mirror of https://github.com/sbt/sbt.git
37 lines
1.0 KiB
Scala
37 lines
1.0 KiB
Scala
|
|
package sbt.complete
|
||
|
|
|
||
|
|
/** @author Paul Phillips*/
|
||
|
|
object EditDistance {
|
||
|
|
/** Translated from the java version at
|
||
|
|
* http://www.merriampark.com/ld.htm
|
||
|
|
* which is declared to be public domain.
|
||
|
|
*/
|
||
|
|
def levenshtein(s: String, t: String, insertCost: Int, deleteCost: Int, subCost: Int, transposeCost: Int, transpositions: Boolean = false): Int = {
|
||
|
|
val n = s.length
|
||
|
|
val m = t.length
|
||
|
|
if (n == 0) return m
|
||
|
|
if (m == 0) return n
|
||
|
|
|
||
|
|
val d = Array.ofDim[Int](n + 1, m + 1)
|
||
|
|
0 to n foreach (x => d(x)(0) = x)
|
||
|
|
0 to m foreach (x => d(0)(x) = x)
|
||
|
|
|
||
|
|
for (i <- 1 to n ; val s_i = s(i - 1) ; j <- 1 to m) {
|
||
|
|
val t_j = t(j - 1)
|
||
|
|
val cost = if (s_i == t_j) 0 else 1
|
||
|
|
|
||
|
|
val c1 = d(i - 1)(j) + deleteCost
|
||
|
|
val c2 = d(i)(j - 1) + insertCost
|
||
|
|
val c3 = d(i - 1)(j - 1) + cost*subCost
|
||
|
|
|
||
|
|
d(i)(j) = c1 min c2 min c3
|
||
|
|
|
||
|
|
if (transpositions) {
|
||
|
|
if (i > 1 && j > 1 && s(i - 1) == t(j - 2) && s(i - 2) == t(j - 1))
|
||
|
|
d(i)(j) = d(i)(j) min (d(i - 2)(j - 2) + cost*transposeCost)
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
d(n)(m)
|
||
|
|
}
|
||
|
|
}
|