ngspice/src/spicelib/devices/vsrc/vsrcload.c

463 lines
18 KiB
C

/**********
Copyright 1990 Regents of the University of California. All rights reserved.
Author: 1985 Thomas L. Quarles
Modified: 2000 AlansFixes
**********/
#include "ngspice/ngspice.h"
#include "ngspice/cktdefs.h"
#include "vsrcdefs.h"
#include "ngspice/trandefs.h"
#include "ngspice/sperror.h"
#include "ngspice/suffix.h"
#include "ngspice/1-f-code.h"
#include "ngspice/compatmode.h"
#ifdef XSPICE_EXP
/* gtri - begin - wbk - modify for supply ramping option */
#include "ngspice/cmproto.h"
/* gtri - end - wbk - modify for supply ramping option */
#endif
#ifdef SHARED_MODULE
extern double getvsrcval(double, char*);
#endif
int
VSRCload(GENmodel *inModel, CKTcircuit *ckt)
/* actually load the current value into the
* sparse matrix previously provided
*/
{
VSRCmodel *model = (VSRCmodel *) inModel;
VSRCinstance *here;
double time;
double value = 0.0;
/* loop through all the source models */
for( ; model != NULL; model = VSRCnextModel(model)) {
/* loop through all the instances of the model */
for (here = VSRCinstances(model); here != NULL ;
here=VSRCnextInstance(here)) {
#ifndef RFSPICE
*(here->VSRCposIbrPtr) += 1.0;
*(here->VSRCnegIbrPtr) -= 1.0;
*(here->VSRCibrPosPtr) += 1.0;
*(here->VSRCibrNegPtr) -= 1.0;
#else
if (here->VSRCisPort)
{
// here->VSRCcurrent = (*(ckt->CKTrhs[Old] + (here->VSRCbranch))
*(here->VSRCposIbrPtr) += 1.0;
*(here->VSRCnegIbrPtr) -= 1.0;
*(here->VSRCibrPosPtr) += 1.0;
*(here->VSRCibrNegPtr) -= 1.0;
double g0 = here->VSRCportY0;
*(here->VSRCposPosPtr) += g0;
*(here->VSRCnegNegPtr) += g0;
*(here->VSRCposNegPtr) -= g0;
*(here->VSRCnegPosPtr) -= g0;
}
else
{
*(here->VSRCposIbrPtr) += 1.0;
*(here->VSRCnegIbrPtr) -= 1.0;
*(here->VSRCibrPosPtr) += 1.0;
*(here->VSRCibrNegPtr) -= 1.0;
}
#endif
if( (ckt->CKTmode & (MODEDCOP | MODEDCTRANCURVE)) &&
here->VSRCdcGiven ) {
/* load using DC value */
#ifdef XSPICE_EXP
/* gtri - begin - wbk - modify to process srcFact, etc. for all sources */
value = here->VSRCdcValue;
#else
value = here->VSRCdcValue * ckt->CKTsrcFact;
#endif
} else {
if(ckt->CKTmode & (MODEDC)) {
time = 0;
} else {
time = ckt->CKTtime;
}
/* use the transient functions */
switch(here->VSRCfunctionType) {
default:
value = here->VSRCdcValue;
break;
case PULSE: {
double V1, V2, TD, TR, TF, PW, PER;
double basetime = 0;
double PHASE;
double phase;
double deltat;
double tmax = 1e99;
V1 = here->VSRCcoeffs[0];
V2 = here->VSRCcoeffs[1];
TD = here->VSRCfunctionOrder > 2
? here->VSRCcoeffs[2] : 0.0;
TR = here->VSRCfunctionOrder > 3
&& here->VSRCcoeffs[3] != 0.0
? here->VSRCcoeffs[3] : ckt->CKTstep;
TF = here->VSRCfunctionOrder > 4
&& here->VSRCcoeffs[4] != 0.0
? here->VSRCcoeffs[4] : ckt->CKTstep;
PW = here->VSRCfunctionOrder > 5
&& here->VSRCcoeffs[5] != 0.0
? here->VSRCcoeffs[5] : ckt->CKTfinalTime;
PER = here->VSRCfunctionOrder > 6
&& here->VSRCcoeffs[6] != 0.0
? here->VSRCcoeffs[6] : ckt->CKTfinalTime;
/* shift time by delay time TD */
time -= TD;
PHASE = here->VSRCfunctionOrder > 7
? here->VSRCcoeffs[7] : 0.0;
if (newcompat.xs) { /* 7th parameter is PHASE */
/* normalize phase to cycles */
phase = PHASE / 360.0;
phase = fmod(phase, 1.0);
deltat = phase * PER;
while (deltat > 0)
deltat -= PER;
/* shift time by pase (neg. for pos. phase value) */
time += deltat;
}
else if (PHASE > 0.0) { /* 7th parameter is number of pulses */
tmax = PHASE * PER;
}
if (!newcompat.xs && time > tmax) {
value = V1;
}
else {
if (time > PER) {
/* repeating signal - figure out where we are */
/* in period */
basetime = PER * floor(time / PER);
time -= basetime;
}
if (time <= 0 || time >= TR + PW + TF) {
value = V1;
}
else if (time >= TR && time <= TR + PW) {
value = V2;
}
else if (time > 0 && time < TR) {
value = V1 + (V2 - V1) * (time) / TR;
}
else { /* time > TR + PW && < TR + PW + TF */
value = V2 + (V1 - V2) * (time - (TR + PW)) / TF;
}
}
}
break;
case SINE: {
double VO, VA, FREQ, TD, THETA;
double PHASE;
double phase;
PHASE = here->VSRCfunctionOrder > 5
? here->VSRCcoeffs[5] : 0.0;
/* compute phase in radians */
phase = PHASE * M_PI / 180.0;
VO = here->VSRCcoeffs[0];
VA = here->VSRCcoeffs[1];
FREQ = here->VSRCfunctionOrder > 2
&& here->VSRCcoeffs[2] != 0.0
? here->VSRCcoeffs[2] : (1/ckt->CKTfinalTime);
TD = here->VSRCfunctionOrder > 3
? here->VSRCcoeffs[3] : 0.0;
THETA = here->VSRCfunctionOrder > 4
? here->VSRCcoeffs[4] : 0.0;
time -= TD;
if (time <= 0) {
value = VO + VA * sin(phase);
} else {
value = VO + VA * sin(FREQ*time * 2.0 * M_PI + phase) *
exp(-time*THETA);
}
}
break;
case EXP: {
double V1, V2, TD1, TD2, TAU1, TAU2;
V1 = here->VSRCcoeffs[0];
V2 = here->VSRCcoeffs[1];
TD1 = here->VSRCfunctionOrder > 2
&& here->VSRCcoeffs[2] != 0.0
? here->VSRCcoeffs[2] : ckt->CKTstep;
TAU1 = here->VSRCfunctionOrder > 3
&& here->VSRCcoeffs[3] != 0.0
? here->VSRCcoeffs[3] : ckt->CKTstep;
TD2 = here->VSRCfunctionOrder > 4
&& here->VSRCcoeffs[4] != 0.0
? here->VSRCcoeffs[4] : TD1 + ckt->CKTstep;
TAU2 = here->VSRCfunctionOrder > 5
&& here->VSRCcoeffs[5]
? here->VSRCcoeffs[5] : ckt->CKTstep;
if(time <= TD1) {
value = V1;
} else if (time <= TD2) {
value = V1 + (V2-V1)*(1-exp(-(time-TD1)/TAU1));
} else {
value = V1 + (V2-V1)*(1-exp(-(time-TD1)/TAU1)) +
(V1-V2)*(1-exp(-(time-TD2)/TAU2)) ;
}
}
break;
case SFFM: {
double VO, VA, FM, MDI, FC, TD, PHASEM, PHASEC;
double phasec;
double phasem;
static bool warn1 = FALSE, warn2 = FALSE;
VO = here->VSRCcoeffs[0];
VA = here->VSRCcoeffs[1];
FM = here->VSRCfunctionOrder > 2
? here->VSRCcoeffs[2] : (5./ckt->CKTfinalTime);
MDI = here->VSRCfunctionOrder > 3
? here->VSRCcoeffs[3] : 90.0; /* 0.9 * FC / FM */
FC = here->VSRCfunctionOrder > 4
&& here->VSRCcoeffs[4] /* test if not 0 */
? here->VSRCcoeffs[4] : (500./ckt->CKTfinalTime);
TD = here->VSRCfunctionOrder > 5
? here->VSRCcoeffs[5] : 0;
PHASEM = here->VSRCfunctionOrder > 6
? here->VSRCcoeffs[6] : 0.0;
PHASEC = here->VSRCfunctionOrder > 7
? here->VSRCcoeffs[7] : 0.0;
/* compute phases in radians */
phasec = PHASEC * M_PI / 180.0;
phasem = PHASEM * M_PI / 180.0;
/* limit the modulation index */
if (MDI > FC / FM) {
MDI = FC / FM;
if (!warn1){
fprintf(stderr, "Warning: MDI in %s limited to FC/FM\n", here->gen.GENname);
warn1 = TRUE;
}
}
else if (MDI < 0) {
MDI = 0;
if (!warn2) {
fprintf(stderr, "Warning: MDI in %s set to 0\n", here->gen.GENname);
warn2 = TRUE;
}
}
time -= TD;
if (time <= 0) {
value = 0;
}
else {
/* compute waveform value */
value = VO + VA *
sin((2.0 * M_PI * FC * time + phasec) +
MDI * sin(2.0 * M_PI * FM * time + phasem));
}
}
break;
case AM: {
double VO, VMO, VMA, FM, FC, TD, PHASEM, PHASEC;
double phasem, phasec;
VO = here->VSRCcoeffs[0];
VMO = here->VSRCcoeffs[1];
VMA = here->VSRCfunctionOrder > 2
? here->VSRCcoeffs[2] : 1.;
FM = here->VSRCfunctionOrder > 3
? here->VSRCcoeffs[3] : (5. / ckt->CKTfinalTime);
FC = here->VSRCfunctionOrder > 4
? here->VSRCcoeffs[4] : (500. / ckt->CKTfinalTime);
TD = here->VSRCfunctionOrder > 5
? here->VSRCcoeffs[5] : 0.0;
PHASEM = here->VSRCfunctionOrder > 6
? here->VSRCcoeffs[6] : 0.0;
PHASEC = here->VSRCfunctionOrder > 7
? here->VSRCcoeffs[7] : 0.0;
/* compute phases in radians */
phasec = PHASEC * M_PI / 180.0;
phasem = PHASEM * M_PI / 180.0;
time -= TD;
if (time <= 0) {
value = 0;
} else {
/* compute waveform value */
value = VO + (VMO + VMA * sin(2.0 * M_PI * FM * time + phasem)) *
sin(2.0 * M_PI * FC * time + phasec);
}
}
break;
case PWL: {
int i;
double end_time, itime;
time -= here->VSRCrdelay;
if (time <= here->VSRCcoeffs[0]) {
value = here->VSRCcoeffs[1];
break;
}
end_time =
here->VSRCcoeffs[here->VSRCfunctionOrder - 2];
if (time > end_time) {
double period;
if (here->VSRCrGiven) {
/* Repeating. */
period = end_time -
here->VSRCcoeffs[here->VSRCrBreakpt];
time -= here->VSRCcoeffs[here->VSRCrBreakpt];
time -= period * floor(time / period);
time += here->VSRCcoeffs[here->VSRCrBreakpt];
} else {
value =
here->VSRCcoeffs[here->VSRCfunctionOrder - 1];
break;
}
}
for (i = 2; i < here->VSRCfunctionOrder; i += 2) {
itime = here->VSRCcoeffs[i];
if (itime >= time) {
time -= here->VSRCcoeffs[i - 2];
time /= here->VSRCcoeffs[i] -
here->VSRCcoeffs[i - 2];
value = here->VSRCcoeffs[i - 1];
value += time *
( here->VSRCcoeffs[i + 1] -
here->VSRCcoeffs[i - 1]);
break;
}
}
break;
}
/**** tansient noise routines:
VNoi2 2 0 DC 0 TRNOISE(10n 0.5n 0 0n) : generate gaussian distributed noise
rms value, time step, 0 0
VNoi1 1 0 DC 0 TRNOISE(0n 0.5n 1 10n) : generate 1/f noise
0, time step, exponent < 2, rms value
VNoi3 3 0 DC 0 TRNOISE(0 0 0 0 15m 22u 50u) : generate RTS noise
0 0 0 0, amplitude, capture time, emission time
*/
case TRNOISE: {
struct trnoise_state *state = here -> VSRCtrnoise_state;
double TS = state -> TS;
double RTSAM = state->RTSAM;
/* reset top (hack for repeated tran commands)
when there is the jump from time=0 to time>0 */
if (time == 0.0)
state->timezero = TRUE;
else
if (state->timezero) {
state->top = 0;
state->timezero = FALSE;
}
/* no noise or time == 0 */
if(TS == 0.0 || time == 0.0) {
value = 0.0;
} else {
/* 1/f and white noise */
size_t n1 = (size_t) floor(time / TS);
double V1 = trnoise_state_get(state, ckt, n1);
double V2 = trnoise_state_get(state, ckt, n1+1);
value = V1 + (V2 - V1) * (time / TS - (double)n1);
}
/* RTS noise */
if (RTSAM > 0) {
double RTScapTime = state->RTScapTime;
if (time >= RTScapTime)
value += RTSAM;
}
/* DC value */
if(here -> VSRCdcGiven)
value += here->VSRCdcValue;
}
break;
case TRRANDOM: {
struct trrandom_state *state = here -> VSRCtrrandom_state;
value = state -> value;
/* DC value */
if(here -> VSRCdcGiven)
value += here->VSRCdcValue;
}
break;
#ifdef SHARED_MODULE
case EXTERNAL: {
value = getvsrcval(time, here->VSRCname);
if(here -> VSRCdcGiven)
value += here->VSRCdcValue;
}
break;
#endif
#ifdef RFSPICE
case PORT:
{
value += here->VSRCVAmplitude * cos(time * here->VSRC2pifreq);
}
#endif
} // switch
} // else (line 48)
/* gtri - begin - wbk - modify for supply ramping option */
#ifdef XSPICE_EXP
value *= ckt->CKTsrcFact;
value *= cm_analog_ramp_factor();
#else
if (ckt->CKTmode & MODETRANOP)
value *= ckt->CKTsrcFact;
#endif
/* gtri - end - wbk - modify to process srcFact, etc. for all sources */
/* load the new voltage value into the matrix */
*(ckt->CKTrhs + (here->VSRCbranch)) += value;
} // for loop instances
} // for loop models
return(OK);
}