esp_usb_jtag: improves

- esp_usb_jtag: added xfer method to handle/simplify libusb_bulk_transfer calls
- src/esp_usb_jtag.cpp: simplify some operations
- src/esp_usb_jtag.cpp: writeTDI: fixed rx buffer index, added a basic code to handle end transaction
- src/esp_usb_jtag.cpp: writeTMS: store and uses _tdi & _tms
- src/esp_usb_jtag.cpp: toggleClock: re-uses _tdi/_tms
- src/esp_usb_jtag.cpp: writeTDI: ditto
- esp_usb_jtag: fixed verbosity level/be more quiet
- esp_usb_jtag: fixed writeTDI with end and tms transition: now integrated instead of distinct sequence. Fixed TDI value with tms transition. Working with ECP5
- esp_usb_jtag: added optional parameter to lower timeout error (useful when it's time to flush the device)
- esp_usb_jtag: fixed writeTDI when tx is NULL
This commit is contained in:
Gwenhael Goavec-Merou 2025-01-15 07:18:13 +01:00
parent fa1d328b93
commit b7967cf71a
2 changed files with 410 additions and 343 deletions

View File

@ -235,10 +235,7 @@ struct esp_usb_jtag_s {
* OpenOCD supports multiple JTAG adapters anyway. */ * OpenOCD supports multiple JTAG adapters anyway. */
static struct esp_usb_jtag_s esp_usb_jtag_priv; static struct esp_usb_jtag_s esp_usb_jtag_priv;
static struct esp_usb_jtag_s *priv = &esp_usb_jtag_priv; static struct esp_usb_jtag_s *priv = &esp_usb_jtag_priv;
static const char *esp_usb_jtag_serial;
static uint16_t esp_usb_vid = ESPUSBJTAG_VID;
static uint16_t esp_usb_pid = ESPUSBJTAG_PID;
static uint16_t esp_usb_jtag_caps = 0x2000; /* capabilites descriptor ID, different esp32 chip may need different value */ static uint16_t esp_usb_jtag_caps = 0x2000; /* capabilites descriptor ID, different esp32 chip may need different value */
static uint16_t esp_usb_target_chip_id = 0; /* not applicable for FPGA, they have chip id 32-bit wide */ static uint16_t esp_usb_target_chip_id = 0; /* not applicable for FPGA, they have chip id 32-bit wide */
@ -246,7 +243,7 @@ static uint16_t esp_usb_target_chip_id = 0; /* not applicable for FPGA, they hav
esp_usb_jtag::esp_usb_jtag(uint32_t clkHZ, int8_t verbose, int vid = ESPUSBJTAG_VID, int pid = ESPUSBJTAG_PID): esp_usb_jtag::esp_usb_jtag(uint32_t clkHZ, int8_t verbose, int vid = ESPUSBJTAG_VID, int pid = ESPUSBJTAG_PID):
_verbose(verbose), _verbose(verbose > 1),
dev_handle(NULL), usb_ctx(NULL), _tdi(0), _tms(0) dev_handle(NULL), usb_ctx(NULL), _tdi(0), _tms(0)
{ {
int ret; int ret;
@ -284,6 +281,7 @@ esp_usb_jtag::esp_usb_jtag(uint32_t clkHZ, int8_t verbose, int vid = ESPUSBJTAG_
esp_usb_jtag::~esp_usb_jtag() esp_usb_jtag::~esp_usb_jtag()
{ {
drain_in(true); // just to be sure try to flush buffer
if (dev_handle) if (dev_handle)
libusb_close(dev_handle); libusb_close(dev_handle);
if (usb_ctx) if (usb_ctx)
@ -292,9 +290,6 @@ esp_usb_jtag::~esp_usb_jtag()
bool esp_usb_jtag::getVersion() bool esp_usb_jtag::getVersion()
{ {
int actual_length;
int ret;
/* TODO: This is not proper way to get caps data. Two requests can be done. /* TODO: This is not proper way to get caps data. Two requests can be done.
* 1- With the minimum size required to get to know the total length of that struct, * 1- With the minimum size required to get to know the total length of that struct,
* 2- Then exactly the length of that struct. */ * 2- Then exactly the length of that struct. */
@ -385,11 +380,8 @@ bool esp_usb_jtag::getVersion()
return true; return true;
} }
int esp_usb_jtag::setClkFreq(uint32_t clkHZ) int esp_usb_jtag::setClkFreq(uint32_t clkHZ)
{ {
int actual_length;
int ret = 0, req_freq = clkHZ; int ret = 0, req_freq = clkHZ;
uint32_t base_speed_Hz = _base_speed_khz * 1000; // TODO read base speed from caps uint32_t base_speed_Hz = _base_speed_khz * 1000; // TODO read base speed from caps
@ -423,12 +415,19 @@ int esp_usb_jtag::setClkFreq(uint32_t clkHZ)
return clkHZ; return clkHZ;
} }
int esp_usb_jtag::writeTMS(const uint8_t *tms, uint32_t len, /* here we needs to loop over until len bits has been sent
__attribute__((unused)) bool flush_buffer, * a second loop is required to fill a packet to up to OUT_EP_SZ byte or
__attribute__((unused)) const uint8_t tdi) * remaining_bits bytes
*/
int esp_usb_jtag::writeTMS(const uint8_t *tms, uint32_t len, bool flush_buffer,
const uint8_t tdi)
{ {
uint8_t buf[OUT_BUF_SZ]; uint8_t buf[OUT_BUF_SZ];
int transferred_length; // never used char mess[256];
if (_verbose) {
snprintf(mess, 256, "writeTMS %d %d", len, flush_buffer);
printSuccess(mess);
}
if(flush_buffer) if(flush_buffer)
flush(); flush();
@ -436,104 +435,107 @@ int esp_usb_jtag::writeTMS(const uint8_t *tms, uint32_t len,
if (len == 0) if (len == 0)
return 0; return 0;
for(int i = 0; i < (len+7)>>3; i++) // save current tdi as new tdi state
cerr << " " << std::hex << (int)tms[i]; _tdi = tdi & 0x01;
cerr << endl;
uint32_t real_len = 0;
for (uint32_t pos = 0; pos < len; pos += real_len) {
const uint32_t remaining_bits = len - pos; // number of bits to write
// select full buffer vs remaining bits
if (remaining_bits < (OUT_EP_SZ * 2))
real_len = remaining_bits;
else
real_len = OUT_EP_SZ * 2;
uint8_t prev_high_nibble = CMD_FLUSH << 4; // for odd length 1st command is flush = nop uint8_t prev_high_nibble = CMD_FLUSH << 4; // for odd length 1st command is flush = nop
uint32_t buffer_idx = 0; // reset uint32_t buffer_idx = 0; // reset
uint8_t is_high_nibble = 1 & ~len; uint8_t is_high_nibble = 1 & ~real_len;
// for even len: start with is_high_nibble = 1 // for even len: start with is_high_nibble = 1
// for odd len: start with is_high_nibble = 0 // for odd len: start with is_high_nibble = 0
// 1st (high nibble) is flush = nop // 1st (high nibble) is flush = nop
// 2nd (low nibble) is data // 2nd (low nibble) is data
// last byte in buf will have data in both nibbles, no flush // last byte in buf will have data in both nibbles, no flush
// exec order: high-nibble-first, low-nibble-second // exec order: high-nibble-first, low-nibble-second
for (uint32_t i = 0; i < len; i++) for (uint32_t i = 0; i < real_len; i++) {
{ const uint32_t idx = i + pos;
uint8_t tms_bit = (tms[i>>3] >> (i&7)) & 1; // get i'th bit from tms _tms = (tms[idx >> 3] >> (idx & 7)) & 1; // get i'th bit from tms
uint8_t cmd = CMD_CLK(0, 0, tms_bit); const uint8_t cmd = CMD_CLK(0, _tdi, _tms);
if(is_high_nibble) if(is_high_nibble) { // 1st (high nibble) = data
{ // 1st (high nibble) = data
buf[buffer_idx] = prev_high_nibble = cmd << 4; buf[buffer_idx] = prev_high_nibble = cmd << 4;
is_high_nibble = 0; } else { // low nibble
} // 2nd (low nibble) = data, keep prev high nibble
else // low nibble
{ // 2nd (low nibble) = data, keep prev high nibble
buf[buffer_idx] = prev_high_nibble | cmd; buf[buffer_idx] = prev_high_nibble | cmd;
buffer_idx++; // byte complete, advance to the next byte in buf buffer_idx++; // byte complete, advance to the next byte in buf
is_high_nibble = 1; }
is_high_nibble ^= 1; // toggle
} }
if (buffer_idx >= sizeof(buf) /*buf full*/ || i == len - 1 /*last*/) const int ret = xfer(buf, NULL, buffer_idx);
{ if (ret < 0) {
int ret = libusb_bulk_transfer(dev_handle, snprintf(mess, 256, "ESP USB Jtag: writeTMS failed with error %d", ret);
/*endpoint*/ ESPUSBJTAG_WRITE_EP, printError(mess);
/*data*/ buf,
/*length*/ buffer_idx,
/*transf.len*/ &transferred_length,
/*timeout ms*/ ESPUSBJTAG_TIMEOUT_MS);
if (ret != 0)
{
cerr << "writeTMS: usb bulk write failed " << ret << endl;
return -EXIT_FAILURE; return -EXIT_FAILURE;
} }
if (_verbose)
cerr << "tms" << endl; cerr << "tms" << endl;
buffer_idx = 0; // reset
}
} }
return len; return len;
} }
/* Not only here and not sure it is true:
* when len < OUT_BUF_SZ is_high_nibble is fine: the buffer is filed with
* the full sequence
* when len > OUT_BUF_SZ we have to sent OUT_BUF_SZ x n + remaining bits
* here is_high_nibble must be re-computed more than one time
*/
/* Here we have to write len bit or 2xlen Bytes
*/
int esp_usb_jtag::toggleClk(uint8_t tms, uint8_t tdi, uint32_t len) int esp_usb_jtag::toggleClk(uint8_t tms, uint8_t tdi, uint32_t len)
{ {
uint8_t buf[OUT_BUF_SZ]; uint8_t buf[OUT_BUF_SZ];
int transferred_length; // never used char mess[256];
if (_verbose) {
snprintf(mess, 256, "toggleClk %d", len);
printSuccess(mess);
}
if (len == 0) if (len == 0)
return 0; return 0;
uint8_t prev_high_nibble = CMD_FLUSH << 4; // for odd length 1st command is flush = nop _tms = tms; // store tms as new default tms state
uint32_t buffer_idx = 0; // reset _tdi = tdi; // store tdi as new default tdi state
uint8_t is_high_nibble = 1 & ~len;
// for even len: start with is_high_nibble = 1
// for odd len: start with is_high_nibble = 0
// 1st (high nibble) is flush = nop
// 2nd (low nibble) is data
// last byte in buf will have data in both nibbles, no flush
// exec order: high-nibble-first, low-nibble-second
uint8_t cmd = CMD_CLK(0, tdi, tms);
for (uint32_t i = 0; i < len; i++)
{
// TODO: repeat clocking with CMD_REP
if(is_high_nibble)
{ // 1st (high nibble) = cmd
buf[buffer_idx] = prev_high_nibble;
is_high_nibble = 0;
}
else // low nibble
{ // 2nd (low nibble) = cmd, keep prev high nibble
buf[buffer_idx] = prev_high_nibble | cmd;
buffer_idx++; // byte complete, advance to the next byte in buf
is_high_nibble = 1;
}
if (buffer_idx >= sizeof(buf) /*buf full*/ || i == len - 1 /*last*/) const uint8_t cmd = CMD_CLK(0, _tdi, _tms); // cmd is constant
{ const uint8_t prev_high_nibble = (cmd << 4) | cmd;
int ret = libusb_bulk_transfer(dev_handle, uint32_t real_len = 0;
/*endpoint*/ ESPUSBJTAG_WRITE_EP, /* loop on OUT_BUF_SZ packets
/*data*/ buf, * buffer is able to store OUT_EP_SZ * 2 bit
/*length*/ buffer_idx, */
/*transferred length*/ &transferred_length, for (uint32_t pos = 0; pos < len; pos += real_len) {
/*timeout ms*/ ESPUSBJTAG_TIMEOUT_MS); // Compute number of bits to write
if (ret != 0) const uint32_t remaining_bits = len - pos;
{ // select before the full buffer or remaining bits
cerr << "toggleClk: usb bulk write failed " << ret << endl; if (remaining_bits < (OUT_EP_SZ * 2))
real_len = remaining_bits;
else
real_len = OUT_EP_SZ * 2;
const uint32_t byte_len = (real_len + 1) >> 1; // Byte len (2bits/bytes, rounded)
// prepare buffer
memset(buf, prev_high_nibble, byte_len);
if ((real_len & 0x01) == 1) // padding with CMD_FLUSH
buf[0] = (CMD_FLUSH << 4) | cmd;
const int ret = xfer(buf, NULL, byte_len);
if (ret < 0) {
snprintf(mess, 256, "ESP USB Jtag: toggleClk failed with error %d", ret);
printError(mess);
return -EXIT_FAILURE; return -EXIT_FAILURE;
} }
cerr << "clk" << endl;
buffer_idx = 0; // reset
}
} }
return EXIT_SUCCESS; return EXIT_SUCCESS;
} }
@ -550,167 +552,229 @@ int esp_usb_jtag::setio(int srst, int tms, int tdi, int tck)
/*length*/ 0, /*length*/ 0,
/*timeout ms*/ ESPUSBJTAG_TIMEOUT_MS); /*timeout ms*/ ESPUSBJTAG_TIMEOUT_MS);
if (ret != 0) if (ret != 0) {
{
cerr << "setio: control write failed " << ret << endl; cerr << "setio: control write failed " << ret << endl;
return -EXIT_FAILURE; return -EXIT_FAILURE;
} }
if (_verbose)
cerr << "setio 0x" << std::hex << wvalue << endl; cerr << "setio 0x" << std::hex << wvalue << endl;
return 0; return 0;
} }
int esp_usb_jtag::flush() int esp_usb_jtag::flush()
{ {
uint8_t buf[1] = { (CMD_FLUSH<<3) | CMD_FLUSH }; const uint8_t buf = (CMD_FLUSH << 4) | CMD_FLUSH;
int transferred_length; // never used if (_verbose)
int ret = libusb_bulk_transfer(dev_handle, printInfo("flush");
/*endpoint*/ ESPUSBJTAG_WRITE_EP,
/*data*/ buf, if (xfer(&buf, NULL, 1) < 0) {
/*length*/ sizeof(buf), printError("ESP USB Jtag: flush failed");
/*transferred length*/ &transferred_length,
/*timeout ms*/ ESPUSBJTAG_TIMEOUT_MS);
if (ret != 0)
{
cerr << "flush: usb bulk write failed " << ret << endl;
return -EXIT_FAILURE; return -EXIT_FAILURE;
} }
cerr << "flush" << endl;
return 0; return 0;
} }
void esp_usb_jtag::drain_in() void esp_usb_jtag::drain_in(bool is_timeout_fine)
{ {
uint8_t dummy_rx[64]; uint8_t dummy_rx[64];
int transferred_length = 1; int ret = 1;
while(transferred_length > 0) do {
{ ret = xfer(NULL, dummy_rx, sizeof(dummy_rx), is_timeout_fine);
transferred_length = 0; if (ret < 0) {
libusb_bulk_transfer(dev_handle, printError("ESP USB Jtag drain_in failed");
/*endpoint*/ ESPUSBJTAG_READ_EP, return;
/*data*/ dummy_rx,
/*length*/ sizeof(dummy_rx),
/*transferred length*/ &transferred_length,
/*timeout ms*/ ESPUSBJTAG_TIMEOUT_MS);
} }
cerr << "drain_in" << endl; } while(ret > 0);
if (_verbose)
printInfo("drain_in");
}
int esp_usb_jtag::xfer(const uint8_t *tx, uint8_t *rx, const uint16_t length,
bool is_timeout_fine)
{
char mess[128];
const bool is_read = (rx != NULL), is_write = (tx != NULL);
if (_verbose) {
snprintf(mess, 128, "xfer: rx: %s tx: %s length %d",
is_read ? "True" : "False", is_write ? "True" : "False", length);
printInfo(mess);
}
const unsigned char endpoint = (is_write) ? ESPUSBJTAG_WRITE_EP : ESPUSBJTAG_READ_EP;
uint8_t *data = (is_write) ? (uint8_t *)tx : rx;
if (is_write && _verbose) {
printf("xfer: write: ");
for (int i = 0; i < length; i++)
printf("%02x ", data[i]);
printf("\n");
}
int transferred_length = 0;
const int ret = libusb_bulk_transfer(dev_handle, endpoint, data, length,
&transferred_length, ESPUSBJTAG_TIMEOUT_MS);
if (ret < 0) {
if (ret == -7 && is_timeout_fine)
return 0;
snprintf(mess, 128, "xfer: usb bulk write failed with error %d %s %s", ret,
libusb_error_name(ret), libusb_strerror(static_cast<libusb_error>(ret)));
printError(mess);
return ret;
}
if (is_read && _verbose) {
printf("xfer: read: ");
for (int i = 0; i < length; i++)
printf("%02x ", data[i]);
printf("\n");
}
return transferred_length;
} }
// TODO // TODO
// [ ] odd len // [ ] odd len
// [ ] end (DR_SHIFT, IR_SHIFT) // [ ] end (DR_SHIFT, IR_SHIFT)
// Note: as done for writeTMS, len and/or real_bit_len must be
// splitted in two loop level
int esp_usb_jtag::writeTDI(const uint8_t *tx, uint8_t *rx, uint32_t len, bool end) int esp_usb_jtag::writeTDI(const uint8_t *tx, uint8_t *rx, uint32_t len, bool end)
{ {
char mess[256];
if (_verbose) {
snprintf(mess, 256, "writeTDI: start len: %d end: %d", len, end);
printSuccess(mess);
}
int ret; int ret;
const uint32_t kTdiLen = (len+7) >> 3; // TDI/RX len in byte
uint8_t tdi[kTdiLen]; // TDI buffer (required when tx is NULL)
uint8_t tx_buf[OUT_EP_SZ]; uint8_t tx_buf[OUT_EP_SZ];
memset(rx, 0, len>>3); const uint8_t tdo = !(rx == NULL); // only set cap/tdo when something to read
#if 0 uint8_t *rx_ptr = NULL;
// for debug force IDCODE 0x12345678 returned uint32_t xfer_len = 0;
if(len >= 4) memcpy(rx, "\x78\x56\x34\x12", 4);
return EXIT_SUCCESS;
#endif
uint32_t real_bit_len = len - (end ? 1 : 0);
// uint32_t kRealByteLen = (len + 7) / 8;
int transferred_length;
/* nothing to do ? */
if (len == 0) if (len == 0)
return 0; return 0;
cerr << "real_bit_len=0x" << real_bit_len << endl; /* set rx to 0: to be removed when working */
if (rx) {
memset(rx, 0, (len + 7) >> 3);
rx_ptr = rx;
}
/* Copy RX or fill the buffer with TDI current level */
if (tx)
memcpy(tdi, tx, kTdiLen);
else
memset(tdi, _tdi ? 0xff : 0x00, kTdiLen);
if (_verbose) {
snprintf(mess, 256, "len=0x%08x\n", len);
printInfo(mess);
}
// drain_in(); // drain_in();
uint8_t prev_high_nibble = CMD_FLUSH << 4; // for odd length 1st command is flush = nop
uint32_t tx_buffer_idx = 0; // reset uint32_t tx_buffer_idx = 0; // reset
uint8_t is_high_nibble = 1 & ~real_bit_len; uint8_t is_high_nibble = 1 & ~len;
// for even len: start with is_high_nibble = 1 // for even len: start with is_high_nibble = 1
// for odd len: start with is_high_nibble = 0 // for odd len: start with is_high_nibble = 0
// 1st (high nibble) is flush = nop // 1st (high nibble) is flush = nop
// 2nd (low nibble) is data // 2nd (low nibble) is data
// last byte in buf will have data in both nibbles, no flush // last byte in buf will have data in both nibbles, no flush
// exec order: high-nibble-first, low-nibble-second // exec order: high-nibble-first, low-nibble-second
if (_verbose) {
cerr << "is high nibble=" << (int)is_high_nibble << endl; cerr << "is high nibble=" << (int)is_high_nibble << endl;
int bits_in_tx_buf = 0; //int bits_in_tx_buf = 0;
for(int i = 0; i < (real_bit_len+7)>>3; i++) for(uint32_t i = 0; i < (len + 7) >> 3; i++)
cerr << " " << std::hex << (int)tx[i]; cerr << " " << std::hex << (int)tdi[i];
cerr << endl; cerr << endl;
cerr << "tdi_bits "; cerr << "tdi_bits ";
for (uint32_t i = 0; i < real_bit_len; i++) }
{
uint8_t tdi_bit = (tx[i>>3] >> (i&7)) & 1; // get i'th bit from rx for (uint32_t pos = 0; pos < len; pos += xfer_len) {
cerr << (int)tdi_bit; // Compute number of bits to write
uint8_t cmd = CMD_CLK(/*tdo*/1, /*tdi*/tdi_bit, /*tms*/0); // with TDO capture const uint32_t remaining_bits = len - pos;
if(is_high_nibble) // select before the full buffer or remaining bits
{ // 1st (high nibble) = data if (remaining_bits < (OUT_EP_SZ * 2))
xfer_len = remaining_bits;
else
xfer_len = OUT_EP_SZ * 2;
uint8_t prev_high_nibble = CMD_FLUSH << 4; // for odd length 1st command is flush = nop
tx_buffer_idx = 0; // reset
uint8_t is_high_nibble = 1 & ~xfer_len;
// for even len: start with is_high_nibble = 1
// for odd len: start with is_high_nibble = 0
// 1st (high nibble) is flush = nop
// 2nd (low nibble) is data
// last byte in buf will have data in both nibbles, no flush
// exec order: high-nibble-first, low-nibble-second
for (uint32_t i = 0; i < xfer_len; i++) {
uint32_t curr_pos = pos + i;
_tdi = (tdi[curr_pos >> 3] >> (curr_pos & 7)) & 1; // get i'th bit from rx
if (_verbose)
cerr << (int)_tdi;
if (end && curr_pos == len - 1)
_tms = 1;
const uint8_t cmd = CMD_CLK(tdo, _tdi, _tms); // with TDO capture
if(is_high_nibble) { // 1st (high nibble) = data
tx_buf[tx_buffer_idx] = prev_high_nibble = cmd << 4; tx_buf[tx_buffer_idx] = prev_high_nibble = cmd << 4;
is_high_nibble = 0; } else { // low nibble
} // 2nd (low nibble) = data, keep prev high nibble
else // low nibble
{ // 2nd (low nibble) = data, keep prev high nibble
tx_buf[tx_buffer_idx++] = prev_high_nibble | cmd; tx_buf[tx_buffer_idx++] = prev_high_nibble | cmd;
is_high_nibble = 1;
} }
bits_in_tx_buf++; is_high_nibble ^= 1;
if (tx_buffer_idx >= sizeof(tx_buf) /*buf full*/ || i >= real_bit_len - 1 /*last*/) }
{
cerr << endl << "writeTDI: write_ep len bytes=0x" << tx_buffer_idx << endl; /* Flush current buffer */
for(int j = 0; j < tx_buffer_idx; j++) if (_verbose) {
cerr << " " << std::hex << (int)tx_buf[j]; printf("\nwriteTDI: write_ep len bytes=0x%04x\n", tx_buffer_idx);
cerr << endl; for(uint32_t j = 0; j < tx_buffer_idx; j++)
ret = libusb_bulk_transfer(dev_handle, printf(" %02x", tx_buf[j]);
/*endpoint*/ ESPUSBJTAG_WRITE_EP, printf("\n");
/*data*/ tx_buf, printf("AA\n");
/*length*/ tx_buffer_idx, }
/*transferred length*/ &transferred_length, ret = xfer(tx_buf, NULL, tx_buffer_idx);
/*timeout ms*/ ESPUSBJTAG_TIMEOUT_MS); if (_verbose)
if (ret != 0) printf("BB\n");
{ if (ret < 0) {
cerr << "writeTDI: usb bulk write failed " << ret << endl; printError("writeTDI: usb bulk write failed " + std::to_string(ret));
return -EXIT_FAILURE; return -EXIT_FAILURE;
} }
if (_verbose)
cerr << "writeTDI write 0x" << tx_buffer_idx << " bytes" << endl; cerr << "writeTDI write 0x" << tx_buffer_idx << " bytes" << endl;
if (rx) {
flush(); // must flush before reading flush(); // must flush before reading
// TODO support odd len for TDO // TODO support odd len for TDO
// currently only even len TDO works correctly // currently only even len TDO works correctly
// for odd len first command sent is CMD_FUSH // for odd len first command sent is CMD_FUSH
// so TDI rx_buf will be missing 1 bit // so TDI rx_buf will be missing 1 bit
uint16_t read_bit_len = tx_buffer_idx<<1; uint16_t read_bit_len = tx_buffer_idx << 1;
// read_bit_len = bits_in_tx_buf; uint16_t read_byte_len = (read_bit_len + 7) >> 3;
uint16_t read_byte_len = (read_bit_len+7)>>3; for (int rx_bytes = 0; rx_bytes < read_byte_len; rx_bytes += ret) {
// cerr << "read_bit_len=" << (int)read_bit_len << " read_byte_len=" << (int)read_byte_len << endl; int nb_try = 0; // try more than one time, sometime flush is not immediate
// read_byte_len = 1; do {
int received_bytes = 0; ret = xfer(NULL, rx_ptr, read_byte_len - rx_bytes);
while(received_bytes < read_byte_len) if (ret < 0) {
{ printError("writeTDI: read failed");
ret = libusb_bulk_transfer(dev_handle, return -EXIT_FAILURE;
/*endpoint*/ ESPUSBJTAG_READ_EP, }
/*data*/ &(rx[(i>>3)+received_bytes]), nb_try++;
/*length*/ read_byte_len-received_bytes, } while (nb_try < 3 && ret == 0);
/*transferred length*/ &transferred_length, if (_verbose)
/*timeout ms*/ ESPUSBJTAG_TIMEOUT_MS); cerr << "writeTDI read " << std::to_string(ret) << endl;
if (ret != 0) if (read_byte_len != ret) {
{ snprintf(mess, 256, "writeTDI: usb bulk read expected=%d received=%d", read_byte_len, ret);
cerr << "writeTDI: usb bulk read failed " << ret << endl; printError(mess);
// return -EXIT_FAILURE;
break; break;
} }
cerr << "writeTDI read" << endl; rx_ptr += ret;
if (read_byte_len != transferred_length)
{
cerr << "writeTDI: usb bulk read expected=" << read_byte_len << " received=" << transferred_length << endl;
// return -EXIT_FAILURE;
break;
} }
received_bytes += transferred_length;
}
tx_buffer_idx = 0; // reset
bits_in_tx_buf = 0;
} }
} }
#if 0 if (_verbose)
if(end) printSuccess("WriteTDI: end");
{
// TODO support end (DR_SHIFT, IR_SHIFT)
}
#endif
return EXIT_SUCCESS; return EXIT_SUCCESS;
} }

View File

@ -43,12 +43,15 @@ class esp_usb_jtag : public JtagInterface {
int flush() override; int flush() override;
private: private:
int xfer(const uint8_t *tx, uint8_t *rx, uint16_t length,
bool is_timeout_fine=false);
int8_t _verbose; int8_t _verbose;
// int sendBitBang(uint8_t mask, uint8_t val, uint8_t *read, bool last); // int sendBitBang(uint8_t mask, uint8_t val, uint8_t *read, bool last);
bool getVersion(); bool getVersion();
void drain_in(); void drain_in(bool is_timeout_fine=false);
int setio(int srst, int tms, int tdi, int tck); int setio(int srst, int tms, int tdi, int tck);
int gettdo(); int gettdo();