mirror of https://github.com/openXC7/prjxray.git
194 lines
5.6 KiB
Python
194 lines
5.6 KiB
Python
#!/usr/bin/env python3
|
|
|
|
import scipy.optimize as optimize
|
|
from timfuz import Benchmark, load_sub, A_ub_np2d, acorner2csv, corner_s2i
|
|
import numpy as np
|
|
import glob
|
|
import json
|
|
import math
|
|
import sys
|
|
import os
|
|
import time
|
|
import timfuz_solve
|
|
|
|
|
|
def run_corner(
|
|
Anp, b, names, corner, verbose=False, opts={}, meta={}, outfn=None):
|
|
if len(Anp) == 0:
|
|
print('WARNING: zero equations')
|
|
if outfn:
|
|
timfuz_solve.solve_save(outfn, [], [], corner)
|
|
return
|
|
maxcorner = {
|
|
'slow_max': True,
|
|
'slow_min': False,
|
|
'fast_max': True,
|
|
'fast_min': False,
|
|
}[corner]
|
|
|
|
# Given timing scores for above delays (-ps)
|
|
assert type(Anp[0]) is np.ndarray, type(Anp[0])
|
|
assert type(b) is np.ndarray, type(b)
|
|
|
|
#check_feasible(Anp, b)
|
|
'''
|
|
Be mindful of signs
|
|
t1, t2: total delay contants
|
|
d1, d2..: variables to solve for
|
|
|
|
Max corner intuitive form:
|
|
d1 + d2 + d4 >= t1
|
|
d2 + d3 >= t2
|
|
|
|
But need it in compliant form:
|
|
-d1 + -d2 + -d4 <= -t1
|
|
-d2 + -d3 <= -t2
|
|
Minimize delay elements
|
|
|
|
|
|
Min corner intuitive form:
|
|
d1 + d2 + d4 <= t1
|
|
d2 + d3 <= t2
|
|
Maximize delay elements
|
|
'''
|
|
|
|
rows = len(Anp)
|
|
cols = len(Anp[0])
|
|
if maxcorner:
|
|
print('maxcorner => scaling to solution form...')
|
|
b_ub = -1.0 * b
|
|
#A_ub = -1.0 * Anp
|
|
A_ub = [-1.0 * x for x in Anp]
|
|
else:
|
|
print('mincorner => no scaling required')
|
|
b_ub = b
|
|
A_ub = Anp
|
|
|
|
print('Creating misc constants...')
|
|
# Minimization function scalars
|
|
# Treat all logic elements as equally important
|
|
if maxcorner:
|
|
# Best result are min delays
|
|
c = [1 for _i in range(len(names))]
|
|
else:
|
|
# Best result are max delays
|
|
c = [-1 for _i in range(len(names))]
|
|
# Delays cannot be negative
|
|
# (this is also the default constraint)
|
|
#bounds = [(0, None) for _i in range(len(names))]
|
|
# Also you can provide one to apply to all
|
|
bounds = (0, None)
|
|
|
|
# Seems to take about rows + 3 iterations
|
|
# Give some margin
|
|
#maxiter = int(1.1 * rows + 100)
|
|
#maxiter = max(1000, int(1000 * rows + 1000))
|
|
# Most of the time I want it to just keep going unless I ^C it
|
|
maxiter = 1000000
|
|
|
|
if verbose >= 2:
|
|
print('b_ub', b)
|
|
print('Unique delay elements: %d' % len(names))
|
|
print(' # delay minimization weights: %d' % len(c))
|
|
print(' # delay constraints: %d' % len(bounds))
|
|
print('Input paths')
|
|
print(' # timing scores: %d' % len(b))
|
|
print(' Rows: %d' % rows)
|
|
|
|
tlast = [time.time()]
|
|
iters = [0]
|
|
printn = [0]
|
|
|
|
def callback(xk, **kwargs):
|
|
iters[0] = kwargs['nit']
|
|
if time.time() - tlast[0] > 1.0:
|
|
sys.stdout.write('I:%d ' % kwargs['nit'])
|
|
tlast[0] = time.time()
|
|
printn[0] += 1
|
|
if printn[0] % 10 == 0:
|
|
sys.stdout.write('\n')
|
|
sys.stdout.flush()
|
|
|
|
print('')
|
|
# Now find smallest values for delay constants
|
|
# Due to input bounds (ex: column limit), some delay elements may get eliminated entirely
|
|
# https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linprog.html
|
|
print('Running linprog w/ %d r, %d c (%d name)' % (rows, cols, len(names)))
|
|
res = optimize.linprog(
|
|
c,
|
|
A_ub=A_ub,
|
|
b_ub=b_ub,
|
|
bounds=bounds,
|
|
callback=callback,
|
|
options={
|
|
"disp": True,
|
|
'maxiter': maxiter,
|
|
'bland': True,
|
|
'tol': 1e-6,
|
|
})
|
|
nonzeros = 0
|
|
print('Ran %d iters' % iters[0])
|
|
if res.success:
|
|
print('Result sample (%d elements)' % (len(res.x)))
|
|
plim = 3
|
|
for xi, (name, x) in enumerate(zip(names, res.x)):
|
|
nonzero = x >= 0.001
|
|
if nonzero:
|
|
nonzeros += 1
|
|
#if nonzero and (verbose >= 1 or xi > 30):
|
|
if nonzero and (verbose or (
|
|
(nonzeros < 100 or nonzeros % 20 == 0) and nonzeros <= plim)):
|
|
print(' % 4u % -80s % 10.1f' % (xi, name, x))
|
|
print('Delay on %d / %d' % (nonzeros, len(res.x)))
|
|
|
|
if outfn:
|
|
timfuz_solve.solve_save(
|
|
outfn, res.x, names, corner, verbose=verbose)
|
|
|
|
|
|
def main():
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description=
|
|
'Solve timing solution using linear programming inequalities')
|
|
|
|
parser.add_argument('--verbose', action='store_true', help='')
|
|
parser.add_argument('--massage', action='store_true', help='')
|
|
parser.add_argument(
|
|
'--bounds-csv', help='Previous solve result starting point')
|
|
parser.add_argument(
|
|
'--sub-json', help='Group substitutions to make fully ranked')
|
|
parser.add_argument('--corner', required=True, default="slow_max", help='')
|
|
parser.add_argument(
|
|
'--out', default=None, help='output timing delay .json')
|
|
parser.add_argument('fns_in', nargs='+', help='timing4i.csv input files')
|
|
args = parser.parse_args()
|
|
# Store options in dict to ease passing through functions
|
|
bench = Benchmark()
|
|
|
|
fns_in = args.fns_in
|
|
if not fns_in:
|
|
fns_in = glob.glob('specimen_*/timing4i.csv')
|
|
|
|
sub_json = None
|
|
if args.sub_json:
|
|
sub_json = load_sub(args.sub_json)
|
|
|
|
try:
|
|
timfuz_solve.run(
|
|
run_corner=run_corner,
|
|
sub_json=sub_json,
|
|
bounds_csv=args.bounds_csv,
|
|
fns_in=fns_in,
|
|
corner=args.corner,
|
|
massage=args.massage,
|
|
outfn=args.out,
|
|
verbose=args.verbose)
|
|
finally:
|
|
print('Exiting after %s' % bench)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|