altera: MAX10 fully rework POF to internal flash mapping, added UFM write and note related to internal flash sections vs POF UFM/CFM sections

This commit is contained in:
Gwenhael Goavec-Merou 2025-02-01 08:14:07 +01:00
parent c3170cdfb9
commit 959201a21f
1 changed files with 84 additions and 33 deletions

View File

@ -303,6 +303,7 @@ uint32_t Altera::idCode()
#define MAX10_BYPASS {0xFF, 0x03}
typedef struct {
uint32_t check_addr0; // something to check before sequence
uint32_t dsm_addr;
uint32_t dsm_len; // 32bits
uint32_t ufm_addr; // UFM1 addr
@ -315,6 +316,7 @@ typedef struct {
static const std::map<uint32_t, max10_mem_t> max10_memory_map = {
{0x031820dd, {
0x80005, // check_addr0
0x0000, 512, // DSM
0x0200, {4096, 4096}, // UFM
0x2200, {35840, 14848, 20992}, // CFM
@ -329,67 +331,116 @@ void Altera::max10_program()
_bit.parse();
_bit.displayHeader();
uint32_t base_addr; // CFM2 addr
uint32_t offset = 0;
uint32_t base_addr;
/* Needs to have some specifics informations about internal flash size/organisation
* and some magics.
*/
auto mem_map = max10_memory_map.find(_idcode);
if (mem_map == max10_memory_map.end()) {
printError("Model not supported. Please update max10_memory_map.");
throw std::runtime_error("Model not supported. Please update max10_memory_map.");
}
max10_mem_t mem = mem_map->second;
const max10_mem_t mem = mem_map->second;
const uint8_t *cfm_data = _bit.getData("CFM0");
const uint8_t *ufm_data = _bit.getData("UFM");
/*
* MAX10 memory map differs according to internal configuration mode
* - 1 dual compressed image: CFM0 is used for img0, CFM1 + CFM2 for img1
* - 2 single uncompressed image: CFM0 + CFM1 are used, CFM2 used to additional UFM
* - 3/4 single (un)compressed image with mem init: CFM0 + CFM1 + CFM2
* - 5 single compressed image: CFM0 is used, CFM1&CFM2 used to additional UFM
*/
/* For Mode (POF content):
* 1 : UFM: UFM1+UFM0 (in this order, this POF section size == memory section size),
* CFM1: CFM2+CFM1 (in this order, this section == CFM2+CFM1 size),
* CFM0: CFM0 (this section size == CFM0 size)
*
* 2 : UFM: UFM1+UFM0+CFM2 (in this order, this section size == full UFM section size + CFM2 size)
* CFM0: CFM1+CFM0 (in this order, this section size == CFM1+CFM0)
*
* 3/4: UFM: UFM1+UFM0 (in this order, this section size == full UFM section size)
* CFM0: CFM2+CFM1+CFM0 (in this order, this section size == full CFM section size)
*
* 5 : UFM: UFM1+UFM0+CFM2+CFM1 (in this order, this section size == full UFM section size + CFM2 size + CFM1 size)
* CFM0: CFM0 (this section size == CFM0)
*/
/* OPTIONS:
* ON_CHIP_BITSTREAM_DECOMPRESSION ON/OFF
* Dual Compressed Images (256Kbits UFM):
* set_global_assignment -name INTERNAL_FLASH_UPDATE_MODE "DUAL IMAGES"
* Single Compressed Image (1376Kbits UFM):
* set_global_assignment -name INTERNAL_FLASH_UPDATE_MODE "SINGLE COMP IMAGE"
* Single Compressed Image with Memory Initialization (256Kbits UFM):
* set_global_assignment -name INTERNAL_FLASH_UPDATE_MODE "SINGLE COMP IMAGE WITH ERAM"
* Single Uncompressed Image (912Kbits UFM):
* set_global_assignment -name INTERNAL_FLASH_UPDATE_MODE "SINGLE IMAGE"
* Single Uncompressed Image with Memory Initialization (256Kbits UFM):
* set_global_assignment -name INTERNAL_FLASH_UPDATE_MODE "SINGLE IMAGE WITH ERAM"
*/
/*
* Memory organisation based on internal flash configuration mode is great but in fact
* POF configuration data match MAX10 memory organisation:
* its more easy to start with POF's CFM section and uses pointer based on prev ptr and section size
*/
uint8_t *ufm_data[2], *cfm_data[3]; // memory pointers (2 for UFM, 3 for CFM)
// UFM Mapping
ufm_data[0] = _bit.getData("UFM");
ufm_data[1] = &ufm_data[0][mem.ufm_len[0] * 4]; // Just after UFM0 (but size may differs
// CFM Mapping
cfm_data[2] = &ufm_data[1][mem.ufm_len[1] * 4]; // First CFM section in FPGA internal flash
cfm_data[1] = &cfm_data[2][mem.cfm_len[2] * 4]; // Second CFM section but just after CFM2
cfm_data[0] = &cfm_data[1][mem.cfm_len[1] * 4]; // last CFM section but just after CFM1
// DSM Mapping
const uint8_t *dsm_data = _bit.getData("ICB");
const int dsm_len = _bit.getLength("ICB") / 32; // getLength (bits) dsm_len in 32bits word
// Start!
max_10_flow_enable();
max10_flow_erase();
max10_dsm_verify();
/* Write */
// CFM2->0
offset = 0;
base_addr = mem.cfm_addr;
for (int i = 2; i >= 0; i--) {
printInfo("Write CFM" + std::to_string(i));
writeXFM(cfm_data, base_addr, offset, mem.cfm_len[i]);
base_addr += mem.cfm_len[i];
offset += (mem.cfm_len[i] * 4);
}
// UFM1->0
offset = 0;
// UFM 1 -> 0
base_addr = mem.ufm_addr;
for (int i = 1; i >= 0; i--) {
printInfo("Write UFM" + std::to_string(i));
writeXFM(ufm_data, base_addr, offset, mem.ufm_len[i]);
offset += mem.ufm_len[i] * 4;
writeXFM(ufm_data[i], base_addr, 0, mem.ufm_len[i]);
base_addr += mem.ufm_len[i];
}
// CFM2 -> 0
base_addr = mem.cfm_addr;
for (int i = 2; i >= 0; i--) {
printInfo("Write CFM" + std::to_string(i));
writeXFM(cfm_data[i], base_addr, 0, mem.cfm_len[i]);
base_addr += mem.cfm_len[i];
}
/* Verify */
if (_verify) {
// CFM2->0
offset = 0;
base_addr = mem.cfm_addr;
for (int i = 2; i >= 0; i--) {
printInfo("Verify CFM" + std::to_string(i));
verifyxFM(cfm_data, base_addr, offset, mem.cfm_len[i]);
base_addr += mem.cfm_len[i];
offset += (mem.cfm_len[i] * 4);
}
// UFM1->0
offset = 0;
// UFM 1 -> 0
base_addr = mem.ufm_addr;
for (int i = 1; i >= 0; i--) {
printInfo("Verify UFM" + std::to_string(i));
verifyxFM(ufm_data, base_addr, offset, mem.ufm_len[i]);
offset += mem.ufm_len[i] * 4;
verifyxFM(ufm_data[i], base_addr, 0, mem.ufm_len[i]);
base_addr += mem.ufm_len[i];
}
// CFM2->0
base_addr = mem.cfm_addr;
for (int i = 2; i >= 0; i--) {
printInfo("Verify CFM" + std::to_string(i));
verifyxFM(cfm_data[i], base_addr, 0, mem.cfm_len[i]);
base_addr += mem.cfm_len[i];
}
}
// DSM
@ -434,7 +485,7 @@ void Altera::writeXFM(const uint8_t *cfg_data, uint32_t base_addr, uint32_t offs
/* precompute some delays required during loop */
const uint32_t isc_program2_delay = 320000 / _clk_period; // ns must be 350us
ProgressBar progress("Verify", len, 50, _quiet);
ProgressBar progress("Write Flash", len, 50, _quiet);
for (uint32_t i = 0; i < len; i+=512) {
bool must_send_sir = true;
uint32_t max = (i + 512 <= len)? 512 : len - i;