert`.
* This wrapping is necessary because applying the first macro must preserve the original type,
* but it is useful to delay conversion until the outer, second macro is called. The `wrap` method accomplishes this by
* allowing the original `Tree` and `Type` to be hidden behind the raw `T` type. This method will remove the call to `wrap`
* so that it is not actually called at runtime.
*
* Each `input` in each expression of the form `InputWrapper.wrap[T]( input )` is transformed by `convert`.
* This transformation converts the input Tree to a Tree of type `M[T]`.
* The original wrapped expression `wrap(input)` is replaced by a reference to a new local `val $x: T`, where `$x` is a fresh name.
* These converted inputs are passed to `builder` as well as the list of these synthetic `ValDef`s.
* The `TupleBuilder` instance constructs a tuple (Tree) from the inputs and defines the right hand side of the vals
* that unpacks the tuple containing the results of the inputs.
*
* The constructed tuple of inputs and the code that unpacks the results of the inputs are then passed to the `i`,
* which is an implementation of `Instance` that is statically accessible.
* An Instance defines a applicative functor associated with a specific type constructor and, if it implements MonadInstance as well, a monad.
* Typically, it will be either a top-level module or a stable member of a top-level module (such as a val or a nested module).
* The `with Singleton` part of the type verifies some cases at macro compilation time,
* while the full check for static accessibility is done at macro expansion time.
* Note: Ideally, the types would verify that `i: MonadInstance` when `t.isRight`.
* With the various dependent types involved, this is not worth it.
*
* The `t` argument is the argument of the macro that will be transformed as described above.
* If the macro that calls this method is for a multi-input map (app followed by map),
* `t` should be the argument wrapped in Left.
* If this is for multi-input flatMap (app followed by flatMap),
* this should be the argument wrapped in Right.
*/
def contImpl[T: c.TypeTag](c: Context, i: Instance with Singleton, convert: Convert, builder: TupleBuilder)(t: Either[c.Expr[T], c.Expr[i.M[T]]])(
implicit tt: c.TypeTag[T], mt: c.TypeTag[i.M[T]], it: c.TypeTag[i.type]): c.Expr[i.M[T]] =
{
import c.universe.{Apply=>ApplyTree,_}
import scala.tools.nsc.Global
// Used to access compiler methods not yet exposed via the reflection/macro APIs
val global: Global = c.universe.asInstanceOf[Global]
val util = ContextUtil[c.type](c)
val mTC: Type = util.extractTC(i, InstanceTCName)
// the tree for the macro argument
val (tree, treeType) = t match {
case Left(l) => (l.tree, tt.tpe.normalize)
case Right(r) => (r.tree, mt.tpe.normalize)
}
val instanceSym = util.singleton(i)
// A Tree that references the statically accessible Instance that provides the actual implementations of map, flatMap, ...
val instance = Ident(instanceSym)
val parameterModifiers = Modifiers(Flag.PARAM)
val wrapperSym = util.singleton(InputWrapper)
val wrapMethodSymbol = util.method(wrapperSym, WrapName)
def isWrapper(fun: Tree) = fun.symbol == wrapMethodSymbol
type In = Input[c.universe.type]
var inputs = List[In]()
// constructs a ValDef with a parameter modifier, a unique name, with the provided Type and with an empty rhs
def freshMethodParameter(tpe: Type): ValDef =
ValDef(parameterModifiers, freshTermName("p"), typeTree(tpe), EmptyTree)
def freshTermName(prefix: String) = newTermName(c.fresh("$" + prefix))
def typeTree(tpe: Type) = TypeTree().setType(tpe)
// constructs a function that applies f to each subtree of the input tree
def visitor(f: Tree => Unit): Tree => Unit =
{
val v: Transformer = new Transformer {
override def transform(tree: Tree): Tree = { f(tree); super.transform(tree) }
}
(tree: Tree) => v.transform(tree)
}
/* Local definitions in the macro. This is used to ensure
* references are to M instances defined outside of the macro call.*/
val defs = new collection.mutable.HashSet[Symbol]
// a reference is illegal if it is to an M instance defined within the scope of the macro call
def illegalReference(sym: Symbol): Boolean =
sym != null && sym != NoSymbol && defs.contains(sym)
// a function that checks the provided tree for illegal references to M instances defined in the
// expression passed to the macro and for illegal dereferencing of M instances.
val checkQual = visitor {
case s @ ApplyTree(fun, qual :: Nil) => if(isWrapper(fun)) c.error(s.pos, DynamicDependencyError)
case id @ Ident(name) if illegalReference(id.symbol) => c.error(id.pos, DynamicReferenceError)
case _ => ()
}
// adds the symbols for all non-Ident subtrees to `defs`.
val defSearch = visitor {
case _: Ident => ()
case tree => if(tree.symbol ne null) defs += tree.symbol;
}
// transforms the original tree into calls to the Instance functions pure, map, ...,
// resulting in a value of type M[T]
def makeApp(body: Tree): Tree =
inputs match {
case Nil => pure(body)
case x :: Nil => single(body, x)
case xs => arbArity(body, xs)
}
// no inputs, so construct M[T] via Instance.pure or pure+flatten
def pure(body: Tree): Tree =
{
val typeApplied = TypeApply(Select(instance, PureName), typeTree(treeType) :: Nil)
val p = ApplyTree(typeApplied, Function(Nil, body) :: Nil)
if(t.isLeft) p else flatten(p)
}
// m should have type M[M[T]]
// the returned Tree will have type M[T]
def flatten(m: Tree): Tree =
{
val typedFlatten = TypeApply(Select(instance, FlattenName), typeTree(tt.tpe) :: Nil)
ApplyTree(typedFlatten, m :: Nil)
}
// calls Instance.map or flatmap directly, skipping the intermediate Instance.app that is unnecessary for a single input
def single(body: Tree, input: In): Tree =
{
val variable = input.local
val param = ValDef(parameterModifiers, variable.name, variable.tpt, EmptyTree)
val typeApplied = TypeApply(Select(instance, MapName), variable.tpt :: typeTree(treeType) :: Nil)
val mapped = ApplyTree(typeApplied, input.expr :: Function(param :: Nil, body) :: Nil)
if(t.isLeft) mapped else flatten(mapped)
}
// calls Instance.app to get the values for all inputs and then calls Instance.map or flatMap to evaluate the body
def arbArity(body: Tree, inputs: List[In]): Tree =
{
val result = builder.make(c)(mTC, inputs)
val param = freshMethodParameter( appliedType(result.representationC, util.idTC :: Nil) )
val bindings = result.extract(param)
val f = Function(param :: Nil, Block(bindings, body))
val ttt = typeTree(treeType)
val typedApp = TypeApply(Select(instance, ApplyName), typeTree(result.representationC) :: ttt :: Nil)
val app = ApplyTree(ApplyTree(typedApp, result.input :: f :: Nil), result.alistInstance :: Nil)
if(t.isLeft) app else flatten(app)
}
// called when transforming the tree to add an input
// for `qual` of type M[A], and a selection qual.value,
// the call is addType(Type A, Tree qual)
// the result is a Tree representing a reference to
// the bound value of the input
def addType(tpe: Type, qual: Tree): Tree =
{
checkQual(qual)
val vd = util.freshValDef(tpe, qual.symbol)
inputs ::= new Input(tpe, qual, vd)
Ident(vd.name)
}
// the main tree transformer that replaces calls to InputWrapper.wrap(x) with
// plain Idents that reference the actual input value
object appTransformer extends Transformer
{
override def transform(tree: Tree): Tree =
tree match
{
case ApplyTree(TypeApply(fun, t :: Nil), qual :: Nil) if isWrapper(fun) =>
val tag = c.TypeTag(t.tpe)
addType(t.tpe, convert(c)(qual)(tag) )
case _ => super.transform(tree)
}
}
// collects all definitions in the tree. used for finding illegal references
defSearch(tree)
// applies the transformation
// resetting attributes: a) must be local b) must be done
// on the transformed tree and not the wrapped tree or else there are obscure errors
val tr = makeApp( c.resetLocalAttrs(appTransformer.transform(tree)) )
c.Expr[i.M[T]](tr)
}
import Types._
implicit def applicativeInstance[A[_]](implicit ap: Applicative[A]): Instance { type M[x] = A[x] } = new Instance
{
type M[x] = A[x]
def app[ K[L[x]], Z ](in: K[A], f: K[Id] => Z)(implicit a: AList[K]) = a.apply[A,Z](in, f)
def map[S,T](in: A[S], f: S => T) = ap.map(f, in)
def pure[S](s: () => S): M[S] = ap.pure(s())
}
type AI[A[_]] = Instance { type M[x] = A[x] }
def compose[A[_], B[_]](implicit a: AI[A], b: AI[B]): Instance { type M[x] = A[B[x]] } = new Composed[A,B](a,b)
// made a public, named, unsealed class because of trouble with macros and inference when the Instance is not an object
class Composed[A[_], B[_]](a: AI[A], b: AI[B]) extends Instance
{
type M[x] = A[B[x]]
def pure[S](s: () => S): A[B[S]] = a.pure(() => b.pure(s))
def map[S,T](in: M[S], f: S => T): M[T] = a.map(in, (bv: B[S]) => b.map(bv, f))
def app[ K[L[x]], Z ](in: K[M], f: K[Id] => Z)(implicit alist: AList[K]): A[B[Z]] =
{
val g: K[B] => B[Z] = in => b.app[K, Z](in, f)
type Split[ L[x] ] = K[ (L B)#l ]
a.app[Split, B[Z]](in, g)(AList.asplit(alist))
}
}
}

View File

@ -0,0 +1,58 @@
package sbt
package appmacro
import Types.Id
import scala.tools.nsc.Global
import scala.reflect._
import makro._
/** A `TupleBuilder` that uses a KList as the tuple representation.*/
object KListBuilder extends TupleBuilder
{
def make(c: Context)(mt: c.Type, inputs: Inputs[c.universe.type]): BuilderResult[c.type] = new BuilderResult[c.type]
{
val ctx: c.type = c
val util = ContextUtil[c.type](c)
import c.universe.{Apply=>ApplyTree,_}
import util._
val knilType = c.typeOf[KNil]
val knil = Ident(knilType.typeSymbol.companionSymbol)
val kconsTpe = c.typeOf[KCons[Int,KNil,List]]
val kcons = kconsTpe.typeSymbol.companionSymbol
val mTC: Type = mt.asInstanceOf[c.universe.Type]
val kconsTC: Type = kconsTpe.typeConstructor
/** This is the L in the type function [L[x]] ... */
val tcVariable: Symbol = newTCVariable(NoSymbol)
/** Instantiates KCons[h, t <: KList[L], L], where L is the type constructor variable */
def kconsType(h: Type, t: Type): Type =
appliedType(kconsTC, h :: t :: refVar(tcVariable) :: Nil)
def bindKList(prev: ValDef, revBindings: List[ValDef], params: List[ValDef]): List[ValDef] =
params match
{
case ValDef(mods, name, tpt, _) :: xs =>
val head = ValDef(mods, name, tpt, Select(Ident(prev.name), "head"))
val tail = localValDef(TypeTree(), Select(Ident(prev.name), "tail"))
val base = head :: revBindings
bindKList(tail, if(xs.isEmpty) base else tail :: base, xs)
case Nil => revBindings.reverse
}
/** The input trees combined in a KList */
val klist = (inputs :\ (knil: Tree))( (in, klist) => ApplyTree(kcons, in.expr, klist) )
/** The input types combined in a KList type. The main concern is tracking the heterogeneous types.
* The type constructor is tcVariable, so that it can be applied to [X] X or M later.
* When applied to `M`, this type gives the type of the `input` KList. */
val klistType: Type = (inputs :\ knilType)( (in, klist) => kconsType(in.tpe, klist) )
val representationC = PolyType(tcVariable :: Nil, klistType)
val resultType = appliedType(representationC, idTC :: Nil)
val input = klist
val alistInstance = TypeApply(Select(Ident(alist), "klist"), typeTree(representationC) :: Nil)
def extract(param: ValDef) = bindKList(param, Nil, inputs.map(_.local))
}
}

View File

@ -0,0 +1,16 @@
package sbt
package appmacro
import scala.reflect._
import makro._
/** A builder that uses `TupleN` as the representation for small numbers of inputs (up to `TupleNBuilder.MaxInputs`)
* and `KList` for larger numbers of inputs. This builder cannot handle fewer than 2 inputs.*/
object MixedBuilder extends TupleBuilder
{
def make(c: Context)(mt: c.Type, inputs: Inputs[c.universe.type]): BuilderResult[c.type] =
{
val delegate = if(inputs.size > TupleNBuilder.MaxInputs) KListBuilder else TupleNBuilder
delegate.make(c)(mt, inputs)
}
}

View File

@ -0,0 +1,56 @@
package sbt
package appmacro
import Types.Id
import scala.tools.nsc.Global
import scala.reflect._
import makro._
/**
* A `TupleBuilder` abstracts the work of constructing a tuple data structure such as a `TupleN` or `KList`
* and extracting values from it. The `Instance` macro implementation will (roughly) traverse the tree of its argument
* and ultimately obtain a list of expressions with type `M[T]` for different types `T`.
* The macro constructs an `Input` value for each of these expressions that contains the `Type` for `T`,
* the `Tree` for the expression, and a `ValDef` that will hold the value for the input.
*
* `TupleBuilder.apply` is provided with the list of `Input`s and is expected to provide three values in the returned BuilderResult.
* First, it returns the constructed tuple data structure Tree in `input`.
* Next, it provides the type constructor `representationC` that, when applied to M, gives the type of tuple data structure.
* For example, a builder that constructs a `Tuple3` for inputs `M[Int]`, `M[Boolean]`, and `M[String]`
* would provide a Type representing `[L[x]] (L[Int], L[Boolean], L[String])`. The `input` method
* would return a value whose type is that type constructor applied to M, or `(M[Int], M[Boolean], M[String])`.
*
* Finally, the `extract` method provides a list of vals that extract information from the applied input.
* The type of the applied input is the type constructor applied to `Id` (`[X] X`).
* The returned list of ValDefs should be the ValDefs from `inputs`, but with non-empty right-hand sides.
*/
trait TupleBuilder {
/** A convenience alias for a list of inputs (associated with a Universe of type U). */
type Inputs[U <: Universe with Singleton] = List[Instance.Input[U]]
/** Constructs a one-time use Builder for Context `c` and type constructor `tcType`. */
def make(c: Context)(tcType: c.Type, inputs: Inputs[c.universe.type]): BuilderResult[c.type]
}
trait BuilderResult[C <: Context with Singleton]
{
val ctx: C
import ctx.universe._
/** Represents the higher-order type constructor `[L[x]] ...` where `...` is the
* type of the data structure containing the added expressions,
* except that it is abstracted over the type constructor applied to each heterogeneous part of the type . */
def representationC: PolyType
/** The instance of AList for the input. For a `representationC` of `[L[x]]`, this `Tree` should have a `Type` of `AList[L]`*/
def alistInstance: Tree
/** Returns the completed value containing all expressions added to the builder. */
def input: Tree
/* The list of definitions that extract values from a value of type `$representationC[Id]`.
* The returned value should be identical to the `ValDef`s provided to the `TupleBuilder.make` method but with
* non-empty right hand sides. Each `ValDef` may refer to `param` and previous `ValDef`s in the list.*/
def extract(param: ValDef): List[ValDef]
}

View File

@ -0,0 +1,51 @@
package sbt
package appmacro
import Types.Id
import scala.tools.nsc.Global
import scala.reflect._
import makro._
/** A builder that uses a TupleN as the tuple representation.
* It is limited to tuples of size 2 to `MaxInputs`. */
object TupleNBuilder extends TupleBuilder
{
/** The largest number of inputs that this builder can handle. */
final val MaxInputs = 11
final val TupleMethodName = "tuple"
def make(c: Context)(mt: c.Type, inputs: Inputs[c.universe.type]): BuilderResult[c.type] = new BuilderResult[c.type]
{
val util = ContextUtil[c.type](c)
import c.universe.{Apply=>ApplyTree,_}
import util._
val global: Global = c.universe.asInstanceOf[Global]
val mTC: Type = mt.asInstanceOf[c.universe.Type]
val ctx: c.type = c
val representationC: PolyType = {
val tcVariable: Symbol = newTCVariable(NoSymbol)
val tupleTypeArgs = inputs.map(in => typeRef(NoPrefix, tcVariable, in.tpe :: Nil).asInstanceOf[global.Type])
val tuple = global.definitions.tupleType(tupleTypeArgs)
PolyType(tcVariable :: Nil, tuple.asInstanceOf[Type] )
}
val resultType = appliedType(representationC, idTC :: Nil)
val input: Tree = mkTuple(inputs.map(_.expr))
val alistInstance: Tree = {
val select = Select(Ident(alist), TupleMethodName + inputs.size.toString)
TypeApply(select, inputs.map(in => typeTree(in.tpe)))
}
def extract(param: ValDef): List[ValDef] = bindTuple(param, Nil, inputs.map(_.local), 1)
def bindTuple(param: ValDef, revBindings: List[ValDef], params: List[ValDef], i: Int): List[ValDef] =
params match
{
case ValDef(mods, name, tpt, _) :: xs =>
val x = ValDef(mods, name, tpt, Select(Ident(param.name), "_" + i.toString))
bindTuple(param, x :: revBindings, xs, i+1)
case Nil => revBindings.reverse
}
}
}