prjxray/fuzzers/007-timing/solve_leastsq.py

159 lines
4.7 KiB
Python

#!/usr/bin/env python3
from timfuz import Benchmark, load_sub
import timfuz
import numpy as np
import math
import sys
import os
import time
import timfuz_solve
import scipy.optimize as optimize
def mkestimate(Anp, b):
'''
Ballpark upper bound estimate assuming variables contribute all of the delay in their respective row
Return the min of all of the occurances
XXX: should this be corner adjusted?
'''
cols = len(Anp[0])
x0 = np.array([1e3 for _x in range(cols)])
for row_np, row_b in zip(Anp, b):
for coli, val in enumerate(row_np):
# favor non-trivial values
if val <= 0:
continue
# Scale by number occurances
ub = row_b / val
if ub <= 0:
continue
if x0[coli] == 0:
x0[coli] = ub
else:
x0[coli] = min(x0[coli], ub)
# reject solutions that don't provide a seed value
# these lead to bad optimizations
assert sum(x0) != 0
return x0
def run_corner(
Anp, b, names, corner, verbose=False, opts={}, meta={}, outfn=None):
# Given timing scores for above delays (-ps)
assert type(Anp[0]) is np.ndarray, type(Anp[0])
assert type(b) is np.ndarray, type(b)
#check_feasible(Anp, b)
'''
Be mindful of signs
Have something like
timing1/timing 2 are constants
delay1 + delay2 + delay4 >= timing1
delay2 + delay3 >= timing2
But need it in compliant form:
-delay1 + -delay2 + -delay4 <= -timing1
-delay2 + -delay3 <= -timing2
'''
rows = len(Anp)
cols = len(Anp[0])
print('Unique delay elements: %d' % len(names))
print('Input paths')
print(' # timing scores: %d' % len(b))
print(' Rows: %d' % rows)
'''
You must have at least as many things to optimize as variables
That is, the system must be plausibly constrained for it to attempt a solve
If not, you'll get a message like
TypeError: Improper input: N=3 must not exceed M=2
'''
if rows < cols:
raise Exception("rows must be >= cols")
tlast = [None]
iters = [0]
printn = [0]
def progress_print():
iters[0] += 1
if tlast[0] is None:
tlast[0] = time.time()
if time.time() - tlast[0] > 1.0:
sys.stdout.write('I:%d ' % iters[0])
tlast[0] = time.time()
printn[0] += 1
if printn[0] % 10 == 0:
sys.stdout.write('\n')
sys.stdout.flush()
def func(params):
progress_print()
return (b - np.dot(Anp, params))
print('')
# Now find smallest values for delay constants
# Due to input bounds (ex: column limit), some delay elements may get eliminated entirely
print('Running leastsq w/ %d r, %d c (%d name)' % (rows, cols, len(names)))
# starting at 0 completes quicky, but gives a solution near 0 with terrible results
# maybe give a starting estimate to the smallest net delay with the indicated variable
#x0 = np.array([1000.0 for _x in range(cols)])
print('Creating x0 estimate')
x0 = mkestimate(Anp, b)
print('Solving')
res = optimize.least_squares(func, x0, bounds=(0, float('inf')))
print('Done')
if outfn:
timfuz_solve.solve_save(outfn, res.x, names, corner, verbose=verbose)
def main():
import argparse
parser = argparse.ArgumentParser(
description=
'Solve timing solution using least squares objective function')
parser.add_argument('--verbose', action='store_true', help='')
parser.add_argument(
'--massage',
action='store_true',
help='Derive additional constraints to improve solution')
parser.add_argument(
'--sub-json', help='Group substitutions to make fully ranked')
parser.add_argument('--corner', required=True, default="slow_max", help='')
parser.add_argument(
'--out', default=None, help='output timing delay .json')
parser.add_argument('fns_in', nargs='+', help='timing4i.csv input files')
args = parser.parse_args()
# Store options in dict to ease passing through functions
bench = Benchmark()
fns_in = args.fns_in
if not fns_in:
fns_in = glob.glob('specimen_*/timing4i.csv')
sub_json = None
if args.sub_json:
sub_json = load_sub(args.sub_json)
try:
timfuz_solve.run(
run_corner=run_corner,
sub_json=sub_json,
fns_in=fns_in,
corner=args.corner,
massage=args.massage,
outfn=args.out,
verbose=args.verbose)
finally:
print('Exiting after %s' % bench)
if __name__ == '__main__':
main()