prjxray/fuzzers/007-timing/solve_leastsq.py

180 lines
6.1 KiB
Python

#!/usr/bin/env python3
# https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linprog.html
from scipy.optimize import linprog
from timfuz import Benchmark, Ar_di2np, Ar_ds2t, A_di2ds, A_ds2di, simplify_rows, loadc_Ads_b, index_names, A_ds2np, load_sub, run_sub_json, A_ub_np2d, print_eqns, print_eqns_np
from timfuz_massage import massage_equations
import numpy as np
import glob
import json
import math
from collections import OrderedDict
from fractions import Fraction
import sys
import datetime
import os
import time
import timfuz_solve
import numpy
import scipy.optimize as optimize
from scipy.optimize import least_squares
def mkestimate(Anp, b):
cols = len(Anp[0])
x0 = np.array([1e3 for _x in range(cols)])
for row_np, row_b in zip(Anp, b):
for coli, val in enumerate(row_np):
if val:
ub = row_b / val
if ub >= 0:
x0[coli] = min(x0[coli], ub)
return x0
def run_corner(Anp, b, names, verbose=False, opts={}, meta={}, outfn=None):
# Given timing scores for above delays (-ps)
assert type(Anp[0]) is np.ndarray, type(Anp[0])
assert type(b) is np.ndarray, type(b)
#check_feasible(Anp, b)
'''
Be mindful of signs
Have something like
timing1/timing 2 are constants
delay1 + delay2 + delay4 >= timing1
delay2 + delay3 >= timing2
But need it in compliant form:
-delay1 + -delay2 + -delay4 <= -timing1
-delay2 + -delay3 <= -timing2
'''
rows = len(Anp)
cols = len(Anp[0])
print('Unique delay elements: %d' % len(names))
print('Input paths')
print(' # timing scores: %d' % len(b))
print(' Rows: %d' % rows)
'''
You must have at least as many things to optimize as variables
That is, the system must be plausibly constrained for it to attempt a solve
If not, you'll get a message like
TypeError: Improper input: N=3 must not exceed M=2
'''
if rows < cols:
raise Exception("rows must be >= cols")
tlast = [None]
iters = [0]
printn = [0]
def progress_print():
iters[0] += 1
if tlast[0] is None:
tlast[0]= time.time()
if time.time() - tlast[0] > 1.0:
sys.stdout.write('I:%d ' % iters[0])
tlast[0] = time.time()
printn[0] += 1
if printn[0] % 10 == 0:
sys.stdout.write('\n')
sys.stdout.flush()
def func(params):
progress_print()
return (b - np.dot(Anp, params))
print('')
# Now find smallest values for delay constants
# Due to input bounds (ex: column limit), some delay elements may get eliminated entirely
print('Running leastsq w/ %d r, %d c (%d name)' % (rows, cols, len(names)))
# starting at 0 completes quicky, but gives a solution near 0 with terrible results
# maybe give a starting estimate to the smallest net delay with the indicated variable
#x0 = np.array([1000.0 for _x in range(cols)])
print('Creating x0 estimate')
x0 = mkestimate(Anp, b)
#print('x0', x0)
if 0:
x, cov_x, infodict, mesg, ier = optimize.leastsq(func, x0, args=(), full_output=True)
print('x', x)
print('cov_x', cov_x)
print('infodictx', infodict)
print('mesg', mesg)
print('ier', ier)
print(' Solution found: %s' % (ier in (1, 2, 3, 4)))
else:
print('Solving')
res = least_squares(func, x0, bounds=(0, float('inf')))
if 0:
print(res)
print('')
print(res.x)
print('Done')
if outfn:
# ballpark minimum actual observed delay is around 7 (carry chain)
# anything less than one is probably a solver artifact
delta = 0.5
print('Writing resutls')
skips = 0
with open(outfn, 'w') as fout:
# write as one variable per line
# this natively forms a bound if fed into linprog solver
fout.write('ico,fast_max fast_min slow_max slow_min,rows...\n')
for xval, name in zip(res.x, names):
row_ico = 1
# FIXME: only report for the given corner?
# also review ceil vs floor choice for min vs max
# lets be more conservative for now
if xval < delta:
#print('Skipping %s: %0.6f' % (name, xval))
skips += 1
continue
#xvali = round(xval)
xvali = math.ceil(xval)
corners = [xvali for _ in range(4)]
items = [str(row_ico), ' '.join([str(x) for x in corners])]
items.append('%u %s' % (1, name))
fout.write(','.join(items) + '\n')
print('Wrote: skip %u => %u / %u valid delays' % (skips, len(names) - skips, len(names)))
def main():
import argparse
parser = argparse.ArgumentParser(
description=
'Solve timing solution'
)
parser.add_argument('--verbose', action='store_true', help='')
parser.add_argument('--massage', action='store_true', help='')
parser.add_argument('--sub-json', help='Group substitutions to make fully ranked')
parser.add_argument('--corner', default="slow_max", help='')
parser.add_argument('--out', default=None, help='output timing delay .json')
parser.add_argument(
'fns_in',
nargs='*',
help='timing3.csv input files')
args = parser.parse_args()
# Store options in dict to ease passing through functions
bench = Benchmark()
fns_in = args.fns_in
if not fns_in:
fns_in = glob.glob('specimen_*/timing3.csv')
sub_json = None
if args.sub_json:
sub_json = load_sub(args.sub_json)
try:
timfuz_solve.run(run_corner=run_corner, sub_json=sub_json,
fns_in=fns_in, corner=args.corner, massage=args.massage, outfn=args.out, verbose=args.verbose)
finally:
print('Exiting after %s' % bench)
if __name__ == '__main__':
main()