openFPGALoader/ftdijtag.cpp

548 lines
12 KiB
C++
Raw Normal View History

2019-09-26 18:29:20 +02:00
#include <iostream>
#include <map>
#include <vector>
#include <stdio.h>
#include <string.h>
#include <string>
#include <ft2232_mpsse/ftdi_handle.h>
#include "ftdijtag.hpp"
#include "ftdipp_mpsse.hpp"
using namespace std;
#define DEBUG 1
#ifdef DEBUG
#define display(...) \
do { if (_verbose) fprintf(stdout, __VA_ARGS__);}while(0)
#else
#define display(...) do {}while(0)
#endif
/*
* AD0 -> TCK
* AD1 -> TDI
* AD2 -> TD0
* AD3 -> TMS
*/
/* Rmq:
* pour TMS: l'envoi de n necessite de mettre n-1 comme longueur
* mais le bit n+1 est utilise pour l'etat suivant le dernier
* front. Donc il faut envoyer 6bits ([5:0]) pertinents pour
* utiliser le bit 6 comme etat apres la commande,
* le bit 7 corresponds a l'etat de TDI (donc si on fait 7 cycles
* l'etat de TDI va donner l'etat de TMS...)
* transfert/lecture: le dernier bit de IR ou DR doit etre envoye en
* meme temps que le TMS qui fait sortir de l'etat donc il faut
* pour n bits a transferer :
* - envoyer 8bits * (n/8)-1
* - envoyer les 7 bits du dernier octet;
* - envoyer le dernier avec 0x4B ou 0x6B
*/
FtdiJtag::FtdiJtag(FTDIpp_MPSSE::mpsse_bit_config &cable,
unsigned char interface, uint32_t clkHZ):
FTDIpp_MPSSE(cable.vid, cable.pid, interface, clkHZ),
_state(RUN_TEST_IDLE),
_tms_buffer_size(128), _num_tms(0),
_board_name("nope"), _verbose(false)
{
display("board_name %s\n", _board_name.c_str());
display("%x\n", cable.bit_low_val);
display("%x\n", cable.bit_low_dir);
display("%x\n", cable.bit_high_val);
display("%x\n", cable.bit_high_dir);
_verbose = false;
_tms_buffer = (unsigned char *)malloc(sizeof(unsigned char) * _tms_buffer_size);
bzero(_tms_buffer, _tms_buffer_size);
init(1, 0xfb, cable);
}
FtdiJtag::~FtdiJtag()
{
int read;
/* Before shutdown, we must wait until everything is shifted out
* Do this by temporary enabling loopback mode, write something
* and wait until we can read it back
* */
static unsigned char tbuf[16] = { SET_BITS_LOW, 0xff, 0x00,
SET_BITS_HIGH, 0xff, 0x00,
LOOPBACK_START,
MPSSE_DO_READ | MPSSE_READ_NEG |
MPSSE_DO_WRITE | MPSSE_WRITE_NEG | MPSSE_LSB,
0x04, 0x00,
0xaa, 0x55, 0x00, 0xff, 0xaa,
LOOPBACK_END
};
mpsse_store(tbuf, 16);
read = mpsse_read(tbuf, 5);
if (read != 5)
fprintf(stderr,
"Loopback failed, expect problems on later runs %d\n", read);
free(_tms_buffer);
}
int FtdiJtag::detectChain(vector<int> &devices, int max_dev)
{
unsigned char rx_buff[4];
unsigned int tmp;
devices.clear();
go_test_logic_reset();
set_state(SHIFT_DR);
for (int i = 0; i < max_dev; i++) {
read_write(NULL, rx_buff, 32, (i == max_dev-1)?1:0);
tmp = 0;
for (int ii=0; ii < 4; ii++)
tmp |= (rx_buff[ii] << (8*ii));
if (tmp != 0 && tmp != 0xffffffff)
devices.push_back(tmp);
}
go_test_logic_reset();
return devices.size();
}
void FtdiJtag::setTMS(unsigned char tms)
{
display("%s %d %d\n", __func__, _num_tms, (_num_tms >> 3));
if (_num_tms+1 == _tms_buffer_size * 8)
flushTMS();
if (tms != 0)
_tms_buffer[_num_tms>>3] |= (0x1) << (_num_tms & 0x7);
_num_tms++;
}
/* reconstruct byte sent to TMS pins
* - use up to 6 bits
* -since next bit after length is use to
* fix TMS state after sent we copy last bit
* to bit after next
* -bit 7 is TDI state for each clk cycles
*/
int FtdiJtag::flushTMS(bool flush_buffer)
{
int xfer, pos = 0;
unsigned char buf[3]= {MPSSE_WRITE_TMS | MPSSE_LSB | MPSSE_BITMODE |
MPSSE_WRITE_NEG, 0, 0};
if (_num_tms == 0)
return 0;
display("%s: %d %x\n", __func__, _num_tms, _tms_buffer[0]);
while (_num_tms != 0) {
xfer = (_num_tms > 6) ? 6 : _num_tms;
buf[1] = xfer - 1;
buf[2] = 0x80;
for (int i = 0; i < xfer; i++, pos++) {
buf[2] |=
(((_tms_buffer[pos >> 3] & (1 << (pos & 0x07))) ? 1 : 0) << i);
}
_num_tms -= xfer;
mpsse_store(buf, 3);
}
/* reset buffer and number of bits */
bzero(_tms_buffer, _tms_buffer_size);
_num_tms = 0;
if (flush_buffer)
return mpsse_write();
return 0;
}
void FtdiJtag::go_test_logic_reset()
{
/* idenpendly to current state 5 clk with TMS high is enough */
for (int i = 0; i < 6; i++)
setTMS(0x01);
flushTMS(true);
_state = TEST_LOGIC_RESET;
}
/* GGM: faut tenir plus compte de la taille de la fifo interne
* du FT2232 pour maximiser l'envoi au lieu de faire de petits envoies
*/
int FtdiJtag::read_write(unsigned char *tdi, unsigned char *tdo, int len, char last)
{
/* 3 possible case :
* - n * 8bits to send -> use byte command
* - less than 8bits -> use bit command
* - last bit to send -> sent in conjunction with TMS
*/
int tx_buff_size = mpsse_get_buffer_size();
int real_len = (last) ? len - 1 : len; // if its a buffer in a big send send len
// else supress last bit -> with TMS
int nb_byte = real_len >> 3; // number of byte to send
int nb_bit = (real_len & 0x07); // residual bits
int xfer = tx_buff_size - 3;
unsigned char *rx_ptr = (unsigned char *)tdo;
unsigned char *tx_ptr = (unsigned char *)tdi;
unsigned char tx_buf[3] = {(unsigned char)(MPSSE_LSB | MPSSE_WRITE_NEG |
((tdi) ? MPSSE_DO_WRITE : 0) |
((tdo) ? (MPSSE_DO_READ | MPSSE_READ_NEG) : 0)),
((xfer - 1) & 0xff), // low
(((xfer - 1) >> 8) & 0xff)}; // high
flushTMS(true);
display("%s len : %d %d %d %d\n", __func__, len, real_len, nb_byte,
nb_bit);
while (nb_byte > xfer) {
mpsse_store(tx_buf, 3);
if (tdi) {
mpsse_store(tx_ptr, xfer);
tx_ptr += xfer;
}
if (tdo) {
mpsse_read(rx_ptr, xfer);
rx_ptr += xfer;
}
nb_byte -= xfer;
}
/* 1/ send serie of byte */
if (nb_byte > 0) {
display("%s read/write %d byte\n", __func__, nb_byte);
tx_buf[1] = ((nb_byte - 1) & 0xff); // low
tx_buf[2] = (((nb_byte - 1) >> 8) & 0xff); // high
mpsse_store(tx_buf, 3);
if (tdi) {
mpsse_store(tx_ptr, nb_byte);
tx_ptr += nb_byte;
}
if (tdo) {
mpsse_read(rx_ptr, nb_byte);
rx_ptr += nb_byte;
}
}
unsigned char last_bit = (tdi) ? *tx_ptr : 0;
if (nb_bit != 0) {
display("%s read/write %d bit\n", __func__, nb_bit);
tx_buf[0] |= MPSSE_BITMODE;
tx_buf[1] = nb_bit - 1;
mpsse_store(tx_buf, 2);
if (tdi) {
display("%s last_bit %x size %d\n", __func__, last_bit, nb_bit-1);
mpsse_store(last_bit);
}
mpsse_write();
if (tdo) {
mpsse_read(rx_ptr, 1);
/* realign we have read nb_bit
* since LSB add bit by the left and shift
* we need to complete shift
*/
*rx_ptr >>= (8 - nb_bit);
display("%s %x\n", __func__, *rx_ptr);
}
}
/* display : must be dropped */
if (_verbose && tdo) {
display("\n");
for (int i = (len / 8) - 1; i >= 0; i--)
display("%x ", (unsigned char)tdo[i]);
display("\n");
}
if (last == 1) {
last_bit = (tdi)? (*tx_ptr & (1 << nb_bit)) : 0;
display("%s move to EXIT1_xx and send last bit %x\n", __func__, (last_bit?0x81:0x01));
/* write the last bit in conjunction with TMS */
tx_buf[0] = MPSSE_WRITE_TMS | MPSSE_LSB | MPSSE_BITMODE | MPSSE_WRITE_NEG |
((tdo) ? MPSSE_DO_READ | MPSSE_READ_NEG : 0);
tx_buf[1] = 0x0 ; // send 1bit
tx_buf[2] = ((last_bit)?0x81:0x01); // we know in TMS tdi is bit 7
// and to move to EXIT_XR TMS = 1
mpsse_store(tx_buf, 3);
mpsse_write();
if (tdo) {
unsigned char c;
mpsse_read(&c, 1);
/* in this case for 1 one it's always bit 7 */
*rx_ptr |= ((c & 0x80) << (7 - nb_bit));
display("%s %x\n", __func__, c);
}
_state = (_state == SHIFT_DR) ? EXIT1_DR : EXIT1_IR;
}
return 0;
}
void FtdiJtag::toggleClk(int nb)
{
unsigned char c = (TEST_LOGIC_RESET == _state) ? 1 : 0;
for (int i = 0; i < nb; i++)
setTMS(c);
flushTMS(true);
}
int FtdiJtag::shiftDR(unsigned char *tdi, unsigned char *tdo, int drlen, int end_state)
{
set_state(SHIFT_DR);
// force transmit tms state
flushTMS(true);
// currently don't care about multiple device in the chain
printf("drlen %d\n", drlen);
read_write(tdi, tdo, drlen, 1);// 1 since only one device
set_state(end_state);
return 0;
}
int FtdiJtag::shiftIR(unsigned char *tdi, unsigned char *tdo, int irlen, int end_state)
{
display("%s: avant shiftIR\n", __func__);
set_state(SHIFT_IR);
flushTMS(true);
// currently don't care about multiple device in the chain
display("%s: envoi ircode\n", __func__);
read_write(tdi, tdo, irlen, 1);// 1 since only one device
set_state(end_state);
return 0;
}
void FtdiJtag::set_state(int newState)
{
unsigned char tms;
while (newState != _state) {
display("_state : %16s(%02d) -> %s(%02d) ",
getStateName((tapState_t)_state),
_state,
getStateName((tapState_t)newState), newState);
switch (_state) {
case TEST_LOGIC_RESET:
if (newState == TEST_LOGIC_RESET) {
tms = 1;
} else {
tms = 0;
_state = RUN_TEST_IDLE;
}
break;
case RUN_TEST_IDLE:
if (newState == RUN_TEST_IDLE) {
tms = 0;
} else {
tms = 1;
_state = SELECT_DR_SCAN;
}
break;
case SELECT_DR_SCAN:
switch (newState) {
case CAPTURE_DR:
case SHIFT_DR:
case EXIT1_DR:
case PAUSE_DR:
case EXIT2_DR:
case UPDATE_DR:
tms = 0;
_state = CAPTURE_DR;
break;
default:
tms = 1;
_state = SELECT_IR_SCAN;
}
break;
case SELECT_IR_SCAN:
switch (newState) {
case CAPTURE_IR:
case SHIFT_IR:
case EXIT1_IR:
case PAUSE_IR:
case EXIT2_IR:
case UPDATE_IR:
tms = 0;
_state = CAPTURE_IR;
break;
default:
tms = 1;
_state = TEST_LOGIC_RESET;
}
break;
/* DR column */
case CAPTURE_DR:
if (newState == SHIFT_DR) {
tms = 0;
_state = SHIFT_DR;
} else {
tms = 1;
_state = EXIT1_DR;
}
break;
case SHIFT_DR:
if (newState == SHIFT_DR) {
tms = 0;
} else {
tms = 1;
_state = EXIT1_DR;
}
break;
case EXIT1_DR:
switch (newState) {
case PAUSE_DR:
case EXIT2_DR:
case SHIFT_DR:
case EXIT1_DR:
tms = 0;
_state = PAUSE_DR;
break;
default:
tms = 1;
_state = UPDATE_DR;
}
break;
case PAUSE_DR:
if (newState == PAUSE_DR) {
tms = 0;
} else {
tms = 1;
_state = EXIT2_DR;
}
break;
case EXIT2_DR:
switch (newState) {
case SHIFT_DR:
case EXIT1_DR:
case PAUSE_DR:
tms = 0;
_state = SHIFT_DR;
break;
default:
tms = 1;
_state = UPDATE_DR;
}
break;
case UPDATE_DR:
if (newState == RUN_TEST_IDLE) {
tms = 0;
_state = RUN_TEST_IDLE;
} else {
tms = 1;
_state = SELECT_DR_SCAN;
}
break;
/* IR column */
case CAPTURE_IR:
if (newState == SHIFT_IR) {
tms = 0;
_state = SHIFT_IR;
} else {
tms = 1;
_state = EXIT1_IR;
}
break;
case SHIFT_IR:
if (newState == SHIFT_IR) {
tms = 0;
} else {
tms = 1;
_state = EXIT1_IR;
}
break;
case EXIT1_IR:
switch (newState) {
case PAUSE_IR:
case EXIT2_IR:
case SHIFT_IR:
case EXIT1_IR:
tms = 0;
_state = PAUSE_IR;
break;
default:
tms = 1;
_state = UPDATE_IR;
}
break;
case PAUSE_IR:
if (newState == PAUSE_IR) {
tms = 0;
} else {
tms = 1;
_state = EXIT2_IR;
}
break;
case EXIT2_IR:
switch (newState) {
case SHIFT_IR:
case EXIT1_IR:
case PAUSE_IR:
tms = 0;
_state = SHIFT_IR;
break;
default:
tms = 1;
_state = UPDATE_IR;
}
break;
case UPDATE_IR:
if (newState == RUN_TEST_IDLE) {
tms = 0;
_state = RUN_TEST_IDLE;
} else {
tms = 1;
_state = SELECT_DR_SCAN;
}
break;
}
setTMS(tms);
display("%d %d %d %x\n", tms, _num_tms-1, _state, _tms_buffer[(_num_tms-1) / 8]);
}
/* force write buffer */
flushTMS();
}
const char *FtdiJtag::getStateName(tapState_t s)
{
switch (s) {
case TEST_LOGIC_RESET:
return "TEST_LOGIC_RESET";
case RUN_TEST_IDLE:
return "RUN_TEST_IDLE";
case SELECT_DR_SCAN:
return "SELECT_DR_SCAN";
case CAPTURE_DR:
return "CAPTURE_DR";
case SHIFT_DR:
return "SHIFT_DR";
case EXIT1_DR:
return "EXIT1_DR";
case PAUSE_DR:
return "PAUSE_DR";
case EXIT2_DR:
return "EXIT2_DR";
case UPDATE_DR:
return "UPDATE_DR";
case SELECT_IR_SCAN:
return "SELECT_IR_SCAN";
case CAPTURE_IR:
return "CAPTURE_IR";
case SHIFT_IR:
return "SHIFT_IR";
case EXIT1_IR:
return "EXIT1_IR";
case PAUSE_IR:
return "PAUSE_IR";
case EXIT2_IR:
return "EXIT2_IR";
case UPDATE_IR:
return "UPDATE_IR";
default:
return "Unknown";
}
}