mirror of https://github.com/openXC7/prjxray.git
159 lines
4.7 KiB
Python
159 lines
4.7 KiB
Python
#!/usr/bin/env python3
|
|
|
|
from timfuz import Benchmark, load_sub
|
|
import timfuz
|
|
import numpy as np
|
|
import math
|
|
import sys
|
|
import os
|
|
import time
|
|
import timfuz_solve
|
|
import scipy.optimize as optimize
|
|
|
|
|
|
def mkestimate(Anp, b):
|
|
'''
|
|
Ballpark upper bound estimate assuming variables contribute all of the delay in their respective row
|
|
Return the min of all of the occurances
|
|
|
|
XXX: should this be corner adjusted?
|
|
'''
|
|
cols = len(Anp[0])
|
|
x0 = np.array([1e3 for _x in range(cols)])
|
|
for row_np, row_b in zip(Anp, b):
|
|
for coli, val in enumerate(row_np):
|
|
# favor non-trivial values
|
|
if val <= 0:
|
|
continue
|
|
# Scale by number occurances
|
|
ub = row_b / val
|
|
if ub <= 0:
|
|
continue
|
|
if x0[coli] == 0:
|
|
x0[coli] = ub
|
|
else:
|
|
x0[coli] = min(x0[coli], ub)
|
|
# reject solutions that don't provide a seed value
|
|
# these lead to bad optimizations
|
|
assert sum(x0) != 0
|
|
return x0
|
|
|
|
|
|
def run_corner(
|
|
Anp, b, names, corner, verbose=False, opts={}, meta={}, outfn=None):
|
|
# Given timing scores for above delays (-ps)
|
|
assert type(Anp[0]) is np.ndarray, type(Anp[0])
|
|
assert type(b) is np.ndarray, type(b)
|
|
|
|
#check_feasible(Anp, b)
|
|
'''
|
|
Be mindful of signs
|
|
Have something like
|
|
timing1/timing 2 are constants
|
|
delay1 + delay2 + delay4 >= timing1
|
|
delay2 + delay3 >= timing2
|
|
|
|
But need it in compliant form:
|
|
-delay1 + -delay2 + -delay4 <= -timing1
|
|
-delay2 + -delay3 <= -timing2
|
|
'''
|
|
rows = len(Anp)
|
|
cols = len(Anp[0])
|
|
|
|
print('Unique delay elements: %d' % len(names))
|
|
print('Input paths')
|
|
print(' # timing scores: %d' % len(b))
|
|
print(' Rows: %d' % rows)
|
|
'''
|
|
You must have at least as many things to optimize as variables
|
|
That is, the system must be plausibly constrained for it to attempt a solve
|
|
If not, you'll get a message like
|
|
TypeError: Improper input: N=3 must not exceed M=2
|
|
'''
|
|
if rows < cols:
|
|
raise Exception("rows must be >= cols")
|
|
|
|
tlast = [None]
|
|
iters = [0]
|
|
printn = [0]
|
|
|
|
def progress_print():
|
|
iters[0] += 1
|
|
if tlast[0] is None:
|
|
tlast[0] = time.time()
|
|
if time.time() - tlast[0] > 1.0:
|
|
sys.stdout.write('I:%d ' % iters[0])
|
|
tlast[0] = time.time()
|
|
printn[0] += 1
|
|
if printn[0] % 10 == 0:
|
|
sys.stdout.write('\n')
|
|
sys.stdout.flush()
|
|
|
|
def func(params):
|
|
progress_print()
|
|
return (b - np.dot(Anp, params))
|
|
|
|
print('')
|
|
# Now find smallest values for delay constants
|
|
# Due to input bounds (ex: column limit), some delay elements may get eliminated entirely
|
|
print('Running leastsq w/ %d r, %d c (%d name)' % (rows, cols, len(names)))
|
|
# starting at 0 completes quicky, but gives a solution near 0 with terrible results
|
|
# maybe give a starting estimate to the smallest net delay with the indicated variable
|
|
#x0 = np.array([1000.0 for _x in range(cols)])
|
|
print('Creating x0 estimate')
|
|
x0 = mkestimate(Anp, b)
|
|
|
|
print('Solving')
|
|
res = optimize.least_squares(func, x0, bounds=(0, float('inf')))
|
|
print('Done')
|
|
|
|
if outfn:
|
|
timfuz_solve.solve_save(outfn, res.x, names, corner, verbose=verbose)
|
|
|
|
|
|
def main():
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description=
|
|
'Solve timing solution using least squares objective function')
|
|
|
|
parser.add_argument('--verbose', action='store_true', help='')
|
|
parser.add_argument(
|
|
'--massage',
|
|
action='store_true',
|
|
help='Derive additional constraints to improve solution')
|
|
parser.add_argument(
|
|
'--sub-json', help='Group substitutions to make fully ranked')
|
|
parser.add_argument('--corner', required=True, default="slow_max", help='')
|
|
parser.add_argument(
|
|
'--out', default=None, help='output timing delay .json')
|
|
parser.add_argument('fns_in', nargs='+', help='timing4i.csv input files')
|
|
args = parser.parse_args()
|
|
# Store options in dict to ease passing through functions
|
|
bench = Benchmark()
|
|
|
|
fns_in = args.fns_in
|
|
if not fns_in:
|
|
fns_in = glob.glob('specimen_*/timing4i.csv')
|
|
|
|
sub_json = None
|
|
if args.sub_json:
|
|
sub_json = load_sub(args.sub_json)
|
|
|
|
try:
|
|
timfuz_solve.run(
|
|
run_corner=run_corner,
|
|
sub_json=sub_json,
|
|
fns_in=fns_in,
|
|
corner=args.corner,
|
|
massage=args.massage,
|
|
outfn=args.out,
|
|
verbose=args.verbose)
|
|
finally:
|
|
print('Exiting after %s' % bench)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|