openFPGALoader/src/xilinx.cpp

366 lines
9.5 KiB
C++

#include <iostream>
#include <stdexcept>
#include <string>
#include "jtag.hpp"
#include "bitparser.hpp"
#include "configBitstreamParser.hpp"
#include "mcsParser.hpp"
#include "spiFlash.hpp"
#include "rawParser.hpp"
#include "display.hpp"
#include "xilinx.hpp"
#include "part.hpp"
#include "progressBar.hpp"
Xilinx::Xilinx(Jtag *jtag, const std::string &filename,
const std::string &file_type,
Device::prog_type_t prg_type,
std::string device_package, int8_t verbose):
Device(jtag, filename, file_type, verbose),_device_package(device_package)
{
if (!_file_extension.empty()) {
if (_file_extension == "mcs") {
_mode = Device::SPI_MODE;
} else if (_file_extension == "bit" || _file_extension == "bin") {
if (prg_type == Device::WR_SRAM)
_mode = Device::MEM_MODE;
else
_mode = Device::SPI_MODE;
} else {
_mode = Device::SPI_MODE;
}
}
}
Xilinx::~Xilinx() {}
#define USER1 0x02
#define CFG_IN 0x05
#define USERCODE 0x08
#define IDCODE 0x09
#define ISC_ENABLE 0x10
#define JPROGRAM 0x0B
#define JSTART 0x0C
#define JSHUTDOWN 0x0D
#define ISC_DISABLE 0x16
#define BYPASS 0x3f
void Xilinx::reset()
{
_jtag->shiftIR(JSHUTDOWN, 6);
_jtag->shiftIR(JPROGRAM, 6);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(10000*12);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2000);
_jtag->shiftIR(BYPASS, 6);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2000);
}
int Xilinx::idCode()
{
unsigned char tx_data[4]= {0x00, 0x00, 0x00, 0x00};
unsigned char rx_data[4];
_jtag->go_test_logic_reset();
_jtag->shiftIR(IDCODE, 6);
_jtag->shiftDR(tx_data, rx_data, 32);
return ((rx_data[0] & 0x000000ff) |
((rx_data[1] << 8) & 0x0000ff00) |
((rx_data[2] << 16) & 0x00ff0000) |
((rx_data[3] << 24) & 0xff000000));
}
void Xilinx::program(unsigned int offset)
{
ConfigBitstreamParser *bit;
bool reverse = false;
/* nothing to do */
if (_mode == Device::NONE_MODE)
return;
if (_mode == Device::MEM_MODE)
reverse = true;
printInfo("Open file ", false);
try {
if (_file_extension == "bit")
bit = new BitParser(_filename, reverse, _verbose);
else if (_file_extension == "mcs")
bit = new McsParser(_filename, reverse, _verbose);
else
bit = new RawParser(_filename, reverse);
} catch (std::exception &e) {
printError("FAIL");
return;
}
printSuccess("DONE");
printInfo("Parse file ", false);
if (bit->parse() == EXIT_FAILURE) {
printError("FAIL");
delete bit;
return;
} else {
printSuccess("DONE");
}
if (_verbose)
bit->displayHeader();
if (_mode == Device::SPI_MODE) {
program_spi(bit, offset);
reset();
} else {
program_mem(bit);
}
delete bit;
}
void Xilinx::program_spi(ConfigBitstreamParser * bit, unsigned int offset)
{
if (_device_package.empty()) {
printError("Can't program SPI flash: missing device-package information");
return;
}
// DATA_DIR is defined at compile time.
std::string bitname = DATA_DIR "/openFPGALoader/spiOverJtag_";
bitname += _device_package + ".bit";
std::cout << "use: " << bitname << std::endl;
/* first: load spi over jtag */
try {
BitParser bridge(bitname, true, _verbose);
bridge.parse();
program_mem(&bridge);
} catch (std::exception &e) {
printError(e.what());
throw std::runtime_error(e.what());
}
SPIFlash spiFlash(this, (_verbose ? 1 : (_quiet ? -1 : 0)));
spiFlash.reset();
spiFlash.read_id();
spiFlash.read_status_reg();
spiFlash.erase_and_prog(offset, bit->getData(), bit->getLength()/8);
}
void Xilinx::program_mem(ConfigBitstreamParser *bitfile)
{
if (_file_extension.empty()) return;
std::cout << "load program" << std::endl;
unsigned char tx_buf, rx_buf;
/* comment TDI TMS TCK
* 1: On power-up, place a logic 1 on the TMS,
* and clock the TCK five times. This ensures X 1 5
* starting in the TLR (Test-Logic-Reset) state.
*/
_jtag->go_test_logic_reset();
/*
* 2: Move into the RTI state. X 0 1
* 3: Move into the SELECT-IR state. X 1 2
* 4: Enter the SHIFT-IR state. X 0 2
* 5: Start loading the JPROGRAM instruction, 01011(4) 0 5
* LSB first:
* 6: Load the MSB of the JPROGRAM instruction
* when exiting SHIFT-IR, as defined in the 0 1 1
* IEEE standard.
* 7: Place a logic 1 on the TMS and clock the
* TCK five times. This ensures starting in X 1 5
* the TLR (Test-Logic-Reset) state.
*/
_jtag->shiftIR(JPROGRAM, 6);
/* test */
tx_buf = BYPASS;
do {
_jtag->shiftIR(&tx_buf, &rx_buf, 6);
} while (!(rx_buf &0x01));
/*
* 8: Move into the RTI state. X 0 10,000(1)
*/
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(10000*12);
/*
* 9: Start loading the CFG_IN instruction,
* LSB first: 00101 0 5
* 10: Load the MSB of CFG_IN instruction when
* exiting SHIFT-IR, as defined in the 0 1 1
* IEEE standard.
*/
_jtag->shiftIR(CFG_IN, 6);
/*
* 11: Enter the SELECT-DR state. X 1 2
*/
_jtag->set_state(Jtag::SELECT_DR_SCAN);
/*
* 12: Enter the SHIFT-DR state. X 0 2
*/
_jtag->set_state(Jtag::SHIFT_DR);
/*
* 13: Shift in the FPGA bitstream. Bitn (MSB)
* is the first bit in the bitstream(2). bit1...bitn 0 (bits in bitstream)-1
* 14: Shift in the last bit of the bitstream.
* Bit0 (LSB) shifts on the transition to bit0 1 1
* EXIT1-DR.
*/
/* GGM: TODO */
int byte_length = bitfile->getLength() / 8;
uint8_t *data = bitfile->getData();
int tx_len, tx_end;
int burst_len = byte_length / 100;
ProgressBar progress("Flash SRAM", byte_length, 50, _quiet);
for (int i=0; i < byte_length; i+=burst_len) {
if (i + burst_len > byte_length) {
tx_len = (byte_length - i) * 8;
tx_end = 1;
} else {
tx_len = burst_len * 8;
tx_end = 0;
}
_jtag->read_write(data+i, NULL, tx_len, tx_end);
_jtag->flush();
progress.display(i);
}
progress.done();
/*
* 15: Enter UPDATE-DR state. X 1 1
*/
_jtag->set_state(Jtag::UPDATE_DR);
/*
* 16: Move into RTI state. X 0 1
*/
_jtag->set_state(Jtag::RUN_TEST_IDLE);
/*
* 17: Enter the SELECT-IR state. X 1 2
* 18: Move to the SHIFT-IR state. X 0 2
* 19: Start loading the JSTART instruction
* (optional). The JSTART instruction 01100 0 5
* initializes the startup sequence.
* 20: Load the last bit of the JSTART instruction. 0 1 1
* 21: Move to the UPDATE-IR state. X 1 1
*/
_jtag->shiftIR(JSTART, 6, Jtag::UPDATE_IR);
/*
* 22: Move to the RTI state and clock the
* startup sequence by applying a minimum X 0 2000
* of 2000 clock cycles to the TCK.
*/
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2000);
/*
* 23: Move to the TLR state. The device is
* now functional. X 1 3
*/
_jtag->go_test_logic_reset();
}
/*
* jtag : jtag interface
* cmd : opcode for SPI flash
* tx : buffer to send
* rx : buffer to fill
* len : number of byte to send/receive (cmd not comprise)
* so to send only a cmd set len to 0 (or omit this param)
*/
int Xilinx::spi_put(uint8_t cmd,
uint8_t *tx, uint8_t *rx, uint32_t len)
{
int xfer_len = len + 1 + ((rx == NULL) ? 0 : 1);
uint8_t jtx[xfer_len];
jtx[0] = McsParser::reverseByte(cmd);
/* uint8_t jtx[xfer_len] = {McsParser::reverseByte(cmd)}; */
uint8_t jrx[xfer_len];
if (tx != NULL) {
for (uint32_t i=0; i < len; i++)
jtx[i+1] = McsParser::reverseByte(tx[i]);
}
/* addr BSCAN user1 */
_jtag->shiftIR(USER1, 6);
/* send first already stored cmd,
* in the same time store each byte
* to next
*/
_jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len);
if (rx != NULL) {
for (uint32_t i=0; i < len; i++)
rx[i] = McsParser::reverseByte(jrx[i+1] >> 1) | (jrx[i+2] & 0x01);
}
return 0;
}
int Xilinx::spi_put(uint8_t *tx, uint8_t *rx, uint32_t len)
{
int xfer_len = len + ((rx == NULL) ? 0 : 1);
uint8_t jtx[xfer_len];
uint8_t jrx[xfer_len];
if (tx != NULL) {
for (uint32_t i=0; i < len; i++)
jtx[i] = McsParser::reverseByte(tx[i]);
}
/* addr BSCAN user1 */
_jtag->shiftIR(USER1, 6);
/* send first already stored cmd,
* in the same time store each byte
* to next
*/
_jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len);
if (rx != NULL) {
for (uint32_t i=0; i < len; i++)
rx[i] = McsParser::reverseByte(jrx[i] >> 1) | (jrx[i+1] & 0x01);
}
return 0;
}
int Xilinx::spi_wait(uint8_t cmd, uint8_t mask, uint8_t cond,
uint32_t timeout, bool verbose)
{
uint8_t rx[2];
uint8_t dummy[2];
uint8_t tmp;
uint8_t tx = McsParser::reverseByte(cmd);
uint32_t count = 0;
_jtag->shiftIR(USER1, 6, Jtag::UPDATE_IR);
_jtag->set_state(Jtag::SHIFT_DR);
_jtag->read_write(&tx, NULL, 8, 0);
do {
_jtag->read_write(dummy, rx, 8*2, 0);
tmp = (McsParser::reverseByte(rx[0]>>1)) | (0x01 & rx[1]);
count++;
if (count == timeout){
printf("timeout: %x %x %x\n", tmp, rx[0], rx[1]);
break;
}
if (tmp & ~0x3) {
printf("Error: rx %x %x %x\n", tmp, McsParser::reverseByte(rx[0]), rx[1]);
count = timeout;
break;
}
if (verbose) {
printf("%x %x %x %u\n", tmp, mask, cond, count);
}
} while ((tmp & mask) != cond);
_jtag->go_test_logic_reset();
if (count == timeout) {
printf("%x\n", tmp);
std::cout << "wait: Error" << std::endl;
return -ETIME;
} else {
return 0;
}
}