mirror of https://github.com/openXC7/prjxray.git
Merge pull request #124 from mcmasterg/timfuz_cleanup
timfuz: misc cleanup
This commit is contained in:
commit
31013a3e43
|
|
@ -23,7 +23,7 @@ def gen_flat(fns_in, sub_json, corner=None):
|
|||
if zero_row:
|
||||
yield bound_name, 0
|
||||
elif sub:
|
||||
print('sub', sub)
|
||||
#print('sub', sub)
|
||||
# put entire delay into pivot
|
||||
pivot = sub_json['pivots'][bound_name]
|
||||
assert pivot not in group_zeros
|
||||
|
|
@ -32,6 +32,7 @@ def gen_flat(fns_in, sub_json, corner=None):
|
|||
#for name in non_pivot:
|
||||
# assert name not in nonzeros, (pivot, name, nonzeros)
|
||||
group_zeros.update(non_pivot)
|
||||
#print('yield PIVOT', pivot)
|
||||
yield pivot, bound_bs
|
||||
else:
|
||||
nonzeros.add(bound_name)
|
||||
|
|
@ -45,10 +46,19 @@ def gen_flat(fns_in, sub_json, corner=None):
|
|||
# XXX: how to best handle these?
|
||||
# should they be fixed 0?
|
||||
if zero_row:
|
||||
print('zero_row', len(group_zeros), len(violations))
|
||||
# ZERO names should always be zero
|
||||
#print('ZEROs: %u' % len(sub_json['zero_names']))
|
||||
for zero in sub_json['zero_names']:
|
||||
#print('yield ZERO', zero)
|
||||
yield zero, zero_row
|
||||
for zero in group_zeros - violations:
|
||||
|
||||
real_zeros = group_zeros - violations
|
||||
print(
|
||||
'Zero candidates: %u w/ %u non-pivot conflicts => %u zeros as solved'
|
||||
% (len(group_zeros), len(violations), len(real_zeros)))
|
||||
# Only yield elements not already yielded
|
||||
for zero in real_zeros:
|
||||
#print('yield solve-0', zero)
|
||||
yield zero, zero_row
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -4,8 +4,9 @@ TIMFUZ_DIR=$(XRAY_DIR)/fuzzers/007-timing
|
|||
CORNER=slow_max
|
||||
ALLOW_ZERO_EQN?=N
|
||||
BADPRJ_OK?=N
|
||||
BUILD_DIR?=build
|
||||
|
||||
all: build/$(CORNER)/timgrid-s.json
|
||||
all: $(BUILD_DIR)/$(CORNER)/timgrid-vc.json $(BUILD_DIR)/$(CORNER)/qor.txt
|
||||
|
||||
run:
|
||||
$(MAKE) clean
|
||||
|
|
@ -13,35 +14,38 @@ run:
|
|||
touch run.ok
|
||||
|
||||
clean:
|
||||
rm -rf specimen_[0-9][0-9][0-9]/ seg_clblx.segbits __pycache__ run.ok
|
||||
rm -rf vivado*.log vivado_*.str vivado*.jou design *.bits *.dcp *.bit
|
||||
rm -rf build
|
||||
rm -rf $(BUILD_DIR)/$(CORNER)
|
||||
|
||||
.PHONY: all run clean
|
||||
|
||||
build/$(CORNER):
|
||||
mkdir build/$(CORNER)
|
||||
$(BUILD_DIR)/$(CORNER):
|
||||
mkdir $(BUILD_DIR)/$(CORNER)
|
||||
|
||||
build/checksub:
|
||||
# parent should have built this
|
||||
$(BUILD_DIR)/checksub:
|
||||
false
|
||||
|
||||
build/$(CORNER)/leastsq.csv: build/sub.json build/grouped.csv build/checksub build/$(CORNER)
|
||||
$(BUILD_DIR)/$(CORNER)/leastsq.csv: $(BUILD_DIR)/sub.json $(BUILD_DIR)/grouped.csv $(BUILD_DIR)/checksub $(BUILD_DIR)/$(CORNER)
|
||||
# Create a rough timing model that approximately fits the given paths
|
||||
python3 $(TIMFUZ_DIR)/solve_leastsq.py --sub-json build/sub.json build/grouped.csv --corner $(CORNER) --out build/$(CORNER)/leastsq.csv.tmp
|
||||
mv build/$(CORNER)/leastsq.csv.tmp build/$(CORNER)/leastsq.csv
|
||||
python3 $(TIMFUZ_DIR)/solve_leastsq.py --sub-json $(BUILD_DIR)/sub.json $(BUILD_DIR)/grouped.csv --corner $(CORNER) --out $(BUILD_DIR)/$(CORNER)/leastsq.csv.tmp
|
||||
mv $(BUILD_DIR)/$(CORNER)/leastsq.csv.tmp $(BUILD_DIR)/$(CORNER)/leastsq.csv
|
||||
|
||||
build/$(CORNER)/linprog.csv: build/$(CORNER)/leastsq.csv build/grouped.csv
|
||||
$(BUILD_DIR)/$(CORNER)/linprog.csv: $(BUILD_DIR)/$(CORNER)/leastsq.csv $(BUILD_DIR)/grouped.csv
|
||||
# Tweak rough timing model, making sure all constraints are satisfied
|
||||
ALLOW_ZERO_EQN=$(ALLOW_ZERO_EQN) python3 $(TIMFUZ_DIR)/solve_linprog.py --sub-json build/sub.json --bounds-csv build/$(CORNER)/leastsq.csv --massage build/grouped.csv --corner $(CORNER) --out build/$(CORNER)/linprog.csv.tmp
|
||||
mv build/$(CORNER)/linprog.csv.tmp build/$(CORNER)/linprog.csv
|
||||
ALLOW_ZERO_EQN=$(ALLOW_ZERO_EQN) python3 $(TIMFUZ_DIR)/solve_linprog.py --sub-json $(BUILD_DIR)/sub.json --bounds-csv $(BUILD_DIR)/$(CORNER)/leastsq.csv --massage $(BUILD_DIR)/grouped.csv --corner $(CORNER) --out $(BUILD_DIR)/$(CORNER)/linprog.csv.tmp
|
||||
mv $(BUILD_DIR)/$(CORNER)/linprog.csv.tmp $(BUILD_DIR)/$(CORNER)/linprog.csv
|
||||
|
||||
build/$(CORNER)/flat.csv: build/$(CORNER)/linprog.csv
|
||||
$(BUILD_DIR)/$(CORNER)/flat.csv: $(BUILD_DIR)/$(CORNER)/linprog.csv
|
||||
# Take separated variables and back-annotate them to the original timing variables
|
||||
python3 $(TIMFUZ_DIR)/csv_group2flat.py --sub-json build/sub.json --corner $(CORNER) --out build/$(CORNER)/flat.csv.tmp build/$(CORNER)/linprog.csv
|
||||
mv build/$(CORNER)/flat.csv.tmp build/$(CORNER)/flat.csv
|
||||
python3 $(TIMFUZ_DIR)/csv_group2flat.py --sub-json $(BUILD_DIR)/sub.json --corner $(CORNER) --out $(BUILD_DIR)/$(CORNER)/flat.csv.tmp $(BUILD_DIR)/$(CORNER)/linprog.csv
|
||||
mv $(BUILD_DIR)/$(CORNER)/flat.csv.tmp $(BUILD_DIR)/$(CORNER)/flat.csv
|
||||
|
||||
build/$(CORNER)/timgrid-s.json: build/$(CORNER)/flat.csv
|
||||
$(BUILD_DIR)/$(CORNER)/timgrid-vc.json: $(BUILD_DIR)/$(CORNER)/flat.csv
|
||||
# Final processing
|
||||
# Insert timing delays into actual tile layouts
|
||||
python3 $(TIMFUZ_DIR)/tile_annotate.py --timgrid-s $(TIMFUZ_DIR)/timgrid/build/timgrid-s.json --out build/$(CORNER)/timgrid-vc.json build/$(CORNER)/flat.csv
|
||||
python3 $(TIMFUZ_DIR)/tile_annotate.py --timgrid-s $(TIMFUZ_DIR)/timgrid/build/timgrid-s.json --out $(BUILD_DIR)/$(CORNER)/timgrid-vc.json $(BUILD_DIR)/$(CORNER)/flat.csv
|
||||
|
||||
$(BUILD_DIR)/$(CORNER)/qor.txt: $(BUILD_DIR)/$(CORNER)/flat.csv
|
||||
python3 $(TIMFUZ_DIR)/solve_qor.py --corner $(CORNER) --bounds-csv $(BUILD_DIR)/$(CORNER)/flat.csv specimen_*/timing3.csv >$(BUILD_DIR)/$(CORNER)/qor.txt.tmp
|
||||
mv $(BUILD_DIR)/$(CORNER)/qor.txt.tmp $(BUILD_DIR)/$(CORNER)/qor.txt
|
||||
|
||||
|
|
|
|||
|
|
@ -7,21 +7,33 @@ SPECIMENS_OK := $(addsuffix /OK,$(SPECIMENS))
|
|||
CSVS := $(addsuffix /timing3.csv,$(SPECIMENS))
|
||||
TIMFUZ_DIR=$(XRAY_DIR)/fuzzers/007-timing
|
||||
RREF_CORNER=slow_max
|
||||
# Allow an empty system of equations?
|
||||
# for testing only on small projects
|
||||
ALLOW_ZERO_EQN?=N
|
||||
# Constrained projects may fail to build
|
||||
# Set to Y to make a best effort to suck in the ones that did build
|
||||
BADPRJ_OK?=N
|
||||
# Set ZERO elements to zero delay (as is expected they should be)
|
||||
RMZERO?=N
|
||||
BUILD_DIR?=build
|
||||
|
||||
TIMGRID_VCS=build/fast_max/timgrid-vc.json build/fast_min/timgrid-vc.json build/slow_max/timgrid-vc.json build/slow_min/timgrid-vc.json
|
||||
RREF_ARGS=
|
||||
ifeq ($(RMZERO),Y)
|
||||
RREF_ARGS+=--rm-zero
|
||||
endif
|
||||
|
||||
all: build/timgrid-v.json
|
||||
TIMGRID_VCS=$(BUILD_DIR)/fast_max/timgrid-vc.json $(BUILD_DIR)/fast_min/timgrid-vc.json $(BUILD_DIR)/slow_max/timgrid-vc.json $(BUILD_DIR)/slow_min/timgrid-vc.json
|
||||
|
||||
# make build/checksub first
|
||||
build/fast_max/timgrid-vc.json: build/checksub
|
||||
all: $(BUILD_DIR)/timgrid-v.json
|
||||
|
||||
# make $(BUILD_DIR)/checksub first
|
||||
$(BUILD_DIR)/fast_max/timgrid-vc.json: $(BUILD_DIR)/checksub
|
||||
$(MAKE) -f $(TIMFUZ_DIR)/projects/corner.mk CORNER=fast_max
|
||||
build/fast_min/timgrid-vc.json: build/checksub
|
||||
$(BUILD_DIR)/fast_min/timgrid-vc.json: $(BUILD_DIR)/checksub
|
||||
$(MAKE) -f $(TIMFUZ_DIR)/projects/corner.mk CORNER=fast_min
|
||||
build/slow_max/timgrid-vc.json: build/checksub
|
||||
$(BUILD_DIR)/slow_max/timgrid-vc.json: $(BUILD_DIR)/checksub
|
||||
$(MAKE) -f $(TIMFUZ_DIR)/projects/corner.mk CORNER=slow_max
|
||||
build/slow_min/timgrid-vc.json: build/checksub
|
||||
$(BUILD_DIR)/slow_min/timgrid-vc.json: $(BUILD_DIR)/checksub
|
||||
$(MAKE) -f $(TIMFUZ_DIR)/projects/corner.mk CORNER=slow_min
|
||||
|
||||
$(SPECIMENS_OK):
|
||||
|
|
@ -36,7 +48,7 @@ run:
|
|||
clean:
|
||||
rm -rf specimen_[0-9][0-9][0-9]/ seg_clblx.segbits __pycache__ run.ok
|
||||
rm -rf vivado*.log vivado_*.str vivado*.jou design *.bits *.dcp *.bit
|
||||
rm -rf build
|
||||
rm -rf $(BUILD_DIR)
|
||||
|
||||
.PHONY: all run clean
|
||||
|
||||
|
|
@ -51,27 +63,27 @@ exist_csvs = \
|
|||
done
|
||||
|
||||
# rref should be the same regardless of corner
|
||||
build/sub.json: $(SPECIMENS_OK)
|
||||
mkdir -p build
|
||||
$(BUILD_DIR)/sub.json: $(SPECIMENS_OK)
|
||||
mkdir -p $(BUILD_DIR)
|
||||
# Discover which variables can be separated
|
||||
# This is typically the longest running operation
|
||||
\
|
||||
csvs=$$(for f in $(CSVS); do if [ "$(BADPRJ_OK)" != 'Y' -o -f $$f ] ; then echo $$f; fi; done) ; \
|
||||
python3 $(TIMFUZ_DIR)/rref.py --corner $(RREF_CORNER) --simplify --out build/sub.json.tmp $$csvs
|
||||
mv build/sub.json.tmp build/sub.json
|
||||
python3 $(TIMFUZ_DIR)/rref.py --corner $(RREF_CORNER) --simplify $(RREF_ARGS) --out $(BUILD_DIR)/sub.json.tmp $$csvs
|
||||
mv $(BUILD_DIR)/sub.json.tmp $(BUILD_DIR)/sub.json
|
||||
|
||||
build/grouped.csv: $(SPECIMENS_OK) build/sub.json
|
||||
$(BUILD_DIR)/grouped.csv: $(SPECIMENS_OK) $(BUILD_DIR)/sub.json
|
||||
# Separate variables
|
||||
\
|
||||
csvs=$$(for f in $(CSVS); do if [ "$(BADPRJ_OK)" != 'Y' -o -f $$f ] ; then echo $$f; fi; done) ; \
|
||||
python3 $(TIMFUZ_DIR)/csv_flat2group.py --sub-json build/sub.json --strict --out build/grouped.csv.tmp $$csvs
|
||||
mv build/grouped.csv.tmp build/grouped.csv
|
||||
python3 $(TIMFUZ_DIR)/csv_flat2group.py --sub-json $(BUILD_DIR)/sub.json --strict --out $(BUILD_DIR)/grouped.csv.tmp $$csvs
|
||||
mv $(BUILD_DIR)/grouped.csv.tmp $(BUILD_DIR)/grouped.csv
|
||||
|
||||
build/checksub: build/grouped.csv build/sub.json
|
||||
$(BUILD_DIR)/checksub: $(BUILD_DIR)/grouped.csv $(BUILD_DIR)/sub.json
|
||||
# Verify sub.json makes a cleanly solvable solution with no non-pivot leftover
|
||||
python3 $(TIMFUZ_DIR)/checksub.py --sub-json build/sub.json build/grouped.csv
|
||||
touch build/checksub
|
||||
python3 $(TIMFUZ_DIR)/checksub.py --sub-json $(BUILD_DIR)/sub.json $(BUILD_DIR)/grouped.csv
|
||||
touch $(BUILD_DIR)/checksub
|
||||
|
||||
build/timgrid-v.json: $(TIMGRID_VCS)
|
||||
python3 $(TIMFUZ_DIR)/timgrid_vc2v.py --out build/timgrid-v.json $(TIMGRID_VCS)
|
||||
$(BUILD_DIR)/timgrid-v.json: $(TIMGRID_VCS)
|
||||
python3 $(TIMFUZ_DIR)/timgrid_vc2v.py --out $(BUILD_DIR)/timgrid-v.json $(TIMGRID_VCS)
|
||||
|
||||
|
|
|
|||
|
|
@ -240,16 +240,16 @@ def simplify_rows(Ads, b_ub, remove_zd=False, corner=None):
|
|||
sys.stdout.write('SimpR ')
|
||||
sys.stdout.flush()
|
||||
progress = int(max(1, len(b_ub) / 100))
|
||||
# Equations with a total delay of zero
|
||||
zero_ds = 0
|
||||
# Equations with zero elements
|
||||
# These should have zero delay
|
||||
zero_es = 0
|
||||
for loopi, (b, rowd) in enumerate(zip(b_ub, Ads)):
|
||||
if loopi % progress == 0:
|
||||
sys.stdout.write('.')
|
||||
sys.stdout.flush()
|
||||
|
||||
# TODO: elements have zero delay (ex: COUT)
|
||||
# Remove these from now since they make me nervous
|
||||
# Although they should just solve to 0
|
||||
if remove_zd and not b:
|
||||
zero_ds += 1
|
||||
continue
|
||||
|
|
@ -260,6 +260,24 @@ def simplify_rows(Ads, b_ub, remove_zd=False, corner=None):
|
|||
assert zero_es == 0, 'Unexpected zero element row with non-zero delay'
|
||||
zero_es += 1
|
||||
continue
|
||||
'''
|
||||
Reduce any constants to canonical form
|
||||
this simplifies later steps that optimize based on assuming there aren't duplicate constants
|
||||
|
||||
Ex:
|
||||
a = 10
|
||||
2 a = 30
|
||||
max corner will get simplified to
|
||||
a = 15
|
||||
|
||||
Otherwise these are not identical equations and would not get simplied
|
||||
Don't try handling the general case of non-trivial equations
|
||||
'''
|
||||
if len(rowd) == 1:
|
||||
k, v = list(rowd.items())[0]
|
||||
if v != 1:
|
||||
rowd = {k: 1}
|
||||
b = 1.0 * b / v
|
||||
|
||||
rowt = Ar_ds2t(rowd)
|
||||
eqns[rowt] = minmax(eqns.get(rowt, T_UNK), b)
|
||||
|
|
@ -267,11 +285,12 @@ def simplify_rows(Ads, b_ub, remove_zd=False, corner=None):
|
|||
print(' done')
|
||||
|
||||
print(
|
||||
'Simplify rows: %d => %d rows w/ zd %d, ze %d' %
|
||||
'Simplify rows: %d => %d rows w/ rm zd %d, rm ze %d' %
|
||||
(len(b_ub), len(eqns), zero_ds, zero_es))
|
||||
if len(eqns) == 0:
|
||||
raise SimplifiedToZero()
|
||||
A_ubd_ret, b_ub_ret = Ab_ub_dt2d(eqns)
|
||||
#print_eqns(A_ubd_ret, b_ub_ret, verbose=True, label='Debug')
|
||||
return A_ubd_ret, b_ub_ret
|
||||
|
||||
|
||||
|
|
@ -349,177 +368,6 @@ def sort_equations(Ads, b):
|
|||
return [OrderedDict(rowt) for rowt in A_ubtr], b_ubr
|
||||
|
||||
|
||||
def derive_eq_by_row(A_ubd, b_ub, verbose=0, col_lim=0, tweak=False):
|
||||
'''
|
||||
Derive equations by subtracting whole rows
|
||||
|
||||
Given equations like:
|
||||
t0 >= 10
|
||||
t0 + t1 >= 15
|
||||
t0 + t1 + t2 >= 17
|
||||
|
||||
When I look at these, I think of a solution something like:
|
||||
t0 = 10f
|
||||
t1 = 5
|
||||
t2 = 2
|
||||
|
||||
However, linprog tends to choose solutions like:
|
||||
t0 = 17
|
||||
t1 = 0
|
||||
t2 = 0
|
||||
|
||||
To this end, add additional constraints by finding equations that are subsets of other equations
|
||||
How to do this in a reasonable time span?
|
||||
Also equations are sparse, which makes this harder to compute
|
||||
'''
|
||||
rows = len(A_ubd)
|
||||
assert rows == len(b_ub)
|
||||
|
||||
# Index equations into hash maps so can lookup sparse elements quicker
|
||||
assert len(A_ubd) == len(b_ub)
|
||||
A_ubd_ret = copy.copy(A_ubd)
|
||||
assert len(A_ubd) == len(A_ubd_ret)
|
||||
|
||||
#print('Finding subsets')
|
||||
ltes = 0
|
||||
scs = 0
|
||||
b_ub_ret = list(b_ub)
|
||||
sys.stdout.write('Deriving rows ')
|
||||
sys.stdout.flush()
|
||||
progress = max(1, rows / 100)
|
||||
for row_refi, row_ref in enumerate(A_ubd):
|
||||
if row_refi % progress == 0:
|
||||
sys.stdout.write('.')
|
||||
sys.stdout.flush()
|
||||
if col_lim and len(row_ref) > col_lim:
|
||||
continue
|
||||
|
||||
for row_cmpi, row_cmp in enumerate(A_ubd):
|
||||
if row_refi == row_cmpi or col_lim and len(row_cmp) > col_lim:
|
||||
continue
|
||||
# FIXME: this check was supposed to be removed
|
||||
'''
|
||||
Every elements in row_cmp is in row_ref
|
||||
but this doesn't mean the constants are smaller
|
||||
Filter these out
|
||||
'''
|
||||
# XXX: just reduce and filter out solutions with positive constants
|
||||
# or actually are these also useful as is?
|
||||
lte = lte_const(row_ref, row_cmp)
|
||||
if lte:
|
||||
ltes += 1
|
||||
sc = 0 and shared_const(row_ref, row_cmp)
|
||||
if sc:
|
||||
scs += 1
|
||||
if lte or sc:
|
||||
if verbose:
|
||||
print('')
|
||||
print('match')
|
||||
print(' ', row_ref, b_ub[row_refi])
|
||||
print(' ', row_cmp, b_ub[row_cmpi])
|
||||
# Reduce
|
||||
A_new = reduce_const(row_ref, row_cmp)
|
||||
# Did this actually significantly reduce the search space?
|
||||
#if tweak and len(A_new) > 4 and len(A_new) > len(row_cmp) / 2:
|
||||
if tweak and len(A_new) > 8 and len(A_new) > len(row_cmp) / 2:
|
||||
continue
|
||||
b_new = b_ub[row_refi] - b_ub[row_cmpi]
|
||||
# Definitely possible
|
||||
# Maybe filter these out if they occur?
|
||||
if verbose:
|
||||
print(b_new)
|
||||
# Also inverted sign
|
||||
if b_new <= 0:
|
||||
if verbose:
|
||||
print("Unexpected b")
|
||||
continue
|
||||
if verbose:
|
||||
print('OK')
|
||||
A_ubd_ret.append(A_new)
|
||||
b_ub_ret.append(b_new)
|
||||
print(' done')
|
||||
|
||||
#A_ub_ret = A_di2np(A_ubd2, cols=cols)
|
||||
print(
|
||||
'Derive row: %d => %d rows using %d lte, %d sc' %
|
||||
(len(b_ub), len(b_ub_ret), ltes, scs))
|
||||
assert len(A_ubd_ret) == len(b_ub_ret)
|
||||
return A_ubd_ret, b_ub_ret
|
||||
|
||||
|
||||
def derive_eq_by_col(A_ubd, b_ub, verbose=0):
|
||||
'''
|
||||
Derive equations by subtracting out all bounded constants (ie "known" columns)
|
||||
'''
|
||||
rows = len(A_ubd)
|
||||
|
||||
# Find all entries where
|
||||
|
||||
# Index equations with a single constraint
|
||||
knowns = {}
|
||||
sys.stdout.write('Derive col indexing ')
|
||||
#A_ubd = A_ub_np2d(A_ub)
|
||||
sys.stdout.flush()
|
||||
progress = max(1, rows / 100)
|
||||
for row_refi, row_refd in enumerate(A_ubd):
|
||||
if row_refi % progress == 0:
|
||||
sys.stdout.write('.')
|
||||
sys.stdout.flush()
|
||||
if len(row_refd) == 1:
|
||||
k, v = list(row_refd.items())[0]
|
||||
# Reduce any constants to canonical form
|
||||
if v != 1:
|
||||
row_refd[k] = 1
|
||||
b_ub[row_refi] /= v
|
||||
knowns[k] = b_ub[row_refi]
|
||||
print(' done')
|
||||
#knowns_set = OrderedSet(knowns.keys())
|
||||
print('%d constrained' % len(knowns))
|
||||
'''
|
||||
Now see what we can do
|
||||
Rows that are already constrained: eliminate
|
||||
TODO: maybe keep these if this would violate their constraint
|
||||
Otherwise eliminate the original row and generate a simplified result now
|
||||
'''
|
||||
b_ub_ret = []
|
||||
A_ubd_ret = []
|
||||
sys.stdout.write('Derive col main ')
|
||||
sys.stdout.flush()
|
||||
progress = max(1, rows / 100)
|
||||
for row_refi, row_refd in enumerate(A_ubd):
|
||||
if row_refi % progress == 0:
|
||||
sys.stdout.write('.')
|
||||
sys.stdout.flush()
|
||||
# Reduce as much as possible
|
||||
#row_new = {}
|
||||
row_new = OrderedDict()
|
||||
b_new = b_ub[row_refi]
|
||||
# Copy over single entries
|
||||
if len(row_refd) == 1:
|
||||
row_new = row_refd
|
||||
else:
|
||||
for k, v in row_refd.items():
|
||||
if k in knowns:
|
||||
# Remove column and take out corresponding delay
|
||||
b_new -= v * knowns[k]
|
||||
# Copy over
|
||||
else:
|
||||
row_new[k] = v
|
||||
|
||||
# Possibly reduced all usable contants out
|
||||
if len(row_new) == 0:
|
||||
continue
|
||||
if b_new <= 0:
|
||||
continue
|
||||
|
||||
A_ubd_ret.append(row_new)
|
||||
b_ub_ret.append(b_new)
|
||||
print(' done')
|
||||
|
||||
print('Derive col: %d => %d rows' % (len(b_ub), len(b_ub_ret)))
|
||||
return A_ubd_ret, b_ub_ret
|
||||
|
||||
|
||||
def col_dist(Ads, desc='of', names=[], lim=0):
|
||||
'''print(frequency distribution of number of elements in a given row'''
|
||||
rows = len(Ads)
|
||||
|
|
|
|||
|
|
@ -24,30 +24,8 @@ def lte_const(row_ref, row_cmp):
|
|||
return True
|
||||
|
||||
|
||||
def shared_const(row_ref, row_cmp):
|
||||
'''Return true if more constants are equal than not equal'''
|
||||
#return False
|
||||
matches = 0
|
||||
unmatches = 0
|
||||
ks = list(row_ref.keys()) + list(row_cmp.keys())
|
||||
for k in ks:
|
||||
vr = row_ref.get(k, None)
|
||||
vc = row_cmp.get(k, None)
|
||||
# At least one
|
||||
if vr is not None and vc is not None:
|
||||
if vc == vr:
|
||||
matches += 1
|
||||
else:
|
||||
unmatches += 1
|
||||
else:
|
||||
unmatches += 1
|
||||
|
||||
# Will equation reduce if subtracted?
|
||||
return matches > unmatches
|
||||
|
||||
|
||||
def reduce_const(row_ref, row_cmp):
|
||||
'''Subtract cmp constants from ref'''
|
||||
def sub_rows(row_ref, row_cmp):
|
||||
'''Do row_ref - row_cmp'''
|
||||
#ret = {}
|
||||
ret = OrderedDict()
|
||||
ks = set(row_ref.keys())
|
||||
|
|
@ -61,10 +39,13 @@ def reduce_const(row_ref, row_cmp):
|
|||
return ret
|
||||
|
||||
|
||||
def derive_eq_by_row(Ads, b, verbose=0, col_lim=0, tweak=False):
|
||||
def derive_eq_by_row(Ads, b, verbose=0, col_lim=0, cmp_heuristic=True):
|
||||
'''
|
||||
Derive equations by subtracting whole rows
|
||||
|
||||
cmp_heuristic: drop large generated rows since these are unlikely to constrain the solution
|
||||
|
||||
|
||||
Given equations like:
|
||||
t0 >= 10
|
||||
t0 + t1 >= 15
|
||||
|
|
@ -94,11 +75,11 @@ def derive_eq_by_row(Ads, b, verbose=0, col_lim=0, tweak=False):
|
|||
|
||||
#print('Finding subsets')
|
||||
ltes = 0
|
||||
scs = 0
|
||||
b_ret = list(b)
|
||||
sys.stdout.write('Deriving rows (%u) ' % rows)
|
||||
sys.stdout.flush()
|
||||
progress = int(max(1, rows / 100))
|
||||
b_warns = 0
|
||||
for row_refi, row_ref in enumerate(Ads):
|
||||
if row_refi % progress == 0:
|
||||
sys.stdout.write('.')
|
||||
|
|
@ -109,166 +90,64 @@ def derive_eq_by_row(Ads, b, verbose=0, col_lim=0, tweak=False):
|
|||
for row_cmpi, row_cmp in enumerate(Ads):
|
||||
if row_refi == row_cmpi or col_lim and len(row_cmp) > col_lim:
|
||||
continue
|
||||
# FIXME: this check was supposed to be removed
|
||||
'''
|
||||
Every elements in row_cmp is in row_ref
|
||||
but this doesn't mean the constants are smaller
|
||||
Filter these out
|
||||
'''
|
||||
# XXX: just reduce and filter out solutions with positive constants
|
||||
# or actually are these also useful as is?
|
||||
lte = lte_const(row_ref, row_cmp)
|
||||
if lte:
|
||||
ltes += 1
|
||||
sc = 0 and shared_const(row_ref, row_cmp)
|
||||
if sc:
|
||||
scs += 1
|
||||
if lte or sc:
|
||||
if verbose:
|
||||
print('')
|
||||
print('match')
|
||||
print(' ', row_ref, b[row_refi])
|
||||
print(' ', row_cmp, b[row_cmpi])
|
||||
# Reduce
|
||||
A_new = reduce_const(row_ref, row_cmp)
|
||||
# Did this actually significantly reduce the search space?
|
||||
#if tweak and len(A_new) > 4 and len(A_new) > len(row_cmp) / 2:
|
||||
if tweak and len(A_new) > 8 and len(A_new) > len(row_cmp) / 2:
|
||||
continue
|
||||
b_new = b[row_refi] - b[row_cmpi]
|
||||
# Definitely possible
|
||||
# Maybe filter these out if they occur?
|
||||
if verbose:
|
||||
print(b_new)
|
||||
# Also inverted sign
|
||||
if b_new <= 0:
|
||||
if verbose:
|
||||
print("Unexpected b")
|
||||
continue
|
||||
if verbose:
|
||||
print('OK')
|
||||
Ads_ret.append(A_new)
|
||||
b_ret.append(b_new)
|
||||
print(' done')
|
||||
|
||||
#A_ub_ret = A_di2np(Ads2, cols=cols)
|
||||
print(
|
||||
'Derive row: %d => %d rows using %d lte, %d sc' %
|
||||
(len(b), len(b_ret), ltes, scs))
|
||||
assert len(Ads_ret) == len(b_ret)
|
||||
return Ads_ret, b_ret
|
||||
|
||||
|
||||
def derive_eq_by_near_row(Ads, b, verbose=0, col_lim=0, tweak=False):
|
||||
'''
|
||||
Derive equations by subtracting whole rows
|
||||
|
||||
Given equations like:
|
||||
t0 >= 10
|
||||
t0 + t1 >= 15
|
||||
t0 + t1 + t2 >= 17
|
||||
|
||||
When I look at these, I think of a solution something like:
|
||||
t0 = 10f
|
||||
t1 = 5
|
||||
t2 = 2
|
||||
|
||||
However, linprog tends to choose solutions like:
|
||||
t0 = 17
|
||||
t1 = 0
|
||||
t2 = 0
|
||||
|
||||
To this end, add additional constraints by finding equations that are subsets of other equations
|
||||
How to do this in a reasonable time span?
|
||||
Also equations are sparse, which makes this harder to compute
|
||||
'''
|
||||
rows = len(Ads)
|
||||
assert rows == len(b)
|
||||
rowdelta = int(rows / 2)
|
||||
|
||||
# Index equations into hash maps so can lookup sparse elements quicker
|
||||
assert len(Ads) == len(b)
|
||||
Ads_ret = copy.copy(Ads)
|
||||
assert len(Ads) == len(Ads_ret)
|
||||
|
||||
#print('Finding subsets')
|
||||
ltes = 0
|
||||
scs = 0
|
||||
b_ret = list(b)
|
||||
sys.stdout.write('Deriving rows (%u) ' % rows)
|
||||
sys.stdout.flush()
|
||||
progress = int(max(1, rows / 100))
|
||||
for row_refi, row_ref in enumerate(Ads):
|
||||
if row_refi % progress == 0:
|
||||
sys.stdout.write('.')
|
||||
sys.stdout.flush()
|
||||
if col_lim and len(row_ref) > col_lim:
|
||||
continue
|
||||
|
||||
#for row_cmpi, row_cmp in enumerate(Ads):
|
||||
for row_cmpi in range(max(0, row_refi - rowdelta),
|
||||
min(len(Ads), row_refi + rowdelta)):
|
||||
if row_refi == row_cmpi or col_lim and len(row_cmp) > col_lim:
|
||||
if not lte_const(row_ref, row_cmp):
|
||||
continue
|
||||
row_cmp = Ads[row_cmpi]
|
||||
# FIXME: this check was supposed to be removed
|
||||
'''
|
||||
Every elements in row_cmp is in row_ref
|
||||
but this doesn't mean the constants are smaller
|
||||
Filter these out
|
||||
'''
|
||||
# XXX: just reduce and filter out solutions with positive constants
|
||||
# or actually are these also useful as is?
|
||||
lte = lte_const(row_ref, row_cmp)
|
||||
if lte:
|
||||
ltes += 1
|
||||
sc = 0 and shared_const(row_ref, row_cmp)
|
||||
if sc:
|
||||
scs += 1
|
||||
if lte or sc:
|
||||
ltes += 1
|
||||
if verbose:
|
||||
print('')
|
||||
print('match')
|
||||
print(' ', row_ref, b[row_refi])
|
||||
print(' ', row_cmp, b[row_cmpi])
|
||||
|
||||
# Reduce
|
||||
row_new = sub_rows(row_ref, row_cmp)
|
||||
|
||||
# Did this actually significantly reduce the search space?
|
||||
# should be a relatively small number of rows and be significantly smaller than at least one of them
|
||||
def is_smaller_row():
|
||||
# Keep any generally small rows
|
||||
if len(row_new) <= 8:
|
||||
return True
|
||||
# And anything that reduced at least one row by half
|
||||
# Ex: going from 120 and 100 element rows to a 20 element row
|
||||
return len(row_new) <= len(row_cmp) / 2 or len(
|
||||
row_new) <= len(row_ref) / 2
|
||||
|
||||
if cmp_heuristic and not is_smaller_row():
|
||||
continue
|
||||
b_new = b[row_refi] - b[row_cmpi]
|
||||
# Definitely possible
|
||||
# Maybe filter these out if they occur?
|
||||
if verbose:
|
||||
print(b_new)
|
||||
# Also inverted sign
|
||||
if b_new < 0:
|
||||
if verbose:
|
||||
print('')
|
||||
print('match')
|
||||
print(' ', row_ref, b[row_refi])
|
||||
print(' ', row_cmp, b[row_cmpi])
|
||||
# Reduce
|
||||
A_new = reduce_const(row_ref, row_cmp)
|
||||
# Did this actually significantly reduce the search space?
|
||||
#if tweak and len(A_new) > 4 and len(A_new) > len(row_cmp) / 2:
|
||||
#if tweak and len(A_new) > 8 and len(A_new) > len(row_cmp) / 2:
|
||||
# continue
|
||||
b_new = b[row_refi] - b[row_cmpi]
|
||||
# Definitely possible
|
||||
# Maybe filter these out if they occur?
|
||||
if verbose:
|
||||
print(b_new)
|
||||
# Also inverted sign
|
||||
if b_new <= 0:
|
||||
if verbose:
|
||||
print("Unexpected b")
|
||||
continue
|
||||
if verbose:
|
||||
print('OK')
|
||||
Ads_ret.append(A_new)
|
||||
b_ret.append(b_new)
|
||||
print("Unexpected b")
|
||||
b_warns += 1
|
||||
continue
|
||||
if verbose:
|
||||
print('OK')
|
||||
Ads_ret.append(row_new)
|
||||
b_ret.append(b_new)
|
||||
print(' done')
|
||||
|
||||
#A_ub_ret = A_di2np(Ads2, cols=cols)
|
||||
print(
|
||||
'Derive row: %d => %d rows using %d lte, %d sc' %
|
||||
(len(b), len(b_ret), ltes, scs))
|
||||
'Derive row: %d => %d rows using %d lte' % (len(b), len(b_ret), ltes))
|
||||
print('Dropped %u invalid equations' % b_warns)
|
||||
assert len(Ads_ret) == len(b_ret)
|
||||
return Ads_ret, b_ret
|
||||
|
||||
|
||||
def derive_eq_by_col(Ads, b_ub, verbose=0):
|
||||
def derive_eq_by_col(Ads, b_ub, verbose=0, keep_orig=True):
|
||||
'''
|
||||
Derive equations by subtracting out all bounded constants (ie "known" columns)
|
||||
XXX: is this now redundant with derive_row?
|
||||
Seems like a degenerate case, although maybe quicker
|
||||
'''
|
||||
rows = len(Ads)
|
||||
|
||||
# Find all entries where
|
||||
|
||||
# Index equations with a single constraint
|
||||
knowns = {}
|
||||
sys.stdout.write('Derive col indexing ')
|
||||
|
|
@ -280,11 +159,11 @@ def derive_eq_by_col(Ads, b_ub, verbose=0):
|
|||
sys.stdout.flush()
|
||||
if len(row_refd) == 1:
|
||||
k, v = list(row_refd.items())[0]
|
||||
# Reduce any constants to canonical form
|
||||
if v != 1:
|
||||
row_refd[k] = 1
|
||||
b_ub[row_refi] /= v
|
||||
knowns[k] = b_ub[row_refi]
|
||||
# assume simplify_equations handles de-duplicating
|
||||
new_b = 1.0 * b_ub[row_refi] / v
|
||||
assert k not in knowns, "Got new %s w/ val %u, old val %u" % (
|
||||
k, new_b, knowns[k])
|
||||
knowns[k] = new_b
|
||||
print(' done')
|
||||
#knowns_set = set(knowns.keys())
|
||||
print('%d constrained' % len(knowns))
|
||||
|
|
@ -303,10 +182,15 @@ def derive_eq_by_col(Ads, b_ub, verbose=0):
|
|||
if row_refi % progress == 0:
|
||||
sys.stdout.write('.')
|
||||
sys.stdout.flush()
|
||||
b_ref = b_ub[row_refi]
|
||||
if keep_orig:
|
||||
Ads_ret.append(row_refd)
|
||||
b_ret.append(b_ref)
|
||||
|
||||
# Reduce as much as possible
|
||||
#row_new = {}
|
||||
row_new = OrderedDict()
|
||||
b_new = b_ub[row_refi]
|
||||
b_new = b_ref
|
||||
# Copy over single entries
|
||||
if len(row_refd) == 1:
|
||||
row_new = row_refd
|
||||
|
|
@ -322,11 +206,13 @@ def derive_eq_by_col(Ads, b_ub, verbose=0):
|
|||
# Possibly reduced all usable contants out
|
||||
if len(row_new) == 0:
|
||||
continue
|
||||
if b_new <= 0:
|
||||
# invalid?
|
||||
if b_new < 0:
|
||||
continue
|
||||
|
||||
Ads_ret.append(row_new)
|
||||
b_ret.append(b_new)
|
||||
if not keep_orig or row_new != row_refd:
|
||||
Ads_ret.append(row_new)
|
||||
b_ret.append(b_new)
|
||||
print(' done')
|
||||
|
||||
print('Derive col: %d => %d rows' % (len(b_ub), len(b_ret)))
|
||||
|
|
@ -358,12 +244,16 @@ def massage_equations(Ads, b, verbose=False, corner=None):
|
|||
|
||||
assert len(Ads) == len(b), 'Ads, b length mismatch'
|
||||
|
||||
def check_cols():
|
||||
assert len(index_names(Ads)) == cols
|
||||
|
||||
def debug(what):
|
||||
if verbose:
|
||||
check_cols()
|
||||
if 1 or verbose:
|
||||
print('')
|
||||
print_eqns(Ads, b, verbose=verbose, label=what, lim=20)
|
||||
col_dist(Ads, what)
|
||||
check_feasible_d(Ads, b)
|
||||
#check_feasible_d(Ads, b)
|
||||
|
||||
# Try to (intelligently) subtract equations to generate additional constraints
|
||||
# This helps avoid putting all delay in a single shared variable
|
||||
|
|
@ -380,21 +270,27 @@ def massage_equations(Ads, b, verbose=False, corner=None):
|
|||
|
||||
print('Loop %d, lim %d' % (di + 1, col_lim))
|
||||
# Meat of the operation
|
||||
Ads, b = derive_eq_by_row(Ads, b, col_lim=col_lim, tweak=True)
|
||||
Ads, b = derive_eq_by_row(Ads, b, col_lim=col_lim, cmp_heuristic=True)
|
||||
debug("der_rows")
|
||||
# Run another simplify pass since new equations may have overlap with original
|
||||
Ads, b = simplify_rows(Ads, b, corner=corner)
|
||||
print('Derive row: %d => %d equations' % (n_orig, len(b)))
|
||||
debug("der_rows simp")
|
||||
|
||||
n_orig2 = len(b)
|
||||
# Meat of the operation
|
||||
Ads, b = derive_eq_by_col(Ads, b)
|
||||
debug("der_cols")
|
||||
# Run another simplify pass since new equations may have overlap with original
|
||||
Ads, b = simplify_rows(Ads, b, corner=corner)
|
||||
print('Derive col %d: %d => %d equations' % (di + 1, n_orig2, len(b)))
|
||||
debug("der_cols simp")
|
||||
# derive_cols is mostly degenerate case of derive_rows
|
||||
# however, it will sub out single variables a lot faster if there are a lot of them
|
||||
# linear vs above quadratic, might as well keep it in
|
||||
if 1:
|
||||
n_orig2 = len(b)
|
||||
# Meat of the operation
|
||||
Ads, b = derive_eq_by_col(Ads, b)
|
||||
debug("der_cols")
|
||||
# Run another simplify pass since new equations may have overlap with original
|
||||
Ads, b = simplify_rows(Ads, b, corner=corner)
|
||||
print(
|
||||
'Derive col %d: %d => %d equations' %
|
||||
(di + 1, n_orig2, len(b)))
|
||||
debug("der_cols simp")
|
||||
|
||||
# Doesn't help computation, but helps debugging
|
||||
Ads, b = sort_equations(Ads, b)
|
||||
|
|
@ -419,4 +315,7 @@ def massage_equations(Ads, b, verbose=False, corner=None):
|
|||
debug("final (sorted)")
|
||||
print('')
|
||||
print('Massage final: %d => %d rows' % (dstart, dend))
|
||||
cols_end = len(index_names(Ads))
|
||||
print('Massage final: %d => %d cols' % (cols, cols_end))
|
||||
assert cols_end == cols
|
||||
return Ads, b
|
||||
|
|
|
|||
|
|
@ -64,8 +64,18 @@ def check_feasible(A_ub, b_ub):
|
|||
|
||||
|
||||
def filter_bounds(Ads, b, bounds, corner):
|
||||
'''Given min variable delays, remove rows that won't constrain solution'''
|
||||
#assert len(bounds) > 0
|
||||
'''
|
||||
Given min variable delays, remove rows that won't constrain solution
|
||||
Ex for max corner:
|
||||
Given bounds:
|
||||
a >= 10
|
||||
b >= 1
|
||||
c >= 0
|
||||
Given equations:
|
||||
a + b >= 10
|
||||
a + c >= 100
|
||||
The first equation is already satisfied
|
||||
However, the second needs either an increase in a or an increase in c '''
|
||||
|
||||
if 'max' in corner:
|
||||
# Keep delays possibly larger than current bound
|
||||
|
|
@ -84,13 +94,24 @@ def filter_bounds(Ads, b, bounds, corner):
|
|||
|
||||
ret_Ads = []
|
||||
ret_b = []
|
||||
unknowns = set()
|
||||
for row_ds, row_b in zip(Ads, b):
|
||||
# some variables get estimated at 0
|
||||
est = sum([bounds.get(k, T_UNK) * v for k, v in row_ds.items()])
|
||||
def getvar(k):
|
||||
#return bounds.get(k, T_UNK)
|
||||
ret = bounds.get(k, None)
|
||||
if ret is not None:
|
||||
return ret
|
||||
unknowns.add(k)
|
||||
return T_UNK
|
||||
|
||||
est = sum([getvar(k) * v for k, v in row_ds.items()])
|
||||
# will this row potentially constrain us more?
|
||||
if keep(row_b, est):
|
||||
ret_Ads.append(row_ds)
|
||||
ret_b.append(row_b)
|
||||
if len(unknowns):
|
||||
print('WARNING: %u encountered undefined bounds' % len(unknowns))
|
||||
return ret_Ads, ret_b
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue