timfuz: timfuz_solve main()

Signed-off-by: John McMaster <johndmcmaster@gmail.com>
This commit is contained in:
John McMaster 2018-08-24 14:10:36 -07:00
parent 97ea34d4cd
commit aeebb45b34
3 changed files with 261 additions and 142 deletions

View File

@ -1,7 +1,5 @@
#!/usr/bin/env python
# https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linprog.html
from scipy.optimize import linprog
import math
import numpy as np
from collections import OrderedDict
@ -14,6 +12,7 @@ import copy
import sys
import random
import glob
from fractions import Fraction
from benchmark import Benchmark
@ -229,36 +228,33 @@ def simplify_cols(names, A_ubd, b_ub):
nr = list(names_ret.keys())
return nr, A_ub_ret, b_ub
def A_ubr_np2d(row, sf=1):
def A_ubr_np2d(row):
'''Convert a single row'''
#d = {}
d = OrderedDict()
for coli, val in enumerate(row):
if val:
d[coli] = sf * val
d[coli] = val
return d
def A_ub_np2d(A_ub, sf=1):
def A_ub_np2d(A_ub):
'''Convert A_ub entries in numpy matrix to dictionary / sparse form'''
A_ubd = [None] * len(A_ub)
for i, row in enumerate(A_ub):
A_ubd[i] = A_ubr_np2d(row, sf=sf)
A_ubd[i] = A_ubr_np2d(row)
return A_ubd
# def Ar_ds2np(row_ds, names):
# Ar_di2np(row_di, cols, sf=1)
def Ar_di2np(row_di, cols, sf=1):
def Ar_di2np(row_di, cols):
rownp = np.zeros(cols)
for coli, val in row_di.items():
# Sign inversion due to way solver works
rownp[coli] = sf * val
rownp[coli] = val
return rownp
# NOTE: sign inversion
def A_di2np(Adi, cols, sf=1):
def A_di2np(Adi, cols):
'''Convert A_ub entries in dictionary / sparse to numpy matrix form'''
return [Ar_di2np(row_di, cols, sf=sf) for row_di in Adi]
return [Ar_di2np(row_di, cols) for row_di in Adi]
def Ar_ds2t(rowd):
'''Convert a dictionary row into a tuple with (column number, value) tuples'''
@ -817,3 +813,102 @@ def index_names(Ads):
for k1 in row_ds.keys():
names.add(k1)
return names
def load_sub(fn):
j = json.load(open(fn, 'r'))
for name, vals in sorted(j['subs'].items()):
for k, v in vals.items():
vals[k] = Fraction(v[0], v[1])
return j
def row_sub_syms(row, sub_json, verbose=False):
if 0 and verbose:
print("")
print(row.items())
delsyms = 0
for k in sub_json['drop_names']:
try:
del row[k]
delsyms += 1
except KeyError:
pass
if verbose:
print("Deleted %u symbols" % delsyms)
if verbose:
print('Checking pivots')
print(sorted(row.items()))
for group, pivot in sorted(sub_json['pivots'].items()):
if pivot not in row:
continue
n = row[pivot]
print(' pivot %u %s' % (n, pivot))
for group, pivot in sorted(sub_json['pivots'].items()):
if pivot not in row:
continue
# take the sub out n times
# note constants may be negative
n = row[pivot]
if verbose:
print('pivot %i %s' % (n, pivot))
for subk, subv in sorted(sub_json['subs'][group].items()):
oldn = row.get(subk, Fraction(0))
rown = oldn - n * subv
if verbose:
print(" %s: %d => %d" % (subk, oldn, rown))
if rown == 0:
# only becomes zero if didn't previously exist
del row[subk]
if verbose:
print(" del")
else:
row[subk] = rown
row[group] = n
assert pivot not in row
# after all constants are applied, the row should end up positive?
# numeric precision issues previously limited this
# Ex: AssertionError: ('PIP_BSW_2ELSING0', -2.220446049250313e-16)
for k, v in sorted(row.items()):
assert v > 0, (k, v)
def run_sub_json(Ads, sub_json, verbose=False):
nrows = 0
nsubs = 0
ncols_old = 0
ncols_new = 0
print('Subbing %u rows' % len(Ads))
prints = set()
for rowi, row in enumerate(Ads):
if 0 and verbose:
print(row)
if verbose:
print('')
print('Row %u w/ %u elements' % (rowi, len(row)))
row_orig = dict(row)
row_sub_syms(row, sub_json, verbose=verbose)
nrows += 1
if row_orig != row:
nsubs += 1
if verbose:
rowt = Ar_ds2t(row)
if rowt not in prints:
print('row', row)
prints.add(rowt)
ncols_old += len(row_orig)
ncols_new += len(row)
if verbose:
print('')
print("Sub: %u / %u rows changed" % (nsubs, nrows))
print("Sub: %u => %u cols" % (ncols_old, ncols_new))

View File

@ -1,6 +1,6 @@
#!/usr/bin/env python3
from timfuz import Benchmark, Ar_di2np, Ar_ds2t, A_di2ds, A_ds2di, simplify_rows, loadc_Ads_b, index_names, A_ds2np
from timfuz import Benchmark, Ar_di2np, Ar_ds2t, A_di2ds, A_ds2di, simplify_rows, loadc_Ads_b, index_names, A_ds2np, load_sub, run_sub_json
import numpy as np
import glob
import json
@ -8,9 +8,6 @@ import math
from collections import OrderedDict
from fractions import Fraction
# check for issues that may be due to round off error
STRICT = 1
def Adi2matrix_random(A_ubd, b_ub, names):
# random assignment
# was making some empty rows
@ -44,97 +41,6 @@ def Ads2matrix_linear(Ads, b):
dst_rowi = (dst_rowi + 1) % rows_out
return A_ret, b_ret
def row_sub_syms(row, sub_json, verbose=False):
if 0 and verbose:
print("")
print(row.items())
delsyms = 0
for k in sub_json['drop_names']:
try:
del row[k]
delsyms += 1
except KeyError:
pass
if verbose:
print("Deleted %u symbols" % delsyms)
if verbose:
print('Checking pivots')
print(sorted(row.items()))
for group, pivot in sorted(sub_json['pivots'].items()):
if pivot not in row:
continue
n = row[pivot]
print(' pivot %u %s' % (n, pivot))
for group, pivot in sorted(sub_json['pivots'].items()):
if pivot not in row:
continue
# take the sub out n times
# note constants may be negative
n = row[pivot]
if verbose:
print('pivot %i %s' % (n, pivot))
for subk, subv in sorted(sub_json['subs'][group].items()):
oldn = row.get(subk, Fraction(0))
rown = oldn - n * subv
if verbose:
print(" %s: %d => %d" % (subk, oldn, rown))
if rown == 0:
# only becomes zero if didn't previously exist
del row[subk]
if verbose:
print(" del")
else:
row[subk] = rown
row[group] = n
assert pivot not in row
# after all constants are applied, the row should end up positive?
# numeric precision issues may limit this
# Ex: AssertionError: ('PIP_BSW_2ELSING0', -2.220446049250313e-16)
if STRICT:
for k, v in sorted(row.items()):
assert v > 0, (k, v)
def run_sub_json(Ads, sub_json, verbose=False):
nrows = 0
nsubs = 0
ncols_old = 0
ncols_new = 0
print('Subbing %u rows' % len(Ads))
prints = set()
for rowi, row in enumerate(Ads):
if 0 and verbose:
print(row)
if verbose:
print('')
print('Row %u w/ %u elements' % (rowi, len(row)))
row_orig = dict(row)
row_sub_syms(row, sub_json, verbose=verbose)
nrows += 1
if row_orig != row:
nsubs += 1
if verbose:
rowt = Ar_ds2t(row)
if rowt not in prints:
print('row', row)
prints.add(rowt)
ncols_old += len(row_orig)
ncols_new += len(row)
if verbose:
print('')
print("Sub: %u / %u rows changed" % (nsubs, nrows))
print("Sub: %u => %u cols" % (ncols_old, ncols_new))
def pmatrix(Anp, s):
import sympy
msym = sympy.Matrix(Anp)
@ -146,7 +52,10 @@ def pds(Ads, s):
pmatrix(Anp, s)
print('Names: %s' % (names,))
def run(fns_in, sub_json=None, verbose=False, corner=None):
def run(fns_in, sub_json=None, verbose=False):
# arbitrary...data is thrown away
corner = "slow_max"
Ads, b = loadc_Ads_b(fns_in, corner, ico=True)
# Remove duplicate rows
@ -190,15 +99,6 @@ def run(fns_in, sub_json=None, verbose=False, corner=None):
else:
print('slogdet :) : %s, %s' % (sign, logdet))
def load_sub(fn):
j = json.load(open(fn, 'r'))
for name, vals in sorted(j['subs'].items()):
for k, v in vals.items():
vals[k] = Fraction(v[0], v[1])
return j
def main():
import argparse
@ -209,18 +109,17 @@ def main():
parser.add_argument('--verbose', action='store_true', help='')
parser.add_argument('--sub-json', help='')
parser.add_argument('--corner', default="slow_max", help='')
parser.add_argument(
'fns_in',
nargs='*',
help='timing3.txt input files')
help='timing3.csv input files')
args = parser.parse_args()
# Store options in dict to ease passing through functions
bench = Benchmark()
fns_in = args.fns_in
if not fns_in:
fns_in = glob.glob('specimen_*/timing3.txt')
fns_in = glob.glob('specimen_*/timing3.csv')
sub_json = None
if args.sub_json:
@ -228,7 +127,7 @@ def main():
try:
run(sub_json=sub_json,
fns_in=fns_in, verbose=args.verbose, corner=args.corner)
fns_in=fns_in, verbose=args.verbose)
finally:
print('Exiting after %s' % bench)

View File

@ -1,24 +1,77 @@
#!/usr/bin/env python3
def run_corner(A_ubd, b_ub, names, verbose=0, opts={}, meta={}):
# https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linprog.html
from scipy.optimize import linprog
from timfuz import Benchmark, Ar_di2np, Ar_ds2t, A_di2ds, A_ds2di, simplify_rows, loadc_Ads_b, index_names, A_ds2np, load_sub, run_sub_json
import numpy as np
import glob
import json
import math
from collections import OrderedDict
from fractions import Fraction
import sys
import datetime
import os
import time
def check_feasible(A_ub, b_ub):
'''
Put large timing constants into the equations
See if that would solve it
Its having trouble giving me solutions as this gets bigger
Make a terrible baseline guess to confirm we aren't doing something bad
'''
sys.stdout.write('Check feasible ')
sys.stdout.flush()
rows = len(b_ub)
cols = len(A_ub[0])
progress = max(1, rows / 100)
# Chose a high arbitrary value for x
# Delays should be in order of ns, so a 10 ns delay should be way above what anything should be
xs = [10e3 for _i in range(cols)]
# FIXME: use the correct np function to do this for me
# Verify bounds
#b_res = np.matmul(A_ub, xs)
#print(type(A_ub), type(xs)
#A_ub = np.array(A_ub)
#xs = np.array(xs)
#b_res = np.matmul(A_ub, xs)
def my_mul(A_ub, xs):
#print('cols', cols
#print('rows', rows
ret = [None] * rows
for row in range(rows):
this = 0
for col in range(cols):
this += A_ub[row][col] * xs[col]
ret[row] = this
return ret
b_res = my_mul(A_ub, xs)
# Verify bound was respected
for rowi, (this_b, this_b_ub) in enumerate(zip(b_res, b_ub)):
if rowi % progress == 0:
sys.stdout.write('.')
sys.stdout.flush()
if this_b >= this_b_ub or this_b > 0:
print('% 4d Want res % 10.1f <= % 10.1f <= 0' % (rowi, this_b, this_b_ub))
raise Exception("Bad ")
print(' done')
def run_corner(Anp, b, names, verbose=False, opts={}, meta={}):
assert type(Anp[0]) is np.ndarray, type(Anp[0])
assert type(b) is np.ndarray, type(b)
# Given timing scores for above delays (-ps)
names_orig = names
#print_eqns(A_ub, b_ub, verbose=verbose)
names, A_ubd, b_ub = massage_equations(A_ubd, b_ub, opts, names, verbose=verbose)
print
print_eqns(A_ubd, b_ub, verbose=verbose)
print
col_dist(A_ubd, 'final', names)
A_ub, b_ub = Ab_d2np(A_ubd, b_ub, names)
# Its having trouble giving me solutions as this gets bigger
# Make a terrible baseline guess to confirm we aren't doing something bad
#print_names(names, verbose=verbose)
check_feasible(A_ub=A_ub, b_ub=b_ub)
#check_feasible(Anp, b)
'''
Be mindful of signs
@ -31,8 +84,14 @@ def run_corner(A_ubd, b_ub, names, verbose=0, opts={}, meta={}):
-delay1 + -delay2 + -delay4 <= -timing1
-delay2 + -delay3 <= -timing2
'''
rows = len(A_ub)
cols = len(A_ub[0])
rows = len(Anp)
cols = len(Anp[0])
print('Scaling to solution form...')
b_ub = -1.0 * b
#A_ub = -1.0 * Anp
A_ub = [-1.0 * x for x in Anp]
print('Creating misc constants...')
# Minimization function scalars
# Treat all logic elements as equally important
c = [1 for _i in range(len(names))]
@ -50,12 +109,12 @@ def run_corner(A_ubd, b_ub, names, verbose=0, opts={}, meta={}):
maxiter = 1000000
if verbose >= 2:
print('b_ub', b_ub)
print('b_ub', b)
print('Unique delay elements: %d' % len(names))
print(' # delay minimization weights: %d' % len(c))
print(' # delay constraints: %d' % len(bounds))
print('Input paths')
print(' # timing scores: %d' % len(b_ub))
print(' # timing scores: %d' % len(b))
print(' Rows: %d' % rows)
tlast = [time.time()]
@ -96,3 +155,69 @@ def run_corner(A_ubd, b_ub, names, verbose=0, opts={}, meta={}):
print('Writing %s' % fn_out)
np.save(fn_out, (3, c, A_ub, b_ub, bounds, names, res, meta))
def run(fns_in, corner, sub_json=None, dedup=True, verbose=False):
Ads, b = loadc_Ads_b(fns_in, corner, ico=True)
# Remove duplicate rows
# is this necessary?
# maybe better to just add them into the matrix directly
if dedup:
oldn = len(Ads)
Ads, b = simplify_rows(Ads, b)
print('Simplify %u => %u rows' % (oldn, len(Ads)))
if sub_json:
print('Sub: %u rows' % len(Ads))
names_old = index_names(Ads)
run_sub_json(Ads, sub_json, verbose=verbose)
names = index_names(Ads)
print("Sub: %u => %u names" % (len(names_old), len(names)))
else:
names = index_names(Ads)
if 0:
print
print_eqns(A_ubd, b_ub, verbose=verbose)
print
col_dist(A_ubd, 'final', names)
print('Converting to numpy...')
names, Anp = A_ds2np(Ads)
run_corner(Anp, np.asarray(b), names, verbose=verbose)
def main():
import argparse
parser = argparse.ArgumentParser(
description=
'Solve timing solution'
)
parser.add_argument('--verbose', action='store_true', help='')
parser.add_argument('--sub-json', help='Group substitutions to make fully ranked')
parser.add_argument('--corner', default="slow_max", help='')
parser.add_argument(
'fns_in',
nargs='*',
help='timing3.csv input files')
args = parser.parse_args()
# Store options in dict to ease passing through functions
bench = Benchmark()
fns_in = args.fns_in
if not fns_in:
fns_in = glob.glob('specimen_*/timing3.csv')
sub_json = None
if args.sub_json:
sub_json = load_sub(args.sub_json)
try:
run(sub_json=sub_json,
fns_in=fns_in, verbose=args.verbose, corner=args.corner)
finally:
print('Exiting after %s' % bench)
if __name__ == '__main__':
main()