prjxray/fuzzers/007-timing/minitest/test_unique/perf_test.py

144 lines
3.3 KiB
Python

#!/usr/bin/env python3
'''
Triaging tool to help understand where we need more timing coverage
Finds correlated variables to help make better test cases
'''
from timfuz import Benchmark, Ar_di2np, loadc_Ads_b, index_names, A_ds2np, simplify_rows
import numpy as np
import glob
import math
import json
import sympy
from collections import OrderedDict
from fractions import Fraction
import random
from sympy import Rational
def intr(r):
DELTA = 0.0001
for i, x in enumerate(r):
if type(x) is float:
xi = int(x)
assert abs(xi - x) < DELTA
r[i] = xi
def fracr(r):
intr(r)
return [Fraction(x) for x in r]
def fracm(m):
return [fracr(r) for r in m]
def symratr(r):
intr(r)
return [Rational(x) for x in r]
def symratm(m):
return [symratr(r) for r in m]
def intm(m):
[intr(r) for r in m]
return m
def create_matrix(rows, cols):
ret = np.zeros((rows, cols))
for rowi in range(rows):
for coli in range(cols):
ret[rowi][coli] = random.randint(1, 10)
return ret
def create_matrix_sparse(rows, cols):
ret = np.zeros((rows, cols))
for rowi in range(rows):
for coli in range(cols):
if random.randint(0, 5) < 1:
ret[rowi][coli] = random.randint(1, 10)
return ret
def run(
rows=35,
cols=200,
verbose=False,
encoding='np',
sparse=False,
normalize_last=True):
random.seed(0)
if sparse:
mnp = create_matrix_sparse(rows, cols)
else:
mnp = create_matrix(rows, cols)
#print(mnp[0])
if encoding == 'fraction':
msym = sympy.Matrix(fracm(mnp))
elif encoding == 'np':
msym = sympy.Matrix(mnp)
elif encoding == 'sympy':
msym = sympy.Matrix(symratm(mnp))
# this actually produces float results
elif encoding == 'int':
msym = sympy.Matrix(intm(mnp))
else:
assert 0, 'bad encoding: %s' % encoding
print(type(msym[0]), str(msym[0]))
if verbose:
print('names')
print(names)
print('Matrix')
sympy.pprint(msym)
print(
'%s matrix, %u rows x %u cols, sparse: %s, normlast: %s' %
(encoding, len(mnp), len(mnp[0]), sparse, normalize_last))
bench = Benchmark()
try:
rref, pivots = msym.rref(normalize_last=normalize_last)
finally:
print('rref exiting after %s' % bench)
print(type(rref[0]), str(rref[0]))
if verbose:
print('Pivots')
sympy.pprint(pivots)
print('rref')
sympy.pprint(rref)
def main():
import argparse
parser = argparse.ArgumentParser(
description='Matrix solving performance tests')
parser.add_argument('--verbose', action='store_true', help='')
parser.add_argument('--sparse', action='store_true', help='')
parser.add_argument('--rows', type=int, help='')
parser.add_argument('--cols', type=int, help='')
parser.add_argument('--normalize-last', type=int, help='')
parser.add_argument('--encoding', default='np', help='')
args = parser.parse_args()
run(
encoding=args.encoding,
rows=args.rows,
cols=args.cols,
sparse=args.sparse,
normalize_last=bool(args.normalize_last),
verbose=args.verbose)
if __name__ == '__main__':
main()