ngspice/src/ngspice.txt

8287 lines
393 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

SUBJECT: main
TITLE: Table of Contents
TEXT: H
TEXT: H
TEXT: H
TEXT: H Important Notice:
TEXT: H This manual is describing the original Spice3 code. It does
TEXT: H not contain all the updates which have been added to ngspice
TEXT: H over the last 10 years! Even if most of its content is still
TEXT: H valid, it may be considered outdated.
TEXT: H
TEXT: H For updated information, please have a look at the actual
TEXT: H ngspicexx-manual.pdf.
TEXT: H
TEXT: H
TEXT: H
TEXT: H
SUBTOPIC: NGSPICE:INTRODUCTION
SUBTOPIC: NGSPICE:CIRCUIT DESCRIPTION
SUBTOPIC: NGSPICE:CIRCUIT ELEMENTS AND MODELS
SUBTOPIC: NGSPICE:ANALYSES AND OUTPUT CONTROL
SUBTOPIC: NGSPICE:INTERACTIVE INTERPRETER
SUBTOPIC: NGSPICE:BIBLIOGRAPHY
SUBTOPIC: NGSPICE:APPENDIX A
SUBTOPIC: NGSPICE:APPENDIX B
SUBJECT: INTRODUCTION
TITLE: INTRODUCTION
TEXT: H
TEXT: H _1. _I_N_T_R_O_D_U_C_T_I_O_N
TEXT: H
TEXT: H
TEXT: H SPICE is a general-purpose circuit simulation program
TEXT: H for nonlinear dc, nonlinear transient, and linear ac ana-
TEXT: H lyses. Circuits may contain resistors, capacitors, induc-
TEXT: H tors, mutual inductors, independent voltage and current
TEXT: H sources, four types of dependent sources, lossless and lossy
TEXT: H transmission lines (two separate implementations), switches,
TEXT: H uniform distributed RC lines, and the five most common sem-
TEXT: H iconductor devices: diodes, BJTs, JFETs, MESFETs, and MOS-
TEXT: H FETs.
TEXT: H
TEXT: H The SPICE3 version is based directly on SPICE 2G.6.
TEXT: H While SPICE3 is being developed to include new features, it
TEXT: H continues to support those capabilities and models which
TEXT: H remain in extensive use in the SPICE2 program.
TEXT: H
TEXT: H SPICE has built-in models for the semiconductor dev-
TEXT: H ices, and the user need specify only the pertinent model
TEXT: H parameter values. The model for the BJT is based on the
TEXT: H integral-charge model of Gummel and Poon; however, if the
TEXT: H Gummel- Poon parameters are not specified, the model reduces
TEXT: H to the simpler Ebers-Moll model. In either case, charge-
TEXT: H storage effects, ohmic resistances, and a current-dependent
TEXT: H output conductance may be included. The diode model can be
TEXT: H used for either junction diodes or Schottky barrier diodes.
TEXT: H The JFET model is based on the FET model of Shichman and
TEXT: H Hodges. Six MOSFET models are implemented: MOS1 is
TEXT: H described by a square-law I-V characteristic, MOS2 [1] is an
TEXT: H analytical model, while MOS3 [1] is a semi-empirical model;
TEXT: H MOS6 [2] is a simple analytic model accurate in the short-
TEXT: H channel region; MOS4 [3, 4] and MOS5 [5] are the BSIM
TEXT: H (Berkeley Short-channel IGFET Model) and BSIM2. MOS2, MOS3,
TEXT: H and MOS4 include second-order effects such as channel-length
TEXT: H modulation, subthreshold conduction, scattering-limited
TEXT: H velocity saturation, small-size effects, and charge-
TEXT: H controlled capacitances.
SUBTOPIC: NGSPICE:TYPES OF ANALYSIS
SUBTOPIC: NGSPICE:ANALYSIS AT DIFFERENT TEMPERATURES
SUBTOPIC: NGSPICE:CONVERGENCE
SUBJECT: TYPES OF ANALYSIS
TITLE: TYPES OF ANALYSIS
TEXT: H
TEXT: H _1._1. _T_Y_P_E_S _O_F _A_N_A_L_Y_S_I_S
TEXT: H
SUBTOPIC: NGSPICE:DC Analysis
SUBTOPIC: NGSPICE:AC SmallSignal Analysis
SUBTOPIC: NGSPICE:Transient Analysis
SUBTOPIC: NGSPICE:PoleZero Analysis
SUBTOPIC: NGSPICE:SmallSignal Distortion Analysis
SUBTOPIC: NGSPICE:Sensitivity Analysis
SUBTOPIC: NGSPICE:Noise Analysis
SUBJECT: DC Analysis
TITLE: DC Analysis
TEXT: H
TEXT: H _1._1._1. _D_C _A_n_a_l_y_s_i_s
TEXT: H
TEXT: H
TEXT: H The dc analysis portion of SPICE determines the dc
TEXT: H operating point of the circuit with inductors shorted and
TEXT: H capacitors opened. The dc analysis options are specified on
TEXT: H the .DC, .TF, and .OP control lines. A dc analysis is
TEXT: H automatically performed prior to a transient analysis to
TEXT: H determine the transient initial conditions, and prior to an
TEXT: H ac small-signal analysis to determine the linearized,
TEXT: H small-signal models for nonlinear devices. If requested,
TEXT: H the dc small-signal value of a transfer function (ratio of
TEXT: H output variable to input source), input resistance, and out-
TEXT: H put resistance is also computed as a part of the dc solu-
TEXT: H tion. The dc analysis can also be used to generate dc
TEXT: H transfer curves: a specified independent voltage or current
TEXT: H source is stepped over a user-specified range and the dc
TEXT: H output variables are stored for each sequential source
TEXT: H value.
TEXT: H
SUBJECT: AC SmallSignal Analysis
TITLE: AC Small-Signal Analysis
TEXT: H
TEXT: H _1._1._2. _A_C _S_m_a_l_l-_S_i_g_n_a_l _A_n_a_l_y_s_i_s
TEXT: H
TEXT: H
TEXT: H The ac small-signal portion of SPICE computes the ac
TEXT: H output variables as a function of frequency. The program
TEXT: H first computes the dc operating point of the circuit and
TEXT: H determines linearized, small-signal models for all of the
TEXT: H nonlinear devices in the circuit. The resultant linear cir-
TEXT: H cuit is then analyzed over a user-specified range of fre-
TEXT: H quencies. The desired output of an ac small- signal
TEXT: H analysis is usually a transfer function (voltage gain, tran-
TEXT: H simpedance, etc). If the circuit has only one ac input, it
TEXT: H is convenient to set that input to unity and zero phase, so
TEXT: H that output variables have the same value as the transfer
TEXT: H function of the output variable with respect to the input.
TEXT: H
SUBJECT: Transient Analysis
TITLE: Transient Analysis
TEXT: H
TEXT: H _1._1._3. _T_r_a_n_s_i_e_n_t _A_n_a_l_y_s_i_s
TEXT: H
TEXT: H The transient analysis portion of SPICE computes the
TEXT: H transient output variables as a function of time over a
TEXT: H user-specified time interval. The initial conditions are
TEXT: H automatically determined by a dc analysis. All sources
TEXT: H which are not time dependent (for example, power supplies)
TEXT: H are set to their dc value. The transient time interval is
TEXT: H specified on a .TRAN control line.
TEXT: H
SUBJECT: PoleZero Analysis
TITLE: Pole-Zero Analysis
TEXT: H
TEXT: H _1._1._4. _P_o_l_e-_Z_e_r_o _A_n_a_l_y_s_i_s
TEXT: H
TEXT: H
TEXT: H The pole-zero analysis portion of SPICE computes the
TEXT: H poles and/or zeros in the small-signal ac transfer function.
TEXT: H The program first computes the dc operating point and then
TEXT: H determines the linearized, small-signal models for all the
TEXT: H nonlinear devices in the circuit. This circuit is then used
TEXT: H to find the poles and zeros of the transfer function.
TEXT: H
TEXT: H Two types of transfer functions are allowed : one of
TEXT: H the form (output voltage)/(input voltage) and the other of
TEXT: H the form (output voltage)/(input current). These two types
TEXT: H of transfer functions cover all the cases and one can find
TEXT: H the poles/zeros of functions like input/output impedance and
TEXT: H voltage gain. The input and output ports are specified as
TEXT: H two pairs of nodes.
TEXT: H
TEXT: H The pole-zero analysis works with resistors, capaci-
TEXT: H tors, inductors, linear-controlled sources, independent
TEXT: H sources, BJTs, MOSFETs, JFETs and diodes. Transmission
TEXT: H lines are not supported.
TEXT: H
TEXT: H The method used in the analysis is a sub-optimal numer-
TEXT: H ical search. For large circuits it may take a considerable
TEXT: H time or fail to find all poles and zeros. For some cir-
TEXT: H cuits, the method becomes "lost" and finds an excessive
TEXT: H number of poles or zeros.
TEXT: H
SUBJECT: SmallSignal Distortion Analysis
TITLE: Small-Signal Distortion Analysis
TEXT: H
TEXT: H _1._1._5. _S_m_a_l_l-_S_i_g_n_a_l _D_i_s_t_o_r_t_i_o_n _A_n_a_l_y_s_i_s
TEXT: H
TEXT: H
TEXT: H The distortion analysis portion of SPICE computes
TEXT: H steady-state harmonic and intermodulation products for small
TEXT: H input signal magnitudes. If signals of a single frequency
TEXT: H are specified as the input to the circuit, the complex
TEXT: H values of the second and third harmonics are determined at
TEXT: H every point in the circuit. If there are signals of two
TEXT: H frequencies input to the circuit, the analysis finds out the
TEXT: H complex values of the circuit variables at the sum and
TEXT: H difference of the input frequencies, and at the difference
TEXT: H of the smaller frequency from the second harmonic of the
TEXT: H larger frequency.
TEXT: H
TEXT: H Distortion analysis is supported for the following non-
TEXT: H linear devices: diodes (DIO), BJT, JFET, MOSFETs (levels 1,
TEXT: H 2, 3, 4/BSIM1, 5/BSIM2, and 6) and MESFETS. All linear dev-
TEXT: H ices are automatically supported by distortion analysis. If
TEXT: H there are switches present in the circuit, the analysis con-
TEXT: H tinues to be accurate provided the switches do not change
TEXT: H state under the small excitations used for distortion calcu-
TEXT: H lations.
TEXT: H
SUBJECT: Sensitivity Analysis
TITLE: Sensitivity Analysis
TEXT: H
TEXT: H _1._1._6. _S_e_n_s_i_t_i_v_i_t_y _A_n_a_l_y_s_i_s
TEXT: H
TEXT: H
TEXT: H Spice3 will calculate either the DC operating-point
TEXT: H sensitivity or the AC small-signal sensitivity of an output
TEXT: H variable with respect to all circuit variables, including
TEXT: H model parameters. Spice calculates the difference in an
TEXT: H output variable (either a node voltage or a branch current)
TEXT: H by perturbing each parameter of each device independently.
TEXT: H Since the method is a numerical approximation, the results
TEXT: H may demonstrate second order effects in highly sensitive
TEXT: H parameters, or may fail to show very low but non-zero sensi-
TEXT: H tivity. Further, since each variable is perturb by a small
TEXT: H fraction of its value, zero-valued parameters are not analy-
TEXT: H ized (this has the benefit of reducing what is usually a
TEXT: H very large amount of data).
TEXT: H
SUBJECT: Noise Analysis
TITLE: Noise Analysis
TEXT: H
TEXT: H _1._1._7. _N_o_i_s_e _A_n_a_l_y_s_i_s
TEXT: H
TEXT: H
TEXT: H The noise analysis portion of SPICE does analysis
TEXT: H device-generated noise for the given circuit. When provided
TEXT: H with an input source and an output port, the analysis calcu-
TEXT: H lates the noise contributions of each device (and each noise
TEXT: H generator within the device) to the output port voltage. It
TEXT: H also calculates the input noise to the circuit, equivalent
TEXT: H to the output noise referred to the specified input source.
TEXT: H This is done for every frequency point in a specified range
TEXT: H - the calculated value of the noise corresponds to the spec-
TEXT: H tral density of the circuit variable viewed as a stationary
TEXT: H gaussian stochastic process.
TEXT: H
TEXT: H After calculating the spectral densities, noise
TEXT: H analysis integrates these values over the specified fre-
TEXT: H quency range to arrive at the total noise voltage/current
TEXT: H (over this frequency range). This calculated value
TEXT: H corresponds to the variance of the circuit variable viewed
TEXT: H as a stationary gaussian process.
SUBJECT: ANALYSIS AT DIFFERENT TEMPERATURES
TITLE: ANALYSIS AT DIFFERENT TEMPERATURES
TEXT: H
TEXT: H _1._2. _A_N_A_L_Y_S_I_S _A_T _D_I_F_F_E_R_E_N_T _T_E_M_P_E_R_A_T_U_R_E_S
TEXT: H
TEXT: H
TEXT: H All input data for SPICE is assumed to have been meas-
TEXT: H o
TEXT: H ured at a nominal temperature of 27 C, which can be changed
TEXT: H by use of the TNOM parameter on the .OPTION control line.
TEXT: H This value can further be overridden for any device which
TEXT: H models temperature effects by specifying the TNOM parameter
TEXT: H on the model itself. The circuit simulation is performed at
TEXT: H o
TEXT: H a temperature of 27 C, unless overridden by a TEMP parameter
TEXT: H on the .OPTION control line. Individual instances may
TEXT: H further override the circuit temperature through the specif-
TEXT: H ication of a TEMP parameter on the instance.
TEXT: H
TEXT: H Temperature dependent support is provided for resis-
TEXT: H tors, diodes, JFETs, BJTs, and level 1, 2, and 3 MOSFETs.
TEXT: H BSIM (levels 4 and 5) MOSFETs have an alternate temperature
TEXT: H dependency scheme which adjusts all of the model parameters
TEXT: H before input to SPICE. For details of the BSIM temperature
TEXT: H adjustment, see [6] and [7].
TEXT: H
TEXT: H
TEXT: H Temperature appears explicitly in the exponential terms
TEXT: H of the BJT and diode model equations. In addition, satura-
TEXT: H tion currents have a built-in temperature dependence. The
TEXT: H temperature dependence of the saturation current in the BJT
TEXT: H models is determined by:
TEXT: H
TEXT: H XTI
TEXT: H |T | | E q(T T )|
TEXT: H 1 g 1 0
TEXT: H I (T ) = I (T ) |--| exp|-----------|
TEXT: H S 1 S 0
TEXT: H |T | |k (T - T )|
TEXT: H 0 1 0
TEXT: H
TEXT: H
TEXT: H
TEXT: H where k is Boltzmann's constant, q is the electronic
TEXT: H charge, E is the energy gap which is a model parameter,
TEXT: H G
TEXT: H and XTI is the saturation current temperature exponent
TEXT: H (also a model parameter, and usually equal to 3).
TEXT: H
TEXT: H
TEXT: H
TEXT: H The temperature dependence of forward and reverse beta
TEXT: H is according to the formula:
TEXT: H
TEXT: H XTB
TEXT: H |T |
TEXT: H 1
TEXT: H B(T ) = B(T ) |--|
TEXT: H 1 0
TEXT: H |T |
TEXT: H 0
TEXT: H
TEXT: H
TEXT: H
TEXT: H where T and T are in degrees Kelvin, and XTB is a
TEXT: H 1 0
TEXT: H user-supplied model parameter. Temperature effects on
TEXT: H beta are carried out by appropriate adjustment to the
TEXT: H values of B , I , B , and I (spice model parameters
TEXT: H F SE R SC
TEXT: H BF, ISE, BR, and ISC, respectively).
TEXT: H
TEXT: H
TEXT: H
TEXT: H Temperature dependence of the saturation current in the
TEXT: H junction diode model is determined by:
TEXT: H
TEXT: H XTI
TEXT: H ---
TEXT: H N
TEXT: H |T | | E q(T T ) |
TEXT: H 1 g 1 0
TEXT: H I (T ) = I (T ) |--| exp|-------------|
TEXT: H S 1 S 0
TEXT: H |T | |N k (T - T )|
TEXT: H 0 1 0
TEXT: H
TEXT: H
TEXT: H
TEXT: H where N is the emission coefficient, which is a model
TEXT: H parameter, and the other symbols have the same meaning
TEXT: H as above. Note that for Schottky barrier diodes, the
TEXT: H value of the saturation current temperature exponent,
TEXT: H XTI, is usually 2.
TEXT: H
TEXT: H
TEXT: H
TEXT: H Temperature appears explicitly in the value of junction
TEXT: H potential, U (in spice PHI), for all the device models. The
TEXT: H temperature dependence is determined by:
TEXT: H
TEXT: H
TEXT: H | N N |
TEXT: H a d
TEXT: H kT |------ |
TEXT: H U(T) = -- log 2
TEXT: H q e |N (T) |
TEXT: H i
TEXT: H
TEXT: H
TEXT: H where k is Boltzmann's constant, q is the electronic
TEXT: H charge, N is the acceptor impurity density, N is the
TEXT: H a d
TEXT: H donor impurity density, N is the intrinsic carrier con-
TEXT: H i
TEXT: H centration, and E is the energy gap.
TEXT: H g
TEXT: H
TEXT: H
TEXT: H
TEXT: H Temperature appears explicitly in the value of surface
TEXT: H mobility, M (or UO), for the MOSFET model. The temperature
TEXT: H 0
TEXT: H dependence is determined by:
TEXT: H
TEXT: H
TEXT: H M (T )
TEXT: H 0 0
TEXT: H M (T) = -------
TEXT: H 0 1.5
TEXT: H | T|
TEXT: H |--|
TEXT: H |T |
TEXT: H 0
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H The effects of temperature on resistors is modeled by
TEXT: H the formula:
TEXT: H
TEXT: H
TEXT: H 2
TEXT: H R(T) = R(T ) [1 + TC (T - T ) + TC (T - T ) ]
TEXT: H 0 1 0 2 0
TEXT: H
TEXT: H
TEXT: H
TEXT: H where T is the circuit temperature, T is the nominal
TEXT: H 0
TEXT: H temperature, and TC and TC are the first- and second-
TEXT: H 1 2
TEXT: H order temperature coefficients.
TEXT: H
SUBJECT: CONVERGENCE
TITLE: CONVERGENCE
TEXT: H
TEXT: H _1._3. _C_O_N_V_E_R_G_E_N_C_E
TEXT: H
TEXT: H
TEXT: H Both dc and transient solutions are obtained by an
TEXT: H iterative process which is terminated when both of the fol-
TEXT: H lowing conditions hold:
TEXT: H
TEXT: H
TEXT: H 1) The nonlinear branch currents converge to within a
TEXT: H tolerance of 0.1% or 1 picoamp (1.0e-12 Amp), whichever
TEXT: H is larger.
TEXT: H
TEXT: H 2) The node voltages converge to within a tolerance of
TEXT: H 0.1% or 1 microvolt (1.0e-6 Volt), whichever is larger.
TEXT: H
TEXT: H Although the algorithm used in SPICE has been found to
TEXT: H be very reliable, in some cases it fails to converge to a
TEXT: H solution. When this failure occurs, the program terminates
TEXT: H the job.
TEXT: H
TEXT: H Failure to converge in dc analysis is usually due to an
TEXT: H error in specifying circuit connections, element values, or
TEXT: H model parameter values. Regenerative switching circuits or
TEXT: H circuits with positive feedback probably will not converge
TEXT: H in the dc analysis unless the OFF option is used for some of
TEXT: H the devices in the feedback path, or the .NODESET control
TEXT: H line is used to force the circuit to converge to the desired
TEXT: H state.
SUBJECT: CIRCUIT DESCRIPTION
TITLE: CIRCUIT DESCRIPTION
TEXT: H
TEXT: H _2. _C_I_R_C_U_I_T _D_E_S_C_R_I_P_T_I_O_N
SUBTOPIC: NGSPICE:GENERAL STRUCTURE AND CONVENTIONS
SUBTOPIC: NGSPICE:TITLE LINE COMMENT LINES AND .END LINE
SUBTOPIC: NGSPICE:DEVICE MODELS
SUBTOPIC: NGSPICE:SUBCIRCUITS
SUBTOPIC: NGSPICE:COMBINING FILES
SUBJECT: GENERAL STRUCTURE AND CONVENTIONS
TITLE: GENERAL STRUCTURE AND CONVENTIONS
TEXT: H
TEXT: H _2._1. _G_E_N_E_R_A_L _S_T_R_U_C_T_U_R_E _A_N_D _C_O_N_V_E_N_T_I_O_N_S
TEXT: H
TEXT: H
TEXT: H The circuit to be analyzed is described to SPICE by a
TEXT: H set of element lines, which define the circuit topology and
TEXT: H element values, and a set of control lines, which define the
TEXT: H model parameters and the run controls. The first line in
TEXT: H the input file must be the title, and the last line must be
TEXT: H ".END". The order of the remaining lines is arbitrary
TEXT: H (except, of course, that continuation lines must immediately
TEXT: H follow the line being continued).
TEXT: H
TEXT: H Each element in the circuit is specified by an element
TEXT: H line that contains the element name, the circuit nodes to
TEXT: H which the element is connected, and the values of the param-
TEXT: H eters that determine the electrical characteristics of the
TEXT: H element. The first letter of the element name specifies the
TEXT: H element type. The format for the SPICE element types is
TEXT: H given in what follows. The strings XXXXXXX, YYYYYYY, and
TEXT: H ZZZZZZZ denote arbitrary alphanumeric strings. For example,
TEXT: H a resistor name must begin with the letter R and can contain
TEXT: H one or more characters. Hence, R, R1, RSE, ROUT, and
TEXT: H R3AC2ZY are valid resistor names. Details of each type of
TEXT: H device are supplied in a following section.
TEXT: H
TEXT: H Fields on a line are separated by one or more blanks, a
TEXT: H comma, an equal ('=') sign, or a left or right parenthesis;
TEXT: H extra spaces are ignored. A line may be continued by enter-
TEXT: H ing a '+' (plus) in column 1 of the following line; SPICE
TEXT: H continues reading beginning with column 2.
TEXT: H
TEXT: H A name field must begin with a letter (A through Z) and
TEXT: H cannot contain any delimiters.
TEXT: H
TEXT: H
TEXT: H A number field may be an integer field (12, -44), a
TEXT: H floating point field (3.14159), either an integer or float-
TEXT: H ing point number followed by an integer exponent (1e-14,
TEXT: H 2.65e3), or either an integer or a floating point number
TEXT: H followed by one of the following scale factors:
TEXT: H
TEXT: H 12 9 6 3 -6
TEXT: H T = 10 G = 10 Meg = 10 K = 10 mil = 25.4
TEXT: H -3 -6 -9 -12 -15
TEXT: H m = 10 u (or M) = 10 n = 10 p = 10 f = 10
TEXT: H
TEXT: H
TEXT: H
TEXT: H Letters immediately following a number that are not scale
TEXT: H factors are ignored, and letters immediately following a
TEXT: H scale factor are ignored. Hence, 10, 10V, 10Volts, and 10Hz
TEXT: H all represent the same number, and M, MA, MSec, and MMhos
TEXT: H all represent the same scale factor. Note that 1000,
TEXT: H 1000.0, 1000Hz, 1e3, 1.0e3, 1KHz, and 1K all represent the
TEXT: H same number.
TEXT: H
TEXT: H Nodes names may be arbitrary character strings. The
TEXT: H datum (ground) node must be named '0'. Note the difference
TEXT: H in SPICE3 where the nodes are treated as character strings
TEXT: H and not evaluated as numbers, thus '0' and '00' are distinct
TEXT: H nodes in SPICE3 but not in SPICE2. The circuit cannot con-
TEXT: H tain a loop of voltage sources and/or inductors and cannot
TEXT: H contain a cut-set of current sources and/or capacitors.
TEXT: H Each node in the circuit must have a dc path to ground.
TEXT: H Every node must have at least two connections except for
TEXT: H transmission line nodes (to permit unterminated transmission
TEXT: H lines) and MOSFET substrate nodes (which have two internal
TEXT: H connections anyway).
TEXT: H
SUBJECT: TITLE LINE COMMENT LINES AND .END LINE
TITLE: TITLE LINE, COMMENT LINES AND .END LINE
TEXT: H
TEXT: H _2._2. _T_I_T_L_E _L_I_N_E, _C_O_M_M_E_N_T _L_I_N_E_S _A_N_D ._E_N_D _L_I_N_E
TEXT: H
SUBTOPIC: NGSPICE:Title Line
SUBTOPIC: NGSPICE:.END Line
SUBTOPIC: NGSPICE:Comments
SUBJECT: Title Line
TITLE: Title Line
TEXT: H
TEXT: H _2._2._1. _T_i_t_l_e _L_i_n_e
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H POWER AMPLIFIER CIRCUIT
TEXT: H TEST OF CAM CELL
TEXT: H
TEXT: H
TEXT: H The title line must be the first in the input file.
TEXT: H Its contents are printed verbatim as the heading for each
TEXT: H section of output.
TEXT: H
TEXT: H
SUBJECT: .END Line
TITLE: .END Line
TEXT: H
TEXT: H _2._2._2. ._E_N_D _L_i_n_e
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .END
TEXT: H
TEXT: H
TEXT: H The "End" line must always be the last in the input
TEXT: H file. Note that the period is an integral part of the
TEXT: H name.
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Comments
TITLE: Comments
TEXT: H
TEXT: H _2._2._3. _C_o_m_m_e_n_t_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m:
TEXT: H
TEXT: H * <any comment>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H * RF=1K Gain should be 100
TEXT: H * Check open-loop gain and phase margin
TEXT: H
TEXT: H
TEXT: H The asterisk in the first column indicates that
TEXT: H this line is a comment line. Comment lines may be
TEXT: H placed anywhere in the circuit description. Note that
TEXT: H SPICE3 also considers any line with leading white space
TEXT: H to be a comment.
TEXT: H
TEXT: H
SUBJECT: DEVICE MODELS
TITLE: DEVICE MODELS
TEXT: H
TEXT: H _2._3. _D_E_V_I_C_E _M_O_D_E_L_S
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .MODEL MNAME TYPE(PNAME1=PVAL1 PNAME2=PVAL2 ... )
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .MODEL MOD1 NPN (BF=50 IS=1E-13 VBF=50)
TEXT: H
TEXT: H
TEXT: H
TEXT: H Most simple circuit elements typically require only a
TEXT: H few parameter values. However, some devices (semiconductor
TEXT: H devices in particular) that are included in SPICE require
TEXT: H many parameter values. Often, many devices in a circuit are
TEXT: H defined by the same set of device model parameters. For
TEXT: H these reasons, a set of device model parameters is defined
TEXT: H on a separate .MODEL line and assigned a unique model name.
TEXT: H The device element lines in SPICE then refer to the model
TEXT: H name.
TEXT: H
TEXT: H For these more complex device types, each device ele-
TEXT: H ment line contains the device name, the nodes to which the
TEXT: H device is connected, and the device model name. In addi-
TEXT: H tion, other optional parameters may be specified for some
TEXT: H devices: geometric factors and an initial condition (see
TEXT: H the following section on Transistors and Diodes for more de-
TEXT: H tails).
TEXT: H
TEXT: H MNAME in the above is the model name, and type is one
TEXT: H of the following fifteen types:
TEXT: H
TEXT: H R Semiconductor resistor model
TEXT: H C Semiconductor capacitor model
TEXT: H SW Voltage controlled switch
TEXT: H CSW Current controlled switch
TEXT: H URC Uniform distributed RC model
TEXT: H LTRA Lossy transmission line model
TEXT: H D Diode model
TEXT: H NPN NPN BJT model
TEXT: H PNP PNP BJT model
TEXT: H NJF N-channel JFET model
TEXT: H PJF P-channel JFET model
TEXT: H NMOS N-channel MOSFET model
TEXT: H PMOS P-channel MOSFET model
TEXT: H NMF N-channel MESFET model
TEXT: H PMF P-channel MESFET model
TEXT: H
TEXT: H
TEXT: H
TEXT: H Parameter values are defined by appending the parameter
TEXT: H name followed by an equal sign and the parameter value.
TEXT: H Model parameters that are not given a value are assigned the
TEXT: H default values given below for each model type. Models,
TEXT: H model parameters, and default values are listed in the next
TEXT: H section along with the description of device element lines.
TEXT: H
SUBJECT: SUBCIRCUITS
TITLE: SUBCIRCUITS
TEXT: H
TEXT: H _2._4. _S_U_B_C_I_R_C_U_I_T_S
TEXT: H
TEXT: H
TEXT: H A subcircuit that consists of SPICE elements can be
TEXT: H defined and referenced in a fashion similar to device
TEXT: H models. The subcircuit is defined in the input file by a
TEXT: H grouping of element lines; the program then automatically
TEXT: H inserts the group of elements wherever the subcircuit is
TEXT: H referenced. There is no limit on the size or complexity of
TEXT: H subcircuits, and subcircuits may contain other subcircuits.
TEXT: H An example of subcircuit usage is given in Appendix A.
TEXT: H
TEXT: H
SUBTOPIC: NGSPICE:.SUBCKT Line
SUBTOPIC: NGSPICE:.ENDS Line
SUBTOPIC: NGSPICE:Subcircuit Calls
SUBJECT: .SUBCKT Line
TITLE: .SUBCKT Line
TEXT: H
TEXT: H _2._4._1. ._S_U_B_C_K_T _L_i_n_e
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .SUBCKT subnam N1 <N2 N3 ...>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .SUBCKT OPAMP 1 2 3 4
TEXT: H
TEXT: H
TEXT: H
TEXT: H A circuit definition is begun with a .SUBCKT line.
TEXT: H SUBNAM is the subcircuit name, and N1, N2, ... are the
TEXT: H external nodes, which cannot be zero. The group of element
TEXT: H lines which immediately follow the .SUBCKT line define the
TEXT: H subcircuit. The last line in a subcircuit definition is the
TEXT: H .ENDS line (see below). Control lines may not appear within
TEXT: H a subcircuit definition; however, subcircuit definitions
TEXT: H may contain anything else, including other subcircuit defin-
TEXT: H itions, device models, and subcircuit calls (see below).
TEXT: H Note that any device models or subcircuit definitions
TEXT: H included as part of a subcircuit definition are strictly
TEXT: H local (i.e., such models and definitions are not known out-
TEXT: H side the subcircuit definition). Also, any element nodes
TEXT: H not included on the .SUBCKT line are strictly local, with
TEXT: H the exception of 0 (ground) which is always global.
TEXT: H
TEXT: H
SUBJECT: .ENDS Line
TITLE: .ENDS Line
TEXT: H
TEXT: H _2._4._2. ._E_N_D_S _L_i_n_e
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .ENDS <SUBNAM>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .ENDS OPAMP
TEXT: H
TEXT: H
TEXT: H The "Ends" line must be the last one for any sub-
TEXT: H circuit definition. The subcircuit name, if included,
TEXT: H indicates which subcircuit definition is being terminat-
TEXT: H ed; if omitted, all subcircuits being defined are ter-
TEXT: H minated. The name is needed only when nested subcircuit
TEXT: H definitions are being made.
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Subcircuit Calls
TITLE: Subcircuit Calls
TEXT: H
TEXT: H _2._4._3. _S_u_b_c_i_r_c_u_i_t _C_a_l_l_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H XYYYYYYY N1 <N2 N3 ...> SUBNAM
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H X1 2 4 17 3 1 MULTI
TEXT: H
TEXT: H
TEXT: H Subcircuits are used in SPICE by specifying
TEXT: H pseudo-elements beginning with the letter X, followed by
TEXT: H the circuit nodes to be used in expanding the subcir-
TEXT: H cuit.
TEXT: H
TEXT: H
SUBJECT: COMBINING FILES
TITLE: COMBINING FILES: .INCLUDE LINES
TEXT: H
TEXT: H _2._5. _C_O_M_B_I_N_I_N_G _F_I_L_E_S: ._I_N_C_L_U_D_E _L_I_N_E_S
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .INCLUDE _f_i_l_e_n_a_m_e
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .INCLUDE /users/spice/common/wattmeter.cir
TEXT: H
TEXT: H
TEXT: H Frequently, portions of circuit descriptions will be
TEXT: H reused in several input files, particularly with common
TEXT: H models and subcircuits. In any spice input file, the
TEXT: H ".include" line may be used to copy some other file as if
TEXT: H that second file appeared in place of the ".include" line in
TEXT: H the original file. There is no restriction on the file name
TEXT: H imposed by spice beyond those imposed by the local operating
TEXT: H system.
SUBJECT: CIRCUIT ELEMENTS AND MODELS
TITLE: CIRCUIT ELEMENTS AND MODELS
TEXT: H
TEXT: H _3. _C_I_R_C_U_I_T _E_L_E_M_E_N_T_S _A_N_D _M_O_D_E_L_S
TEXT: H
TEXT: H
TEXT: H Data fields that are enclosed in less-than and
TEXT: H greater-than signs ('< >') are optional. All indicated
TEXT: H punctuation (parentheses, equal signs, etc.) is optional but
TEXT: H indicate the presence of any delimiter. Further, future
TEXT: H implementations may require the punctuation as stated. A
TEXT: H consistent style adhering to the punctuation shown here
TEXT: H makes the input easier to understand. With respect to
TEXT: H branch voltages and currents, SPICE uniformly uses the asso-
TEXT: H ciated reference convention (current flows in the direction
TEXT: H of voltage drop).
SUBTOPIC: NGSPICE:ELEMENTARY DEVICES
SUBTOPIC: NGSPICE:VOLTAGE AND CURRENT SOURCES
SUBTOPIC: NGSPICE:TRANSMISSION LINES
SUBTOPIC: NGSPICE:TRANSISTORS AND DIODES
SUBJECT: ELEMENTARY DEVICES
TITLE: ELEMENTARY DEVICES
TEXT: H
TEXT: H _3._1. _E_L_E_M_E_N_T_A_R_Y _D_E_V_I_C_E_S
TEXT: H
SUBTOPIC: NGSPICE:Resistors
SUBTOPIC: NGSPICE:Semiconductor Resistors
SUBTOPIC: NGSPICE:Semiconductor Resistor Model
SUBTOPIC: NGSPICE:Capacitors
SUBTOPIC: NGSPICE:Semiconductor Capacitors
SUBTOPIC: NGSPICE:Semiconductor Capacitor Model
SUBTOPIC: NGSPICE:Inductors
SUBTOPIC: NGSPICE:Coupled Inductors
SUBTOPIC: NGSPICE:Switches
SUBTOPIC: NGSPICE:Switch Model
SUBJECT: Resistors
TITLE: Resistors
TEXT: H
TEXT: H _3._1._1. _R_e_s_i_s_t_o_r_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H RXXXXXXX N1 N2 VALUE
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H R1 1 2 100
TEXT: H RC1 12 17 1K
TEXT: H
TEXT: H
TEXT: H N1 and N2 are the two element nodes. VALUE is the
TEXT: H resistance (in ohms) and may be positive or negative but not
TEXT: H zero.
TEXT: H
TEXT: H
SUBJECT: Semiconductor Resistors
TITLE: Semiconductor Resistors
TEXT: H
TEXT: H _3._1._2. _S_e_m_i_c_o_n_d_u_c_t_o_r _R_e_s_i_s_t_o_r_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H RXXXXXXX N1 N2 <VALUE> <MNAME> <L=LENGTH> <W=WIDTH> <TEMP=T>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H RLOAD 2 10 10K
TEXT: H RMOD 3 7 RMODEL L=10u W=1u
TEXT: H
TEXT: H
TEXT: H
TEXT: H This is the more general form of the resistor presented
TEXT: H in section 6.1, and allows the modeling of temperature
TEXT: H effects and for the calculation of the actual resistance
TEXT: H value from strictly geometric information and the specifica-
TEXT: H tions of the process. If VALUE is specified, it overrides
TEXT: H the geometric information and defines the resistance. If
TEXT: H MNAME is specified, then the resistance may be calculated
TEXT: H from the process information in the model MNAME and the
TEXT: H given LENGTH and WIDTH. If VALUE is not specified, then
TEXT: H MNAME and LENGTH must be specified. If WIDTH is not speci-
TEXT: H fied, then it is taken from the default width given in the
TEXT: H model. The (optional) TEMP value is the temperature at
TEXT: H which this device is to operate, and overrides the tempera-
TEXT: H ture specification on the .OPTION control line.
TEXT: H
TEXT: H
SUBJECT: Semiconductor Resistor Model
TITLE: Semiconductor Resistor Model (R)
TEXT: H
TEXT: H _3._1._3. _S_e_m_i_c_o_n_d_u_c_t_o_r _R_e_s_i_s_t_o_r _M_o_d_e_l (_R)
TEXT: H
TEXT: H
TEXT: H The resistor model consists of process-related device
TEXT: H data that allow the resistance to be calculated from
TEXT: H geometric information and to be corrected for temperature.
TEXT: H The parameters available are:
TEXT: H
TEXT: H name parameter units default example
TEXT: H
TEXT: H o
TEXT: H TC1 first order temperature coeff. Z/ C 0.0 -
TEXT: H o 2
TEXT: H TC2 second order temperature coeff. Z/ C 0.0 -
TEXT: H RSH sheet resistance Z/[] - 50
TEXT: H DEFW default width meters 1e-6 2e-6
TEXT: H NARROW narrowing due to side etching meters 0.0 1e-7
TEXT: H o
TEXT: H TNOM parameter measurement temperature C 27 50
TEXT: H
TEXT: H
TEXT: H
TEXT: H The sheet resistance is used with the narrowing parame-
TEXT: H ter and L and W from the resistor device to determine the
TEXT: H nominal resistance by the formula
TEXT: H
TEXT: H L - NARROW
TEXT: H R = RSH ----------
TEXT: H W - NARROW
TEXT: H
TEXT: H DEFW is used to supply a default value for W if one is not
TEXT: H specified for the device. If either RSH or L is not speci-
TEXT: H fied, then the standard default resistance value of 1k Z is
TEXT: H used. TNOM is used to override the circuit-wide value given
TEXT: H on the .OPTIONS control line where the parameters of this
TEXT: H model have been measured at a different temperature. After
TEXT: H the nominal resistance is calculated, it is adjusted for
TEXT: H temperature by the formula:
TEXT: H
TEXT: H 2
TEXT: H R(T) = R(T ) [1 + TC1 (T - T ) + TC2 (T-T ) ]
TEXT: H 0 0 0
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Capacitors
TITLE: Capacitors
TEXT: H
TEXT: H _3._1._4. _C_a_p_a_c_i_t_o_r_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H CXXXXXXX N+ N- VALUE <IC=INCOND>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H CBYP 13 0 1UF
TEXT: H COSC 17 23 10U IC=3V
TEXT: H
TEXT: H
TEXT: H N+ and N- are the positive and negative element
TEXT: H nodes, respectively. VALUE is the capacitance in
TEXT: H Farads.
TEXT: H
TEXT: H
TEXT: H The (optional) initial condition is the initial (time-
TEXT: H zero) value of capacitor voltage (in Volts). Note that the
TEXT: H initial conditions (if any) apply 'only' if the UIC option
TEXT: H is specified on the .TRAN control line.
TEXT: H
TEXT: H
SUBJECT: Semiconductor Capacitors
TITLE: Semiconductor Capacitors
TEXT: H
TEXT: H _3._1._5. _S_e_m_i_c_o_n_d_u_c_t_o_r _C_a_p_a_c_i_t_o_r_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H CXXXXXXX N1 N2 <VALUE> <MNAME> <L=LENGTH> <W=WIDTH> <IC=VAL>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H CLOAD 2 10 10P
TEXT: H CMOD 3 7 CMODEL L=10u W=1u
TEXT: H
TEXT: H
TEXT: H
TEXT: H This is the more general form of the Capacitor
TEXT: H presented in section 6.2, and allows for the calculation of
TEXT: H the actual capacitance value from strictly geometric infor-
TEXT: H mation and the specifications of the process. If VALUE is
TEXT: H specified, it defines the capacitance. If MNAME is speci-
TEXT: H fied, then the capacitance is calculated from the process
TEXT: H information in the model MNAME and the given LENGTH and
TEXT: H WIDTH. If VALUE is not specified, then MNAME and LENGTH
TEXT: H must be specified. If WIDTH is not specified, then it is
TEXT: H taken from the default width given in the model. Either
TEXT: H VALUE or MNAME, LENGTH, and WIDTH may be specified, but not
TEXT: H both sets.
TEXT: H
TEXT: H
SUBJECT: Semiconductor Capacitor Model
TITLE: Semiconductor Capacitor Model (C)
TEXT: H
TEXT: H _3._1._6. _S_e_m_i_c_o_n_d_u_c_t_o_r _C_a_p_a_c_i_t_o_r _M_o_d_e_l (_C)
TEXT: H
TEXT: H
TEXT: H The capacitor model contains process information that
TEXT: H may be used to compute the capacitance from strictly
TEXT: H geometric information.
TEXT: H
TEXT: H
TEXT: H
TEXT: H name parameter units default example
TEXT: H
TEXT: H 2
TEXT: H CJ junction bottom capacitance F/meters - 5e-5
TEXT: H CJSW junction sidewall capacitance F/meters - 2e-11
TEXT: H DEFW default device width meters 1e-6 2e-6
TEXT: H NARROW narrowing due to side etching meters 0.0 1e-7
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H The capacitor has a capacitance computed as
TEXT: H
TEXT: H CAP = CJ (LENGTH - NARROW) (WIDTH - NARROW) + 2 CJSW (LENGTH + WIDTH - 2 NARROW)
TEXT: H
TEXT: H
SUBJECT: Inductors
TITLE: Inductors
TEXT: H
TEXT: H _3._1._7. _I_n_d_u_c_t_o_r_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H LYYYYYYY N+ N- VALUE <IC=INCOND>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H LLINK 42 69 1UH
TEXT: H LSHUNT 23 51 10U IC=15.7MA
TEXT: H
TEXT: H
TEXT: H N+ and N- are the positive and negative element
TEXT: H nodes, respectively. VALUE is the inductance in Hen-
TEXT: H ries.
TEXT: H
TEXT: H
TEXT: H The (optional) initial condition is the initial (time-
TEXT: H zero) value of inductor current (in Amps) that flows from
TEXT: H N+, through the inductor, to N-. Note that the initial con-
TEXT: H ditions (if any) apply only if the UIC option is specified
TEXT: H on the .TRAN analysis line.
TEXT: H
TEXT: H
SUBJECT: Coupled Inductors
TITLE: Coupled (Mutual) Inductors
TEXT: H
TEXT: H _3._1._8. _C_o_u_p_l_e_d (_M_u_t_u_a_l) _I_n_d_u_c_t_o_r_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H KXXXXXXX LYYYYYYY LZZZZZZZ VALUE
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H K43 LAA LBB 0.999
TEXT: H KXFRMR L1 L2 0.87
TEXT: H
TEXT: H
TEXT: H LYYYYYYY and LZZZZZZZ are the names of the two cou-
TEXT: H pled inductors, and VALUE is the coefficient of cou-
TEXT: H pling, K, which must be greater than 0 and less than or
TEXT: H equal to 1. Using the 'dot' convention, place a 'dot'
TEXT: H on the first node of each inductor.
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Switches
TITLE: Switches
TEXT: H
TEXT: H _3._1._9. _S_w_i_t_c_h_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H SXXXXXXX N+ N- NC+ NC- MODEL <ON><OFF>
TEXT: H WYYYYYYY N+ N- VNAM MODEL <ON><OFF>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H s1 1 2 3 4 switch1 ON
TEXT: H s2 5 6 3 0 sm2 off
TEXT: H Switch1 1 2 10 0 smodel1
TEXT: H w1 1 2 vclock switchmod1
TEXT: H W2 3 0 vramp sm1 ON
TEXT: H wreset 5 6 vclck lossyswitch OFF
TEXT: H
TEXT: H
TEXT: H Nodes 1 and 2 are the nodes between which the
TEXT: H switch terminals are connected. The model name is man-
TEXT: H datory while the initial conditions are optional. For
TEXT: H the voltage controlled switch, nodes 3 and 4 are the po-
TEXT: H sitive and negative controlling nodes respectively. For
TEXT: H the current controlled switch, the controlling current
TEXT: H is that through the specified voltage source. The
TEXT: H direction of positive controlling current flow is from
TEXT: H the positive node, through the source, to the negative
TEXT: H node.
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Switch Model
TITLE: Switch Model (SW/CSW)
TEXT: H
TEXT: H _3._1._1_0. _S_w_i_t_c_h _M_o_d_e_l (_S_W/_C_S_W)
TEXT: H
TEXT: H
TEXT: H The switch model allows an almost ideal switch to be
TEXT: H described in SPICE. The switch is not quite ideal, in that
TEXT: H the resistance can not change from 0 to infinity, but must
TEXT: H always have a finite positive value. By proper selection of
TEXT: H the on and off resistances, they can be effectively zero and
TEXT: H infinity in comparison to other circuit elements. The
TEXT: H parameters available are:
TEXT: H
TEXT: H name parameter units default switch
TEXT: H
TEXT: H VT threshold voltage Volts 0.0 S
TEXT: H IT threshold current Amps 0.0 W
TEXT: H VH hysteresis voltage Volts 0.0 S
TEXT: H IH hysteresis current Amps 0.0 W
TEXT: H RON on resistance Z 1.0 both
TEXT: H ROFF off resistance Z 1/GMIN* both
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H *(See the .OPTIONS control line for a description of
TEXT: H GMIN, its default value results in an off-resistance of
TEXT: H 1.0e+12 ohms.)
TEXT: H
TEXT: H
TEXT: H The use of an ideal element that is highly nonlinear
TEXT: H such as a switch can cause large discontinuities to occur in
TEXT: H the circuit node voltages. A rapid change such as that
TEXT: H associated with a switch changing state can cause numerical
TEXT: H roundoff or tolerance problems leading to erroneous results
TEXT: H or timestep difficulties. The user of switches can improve
TEXT: H the situation by taking the following steps:
TEXT: H
TEXT: H First, it is wise to set ideal switch impedances just
TEXT: H high or low enough to be negligible with respect to other
TEXT: H circuit elements. Using switch impedances that are close to
TEXT: H "ideal" in all cases aggravates the problem of discontinui-
TEXT: H ties mentioned above. Of course, when modeling real devices
TEXT: H such as MOSFETS, the on resistance should be adjusted to a
TEXT: H realistic level depending on the size of the device being
TEXT: H modeled.
TEXT: H
TEXT: H If a wide range of ON to OFF resistance must be used in
TEXT: H the switches (ROFF/RON >1e+12), then the tolerance on errors
TEXT: H allowed during transient analysis should be decreased by
TEXT: H using the .OPTIONS control line and specifying TRTOL to be
TEXT: H less than the default value of 7.0. When switches are
TEXT: H placed around capacitors, then the option CHGTOL should also
TEXT: H be reduced. Suggested values for these two options are 1.0
TEXT: H and 1e-16 respectively. These changes inform SPICE3 to be
TEXT: H more careful around the switch points so that no errors are
TEXT: H made due to the rapid change in the circuit.
TEXT: H
SUBJECT: VOLTAGE AND CURRENT SOURCES
TITLE: VOLTAGE AND CURRENT SOURCES
TEXT: H
TEXT: H _3._2. _V_O_L_T_A_G_E _A_N_D _C_U_R_R_E_N_T _S_O_U_R_C_E_S
TEXT: H
SUBTOPIC: NGSPICE:Independent Sources
SUBTOPIC: NGSPICE:Linear Dependent Sources
SUBTOPIC: NGSPICE:Nonlinear Dependent Sources
SUBJECT: Independent Sources
TITLE: Independent Sources
TEXT: H
TEXT: H _3._2._1. _I_n_d_e_p_e_n_d_e_n_t _S_o_u_r_c_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H VXXXXXXX N+ N- <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>
TEXT: H + <DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>
TEXT: H IYYYYYYY N+ N- <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>
TEXT: H + <DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H VCC 10 0 DC 6
TEXT: H VIN 13 2 0.001 AC 1 SIN(0 1 1MEG)
TEXT: H ISRC 23 21 AC 0.333 45.0 SFFM(0 1 10K 5 1K)
TEXT: H VMEAS 12 9
TEXT: H VCARRIER 1 0 DISTOF1 0.1 -90.0
TEXT: H VMODULATOR 2 0 DISTOF2 0.01
TEXT: H IIN1 1 5 AC 1 DISTOF1 DISTOF2 0.001
TEXT: H
TEXT: H
TEXT: H N+ and N- are the positive and negative nodes, respec-
TEXT: H tively. Note that voltage sources need not be grounded.
TEXT: H Positive current is assumed to flow from the positive node,
TEXT: H through the source, to the negative node. A current source
TEXT: H of positive value forces current to flow out of the N+ node,
TEXT: H through the source, and into the N- node. Voltage sources,
TEXT: H in addition to being used for circuit excitation, are the
TEXT: H 'ammeters' for SPICE, that is, zero valued voltage sources
TEXT: H may be inserted into the circuit for the purpose of measur-
TEXT: H ing current. They of course have no effect on circuit
TEXT: H operation since they represent short-circuits.
TEXT: H
TEXT: H
TEXT: H DC/TRAN is the dc and transient analysis value of the
TEXT: H source. If the source value is zero both for dc and tran-
TEXT: H sient analyses, this value may be omitted. If the source
TEXT: H value is time-invariant (e.g., a power supply), then the
TEXT: H value may optionally be preceded by the letters DC.
TEXT: H
TEXT: H
TEXT: H ACMAG is the ac magnitude and ACPHASE is the ac phase.
TEXT: H The source is set to this value in the ac analysis. If
TEXT: H ACMAG is omitted following the keyword AC, a value of unity
TEXT: H is assumed. If ACPHASE is omitted, a value of zero is
TEXT: H assumed. If the source is not an ac small-signal input, the
TEXT: H keyword AC and the ac values are omitted.
TEXT: H
TEXT: H
TEXT: H DISTOF1 and DISTOF2 are the keywords that specify that
TEXT: H the independent source has distortion inputs at the frequen-
TEXT: H cies F1 and F2 respectively (see the description of the
TEXT: H .DISTO control line). The keywords may be followed by an
TEXT: H optional magnitude and phase. The default values of the
TEXT: H magnitude and phase are 1.0 and 0.0 respectively.
TEXT: H
TEXT: H
TEXT: H Any independent source can be assigned a time-dependent
TEXT: H value for transient analysis. If a source is assigned a
TEXT: H time-dependent value, the time-zero value is used for dc
TEXT: H analysis. There are five independent source functions:
TEXT: H pulse, exponential, sinusoidal, piece-wise linear, and
TEXT: H single-frequency FM. If parameters other than source values
TEXT: H are omitted or set to zero, the default values shown are
TEXT: H assumed. (TSTEP is the printing increment and TSTOP is the
TEXT: H final time (see the .TRAN control line for explanation)).
TEXT: H
TEXT: H
SUBTOPIC: NGSPICE:Pulse
SUBTOPIC: NGSPICE:Sinusoidal
SUBTOPIC: NGSPICE:Exponential
SUBTOPIC: NGSPICE:PieceWise Linear
SUBTOPIC: NGSPICE:SingleFrequency FM
SUBJECT: Pulse
TITLE: Pulse
TEXT: H
TEXT: H _3._2._1._1. _P_u_l_s_e
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H PULSE(V1 V2 TD TR TF PW PER)
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H VIN 3 0 PULSE(-1 1 2NS 2NS 2NS 50NS 100NS)
TEXT: H
TEXT: H
TEXT: H
TEXT: H parameter default value units
TEXT: H -----------------------------------------------------
TEXT: H V1 (initial value) Volts or Amps
TEXT: H V2 (pulsed value) Volts or Amps
TEXT: H TD (delay time) 0.0 seconds
TEXT: H TR (rise time) TSTEP seconds
TEXT: H TF (fall time) TSTEP seconds
TEXT: H PW (pulse width) TSTOP seconds
TEXT: H PER(period) TSTOP seconds
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H A single pulse so specified is described by the follow-
TEXT: H ing table:
TEXT: H
TEXT: H
TEXT: H
TEXT: H time value
TEXT: H -------------------
TEXT: H 0 V1
TEXT: H TD V1
TEXT: H TD+TR V2
TEXT: H TD+TR+PW V2
TEXT: H TD+TR+PW+TF V1
TEXT: H TSTOP V1
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H Intermediate points are determined by linear interpola-
TEXT: H tion.
TEXT: H
TEXT: H
SUBJECT: Sinusoidal
TITLE: Sinusoidal
TEXT: H
TEXT: H _3._2._1._2. _S_i_n_u_s_o_i_d_a_l
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H SIN(VO VA FREQ TD THETA)
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H VIN 3 0 SIN(0 1 100MEG 1NS 1E10)
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H parameters default value units
TEXT: H -------------------------------------------------------
TEXT: H VO (offset) Volts or Amps
TEXT: H VA (amplitude) Volts or Amps
TEXT: H FREQ (frequency) 1/TSTOP Hz
TEXT: H TD (delay) 0.0 seconds
TEXT: H THETA (damping factor) 0.0 1/seconds
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H The shape of the waveform is described by the following
TEXT: H table:
TEXT: H
TEXT: H
TEXT: H time value
TEXT: H ------------------------------------------------------------
TEXT: H 0 to TD VO
TEXT: H -(t - TD)THETA
TEXT: H TD to TSTOP VO + VA e sin(2 J FREQ (t + TD))
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Exponential
TITLE: Exponential
TEXT: H
TEXT: H _3._2._1._3. _E_x_p_o_n_e_n_t_i_a_l
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m:
TEXT: H
TEXT: H EXP(V1 V2 TD1 TAU1 TD2 TAU2)
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H VIN 3 0 EXP(-4 -1 2NS 30NS 60NS 40NS)
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H parameter default value units
TEXT: H ---------------------------------------------------------
TEXT: H V1 (initial value) Volts or Amps
TEXT: H V2 (pulsed value) Volts or Amps
TEXT: H TD1 (rise delay time) 0.0 seconds
TEXT: H TAU1 (rise time constant) TSTEP seconds
TEXT: H TD2 (fall delay time) TD1+TSTEP seconds
TEXT: H TAU2 (fall time constant) TSTEP seconds
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H The shape of the waveform is described by the following
TEXT: H table:
TEXT: H
TEXT: H
TEXT: H
TEXT: H time value
TEXT: H ----------------------------------------------------------------------------
TEXT: H 0 to TD1 V1
TEXT: H | ------------|
TEXT: H TAU1
TEXT: H | -(t - TD1) | -(t - TD2)
TEXT: H TD1 to TD2 V1 + (V2 - V1) 1 - e
TEXT: H | ----------| | ----------|
TEXT: H | TAU1 | | TAU2 |
TEXT: H TD2 to TSTOP V1 + (V2 - V1) - e + (V1 - V2) 1 - e
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H
SUBJECT: PieceWise Linear
TITLE: Piece-Wise Linear
TEXT: H
TEXT: H _3._2._1._4. _P_i_e_c_e-_W_i_s_e _L_i_n_e_a_r
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m:
TEXT: H
TEXT: H PWL(T1 V1 <T2 V2 T3 V3 T4 V4 ...>)
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H VCLOCK 7 5 PWL(0 -7 10NS -7 11NS -3 17NS -3 18NS -7 50NS -7)
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H Each pair of values (Ti, Vi) specifies that the value
TEXT: H of the source is Vi (in Volts or Amps) at time=Ti. The
TEXT: H value of the source at intermediate values of time is deter-
TEXT: H mined by using linear interpolation on the input values.
TEXT: H
TEXT: H
SUBJECT: SingleFrequency FM
TITLE: Single-Frequency FM
TEXT: H
TEXT: H _3._2._1._5. _S_i_n_g_l_e-_F_r_e_q_u_e_n_c_y _F_M
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m:
TEXT: H
TEXT: H SFFM(VO VA FC MDI FS)
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H V1 12 0 SFFM(0 1M 20K 5 1K)
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H parameter default value units
TEXT: H -------------------------------------------------------
TEXT: H VO (offset) Volts or Amps
TEXT: H VA (amplitude) Volts or Amps
TEXT: H FC (carrier frequency) 1/TSTOP Hz
TEXT: H MDI (modulation index)
TEXT: H FS (signal frequency) 1/TSTOP Hz
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H The shape of the waveform is described by the following
TEXT: H equation:
TEXT: H
TEXT: H
TEXT: H | |
TEXT: H V(t)=V + V sin 2 J FC t + MDI sin(2 J FS t)
TEXT: H O A | |
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Linear Dependent Sources
TITLE: Linear Dependent Sources
TEXT: H
TEXT: H _3._2._2. _L_i_n_e_a_r _D_e_p_e_n_d_e_n_t _S_o_u_r_c_e_s
TEXT: H
TEXT: H
TEXT: H SPICE allows circuits to contain linear dependent
TEXT: H sources characterized by any of the four equations
TEXT: H
TEXT: H i = g v v = e v i = f i v
TEXT: H = h i
TEXT: H
TEXT: H where g, e, f, and h are constants representing transconduc-
TEXT: H tance, voltage gain, current gain, and transresistance,
TEXT: H respectively.
TEXT: H
TEXT: H
TEXT: H
SUBTOPIC: NGSPICE:Linear VoltageControlled Current Sources
SUBTOPIC: NGSPICE:Linear VoltageControlled Voltage Sources
SUBTOPIC: NGSPICE:Linear CurrentControlled Current Sources
SUBTOPIC: NGSPICE:Linear CurrentControlled Voltage Sources
SUBJECT: Linear VoltageControlled Current Sources
TITLE: Linear Voltage-Controlled Current Sources
TEXT: H
TEXT: H _3._2._2._1. _L_i_n_e_a_r _V_o_l_t_a_g_e-_C_o_n_t_r_o_l_l_e_d _C_u_r_r_e_n_t _S_o_u_r_c_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H GXXXXXXX N+ N- NC+ NC- VALUE
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H G1 2 0 5 0 0.1MMHO
TEXT: H
TEXT: H
TEXT: H N+ and N- are the positive and negative nodes,
TEXT: H respectively. Current flow is from the positive node,
TEXT: H through the source, to the negative node. NC+ and NC-
TEXT: H are the positive and negative controlling nodes, respec-
TEXT: H tively. VALUE is the transconductance (in mhos).
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Linear VoltageControlled Voltage Sources
TITLE: Linear Voltage-Controlled Voltage Sources
TEXT: H
TEXT: H _3._2._2._2. _L_i_n_e_a_r _V_o_l_t_a_g_e-_C_o_n_t_r_o_l_l_e_d _V_o_l_t_a_g_e _S_o_u_r_c_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H EXXXXXXX N+ N- NC+ NC- VALUE
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H E1 2 3 14 1 2.0
TEXT: H
TEXT: H
TEXT: H N+ is the positive node, and N- is the negative
TEXT: H node. NC+ and NC- are the positive and negative con-
TEXT: H trolling nodes, respectively. VALUE is the voltage
TEXT: H gain.
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Linear CurrentControlled Current Sources
TITLE: Linear Current-Controlled Current Sources
TEXT: H
TEXT: H _3._2._2._3. _L_i_n_e_a_r _C_u_r_r_e_n_t-_C_o_n_t_r_o_l_l_e_d _C_u_r_r_e_n_t _S_o_u_r_c_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H FXXXXXXX N+ N- VNAM VALUE
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H F1 13 5 VSENS 5
TEXT: H
TEXT: H
TEXT: H N+ and N- are the positive and negative nodes,
TEXT: H respectively. Current flow is from the positive node,
TEXT: H through the source, to the negative node. VNAM is the
TEXT: H name of a voltage source through which the controlling
TEXT: H current flows. The direction of positive controlling
TEXT: H current flow is from the positive node, through the
TEXT: H source, to the negative node of VNAM. VALUE is the
TEXT: H current gain.
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Linear CurrentControlled Voltage Sources
TITLE: Linear Current-Controlled Voltage Sources
TEXT: H
TEXT: H _3._2._2._4. _L_i_n_e_a_r _C_u_r_r_e_n_t-_C_o_n_t_r_o_l_l_e_d _V_o_l_t_a_g_e _S_o_u_r_c_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H HXXXXXXX N+ N- VNAM VALUE
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H HX 5 17 VZ 0.5K
TEXT: H
TEXT: H
TEXT: H N+ and N- are the positive and negative nodes,
TEXT: H respectively. VNAM is the name of a voltage source
TEXT: H through which the controlling current flows. The direc-
TEXT: H tion of positive controlling current flow is from the
TEXT: H positive node, through the source, to the negative node
TEXT: H of VNAM. VALUE is the transresistance (in ohms).
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Nonlinear Dependent Sources
TITLE: Non-linear Dependent Sources
TEXT: H
TEXT: H _3._2._3. _N_o_n-_l_i_n_e_a_r _D_e_p_e_n_d_e_n_t _S_o_u_r_c_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H BXXXXXXX N+ N- <I=EXPR> <V=EXPR>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H B1 0 1 I=cos(v(1))+sin(v(2))
TEXT: H B1 0 1 V=ln(cos(log(v(1,2)^2)))-v(3)^4+v(2)^v(1)
TEXT: H B1 3 4 I=17
TEXT: H B1 3 4 V=exp(pi^i(vdd))
TEXT: H
TEXT: H
TEXT: H
TEXT: H _N+ is the positive node, and _N- is the negative node.
TEXT: H The values of the V and I parameters determine the voltages
TEXT: H and currents across and through the device, respectively.
TEXT: H If I is given then the device is a current source, and if V
TEXT: H is given the device is a voltage source. One and only one
TEXT: H of these parameters must be given.
TEXT: H
TEXT: H The small-signal AC behavior of the nonlinear source is
TEXT: H a linear dependent source (or sources) with a proportional-
TEXT: H ity constant equal to the derivative (or derivatives) of the
TEXT: H source at the DC operating point.
TEXT: H
TEXT: H
TEXT: H The expressions given for V and I may be any function
TEXT: H of voltages and currents through voltage sources in the sys-
TEXT: H tem. The following functions of real variables are defined:
TEXT: H
TEXT: H abs asinh cosh sin
TEXT: H acos atan exp sinh
TEXT: H acosh atanh ln sqrt
TEXT: H asin cos log tan
TEXT: H
TEXT: H
TEXT: H
TEXT: H The function "u" is the unit step function, with a
TEXT: H value of one for arguments greater than one and a value of
TEXT: H zero for arguments less than zero. The function "uramp" is
TEXT: H the integral of the unit step: for an input _x, the value is
TEXT: H zero if _x is less than zero, or if _x is greater than zero
TEXT: H the value is _x. These two functions are useful in sythesiz-
TEXT: H ing piece-wise non-linear functions, though convergence may
TEXT: H be adversely affected.
TEXT: H
TEXT: H
TEXT: H The following standard operators are defined:
TEXT: H
TEXT: H + - * / ^ unary -
TEXT: H
TEXT: H
TEXT: H If the argument of log, ln, or sqrt becomes less than
TEXT: H zero, the absolute value of the argument is used. If a
TEXT: H divisor becomes zero or the argument of log or ln becomes
TEXT: H zero, an error will result. Other problems may occur when
TEXT: H the argument for a function in a partial derivative enters a
TEXT: H region where that function is undefined.
TEXT: H
TEXT: H
TEXT: H To get time into the expression you can integrate the
TEXT: H current from a constant current source with a capacitor and
TEXT: H use the resulting voltage (don't forget to set the initial
TEXT: H voltage across the capacitor). Non-linear resistors, capa-
TEXT: H citors, and inductors may be synthesized with the nonlinear
TEXT: H dependent source. Non-linear resistors are obvious. Non-
TEXT: H linear capacitors and inductors are implemented with their
TEXT: H linear counterparts by a change of variables implemented
TEXT: H with the nonlinear dependent source. The following subcir-
TEXT: H cuit will implement a nonlinear capacitor:
TEXT: H
TEXT: H .Subckt nlcap pos neg
TEXT: H * Bx: calculate f(input voltage)
TEXT: H Bx 1 0 v = f(v(pos,neg))
TEXT: H * Cx: linear capacitance
TEXT: H Cx 2 0 1
TEXT: H * Vx: Ammeter to measure current into the capacitor
TEXT: H Vx 2 1 DC 0Volts
TEXT: H * Drive the current through Cx back into the circuit
TEXT: H Fx pos neg Vx 1
TEXT: H .ends
TEXT: H
TEXT: H
TEXT: H Non-linear inductors are similar.
TEXT: H
TEXT: H
SUBJECT: TRANSMISSION LINES
TITLE: TRANSMISSION LINES
TEXT: H
TEXT: H _3._3. _T_R_A_N_S_M_I_S_S_I_O_N _L_I_N_E_S
TEXT: H
SUBTOPIC: NGSPICE:Lossless Transmission Lines
SUBTOPIC: NGSPICE:Lossy Transmission Lines
SUBTOPIC: NGSPICE:Lossy Transmission Line Model
SUBTOPIC: NGSPICE:Uniform Distributed RC Lines
SUBTOPIC: NGSPICE:Uniform Distributed RC Model
SUBJECT: Lossless Transmission Lines
TITLE: Lossless Transmission Lines
TEXT: H
TEXT: H _3._3._1. _L_o_s_s_l_e_s_s _T_r_a_n_s_m_i_s_s_i_o_n _L_i_n_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H TXXXXXXX N1 N2 N3 N4 Z0=VALUE <TD=VALUE> <F=FREQ <NL=NRMLEN>>
TEXT: H + <IC=V1, I1, V2, I2>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H T1 1 0 2 0 Z0=50 TD=10NS
TEXT: H
TEXT: H
TEXT: H N1 and N2 are the nodes at port 1; N3 and N4 are the
TEXT: H nodes at port 2. Z0 is the characteristic impedance. The
TEXT: H length of the line may be expressed in either of two forms.
TEXT: H The transmission delay, TD, may be specified directly (as
TEXT: H TD=10ns, for example). Alternatively, a frequency F may be
TEXT: H given, together with NL, the normalized electrical length of
TEXT: H the transmission line with respect to the wavelength in the
TEXT: H line at the frequency F. If a frequency is specified but NL
TEXT: H is omitted, 0.25 is assumed (that is, the frequency is
TEXT: H assumed to be the quarter-wave frequency). Note that
TEXT: H although both forms for expressing the line length are indi-
TEXT: H cated as optional, one of the two must be specified.
TEXT: H
TEXT: H Note that this element models only one propagating
TEXT: H mode. If all four nodes are distinct in the actual circuit,
TEXT: H then two modes may be excited. To simulate such a situa-
TEXT: H tion, two transmission-line elements are required. (see the
TEXT: H example in Appendix A for further clarification.)
TEXT: H
TEXT: H The (optional) initial condition specification consists
TEXT: H of the voltage and current at each of the transmission line
TEXT: H ports. Note that the initial conditions (if any) apply
TEXT: H 'only' if the UIC option is specified on the .TRAN control
TEXT: H line.
TEXT: H
TEXT: H Note that a lossy transmission line (see below) with
TEXT: H zero loss may be more accurate than than the lossless
TEXT: H transmission line due to implementation details.
TEXT: H
TEXT: H
SUBJECT: Lossy Transmission Lines
TITLE: Lossy Transmission Lines
TEXT: H
TEXT: H _3._3._2. _L_o_s_s_y _T_r_a_n_s_m_i_s_s_i_o_n _L_i_n_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H OXXXXXXX N1 N2 N3 N4 MNAME
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H O23 1 0 2 0 LOSSYMOD
TEXT: H OCONNECT 10 5 20 5 INTERCONNECT
TEXT: H
TEXT: H
TEXT: H
TEXT: H This is a two-port convolution model for single-
TEXT: H conductor lossy transmission lines. N1 and N2 are the nodes
TEXT: H at port 1; N3 and N4 are the nodes at port 2. Note that a
TEXT: H lossy transmission line with zero loss may be more accurate
TEXT: H than than the lossless transmission line due to implementa-
TEXT: H tion details.
TEXT: H
SUBJECT: Lossy Transmission Line Model
TITLE: Lossy Transmission Line Model (LTRA)
TEXT: H
TEXT: H _3._3._3. _L_o_s_s_y _T_r_a_n_s_m_i_s_s_i_o_n _L_i_n_e _M_o_d_e_l (_L_T_R_A)
TEXT: H
TEXT: H
TEXT: H The uniform RLC/RC/LC/RG transmission line model (re-
TEXT: H ferred to as the LTRA model henceforth) models a uniform
TEXT: H constant-parameter distributed transmission line. The RC
TEXT: H and LC cases may also be modeled using the URC and TRA
TEXT: H models; however, the newer LTRA model is usually faster and
TEXT: H more accurate than the others. The operation of the LTRA
TEXT: H model is based on the convolution of the transmission line's
TEXT: H impulse responses with its inputs (see [8]).
TEXT: H
TEXT: H The LTRA model takes a number of parameters, some of
TEXT: H which must be given and some of which are optional.
TEXT: H
TEXT: H name parameter units/type default example
TEXT: H
TEXT: H R resistance/length Z/unit 0.0 0.2
TEXT: H L inductance/length henrys/unit 0.0 9.13e-9
TEXT: H G conductance/length mhos/unit 0.0 0.0
TEXT: H C capacitance/length farads/unit 0.0 3.65e-12
TEXT: H LEN length of line no default 1.0
TEXT: H REL breakpoint control arbitrary unit 1 0.5
TEXT: H ABS breakpoint control 1 5
TEXT: H NOSTEPLIMIT don't limit timestep to less than flag not set set
TEXT: H line delay
TEXT: H NOCONTROL don't do complex timestep control flag not set set
TEXT: H LININTERP use linear interpolation flag not set set
TEXT: H MIXEDINTERP use linear when quadratic seems bad not set set
TEXT: H COMPACTREL special reltol for history compaction flag RELTOL 1.0e-3
TEXT: H COMPACTABS special abstol for history compaction ABSTOL 1.0e-9
TEXT: H TRUNCNR use Newton-Raphson method for flag not set set
TEXT: H timestep control
TEXT: H TRUNCDONTCUT don't limit timestep to keep flag not set set
TEXT: H impulse-response errors low
TEXT: H
TEXT: H
TEXT: H
TEXT: H The following types of lines have been implemented so
TEXT: H far: RLC (uniform transmission line with series loss only),
TEXT: H RC (uniform RC line), LC (lossless transmission line), and
TEXT: H RG (distributed series resistance and parallel conductance
TEXT: H only). Any other combination will yield erroneous results
TEXT: H and should not be tried. The length LEN of the line must be
TEXT: H specified.
TEXT: H
TEXT: H NOSTEPLIMIT is a flag that will remove the default res-
TEXT: H triction of limiting time-steps to less than the line delay
TEXT: H in the RLC case. NOCONTROL is a flag that prevents the
TEXT: H default limiting of the time-step based on convolution error
TEXT: H criteria in the RLC and RC cases. This speeds up simulation
TEXT: H but may in some cases reduce the accuracy of results.
TEXT: H LININTERP is a flag that, when specified, will use linear
TEXT: H interpolation instead of the default quadratic interpolation
TEXT: H for calculating delayed signals. MIXEDINTERP is a flag
TEXT: H that, when specified, uses a metric for judging whether qua-
TEXT: H dratic interpolation is not applicable and if so uses linear
TEXT: H interpolation; otherwise it uses the default quadratic
TEXT: H interpolation. TRUNCDONTCUT is a flag that removes the
TEXT: H default cutting of the time-step to limit errors in the
TEXT: H actual calculation of impulse-response related quantities.
TEXT: H COMPACTREL and COMPACTABS are quantities that control the
TEXT: H compaction of the past history of values stored for convolu-
TEXT: H tion. Larger values of these lower accuracy but usually
TEXT: H increase simulation speed. These are to be used with the
TEXT: H TRYTOCOMPACT option, described in the .OPTIONS section.
TEXT: H TRUNCNR is a flag that turns on the use of Newton-Raphson
TEXT: H iterations to determine an appropriate timestep in the
TEXT: H timestep control routines. The default is a trial and error
TEXT: H procedure by cutting the previous timestep in half. REL and
TEXT: H ABS are quantities that control the setting of breakpoints.
TEXT: H
TEXT: H The option most worth experimenting with for increasing
TEXT: H the speed of simulation is REL. The default value of 1 is
TEXT: H usually safe from the point of view of accuracy but occa-
TEXT: H sionally increases computation time. A value greater than 2
TEXT: H eliminates all breakpoints and may be worth trying depending
TEXT: H on the nature of the rest of the circuit, keeping in mind
TEXT: H that it might not be safe from the viewpoint of accuracy.
TEXT: H Breakpoints may usually be entirely eliminated if it is
TEXT: H expected the circuit will not display sharp discontinuities.
TEXT: H Values between 0 and 1 are usually not required but may be
TEXT: H used for setting many breakpoints.
TEXT: H
TEXT: H COMPACTREL may also be experimented with when the
TEXT: H option TRYTOCOMPACT is specified in a .OPTIONS card. The
TEXT: H legal range is between 0 and 1. Larger values usually
TEXT: H decrease the accuracy of the simulation but in some cases
TEXT: H improve speed. If TRYTOCOMPACT is not specified on a
TEXT: H .OPTIONS card, history compaction is not attempted and accu-
TEXT: H racy is high. NOCONTROL, TRUNCDONTCUT and NOSTEPLIMIT also
TEXT: H tend to increase speed at the expense of accuracy.
TEXT: H
SUBJECT: Uniform Distributed RC Lines
TITLE: Uniform Distributed RC Lines (Lossy)
TEXT: H
TEXT: H _3._3._4. _U_n_i_f_o_r_m _D_i_s_t_r_i_b_u_t_e_d _R_C _L_i_n_e_s (_L_o_s_s_y)
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H UXXXXXXX N1 N2 N3 MNAME L=LEN <N=LUMPS>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H U1 1 2 0 URCMOD L=50U
TEXT: H URC2 1 12 2 UMODL l=1MIL N=6
TEXT: H
TEXT: H
TEXT: H
TEXT: H N1 and N2 are the two element nodes the RC line con-
TEXT: H nects, while N3 is the node to which the capacitances are
TEXT: H connected. MNAME is the model name, LEN is the length of
TEXT: H the RC line in meters. LUMPS, if specified, is the number
TEXT: H of lumped segments to use in modeling the RC line (see the
TEXT: H model description for the action taken if this parameter is
TEXT: H omitted).
TEXT: H
SUBJECT: Uniform Distributed RC Model
TITLE: Uniform Distributed RC Model (URC)
TEXT: H
TEXT: H _3._3._5. _U_n_i_f_o_r_m _D_i_s_t_r_i_b_u_t_e_d _R_C _M_o_d_e_l (_U_R_C)
TEXT: H
TEXT: H
TEXT: H The URC model is derived from a model proposed by L.
TEXT: H Gertzberrg in 1974. The model is accomplished by a subcir-
TEXT: H cuit type expansion of the URC line into a network of lumped
TEXT: H RC segments with internally generated nodes. The RC seg-
TEXT: H ments are in a geometric progression, increasing toward the
TEXT: H middle of the URC line, with K as a proportionality con-
TEXT: H stant. The number of lumped segments used, if not specified
TEXT: H for the URC line device, is determined by the following for-
TEXT: H mula:
TEXT: H 2
TEXT: H | R C |(K-1)| |
TEXT: H _ _ 2
TEXT: H log|F 2 J L |-----| |
TEXT: H max
TEXT: H | L L | K | |
TEXT: H
TEXT: H N = ------------------------------
TEXT: H log K
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H The URC line is made up strictly of resistor and capa-
TEXT: H citor segments unless the ISPERL parameter is given a non-
TEXT: H zero value, in which case the capacitors are replaced with
TEXT: H reverse biased diodes with a zero-bias junction capacitance
TEXT: H equivalent to the capacitance replaced, and with a satura-
TEXT: H tion current of ISPERL amps per meter of transmission line
TEXT: H and an optional series resistance equivalent to RSPERL ohms
TEXT: H per meter.
TEXT: H
TEXT: H name parameter units default example area
TEXT: H
TEXT: H 1 K Propagation Constant - 2.0 1.2 -
TEXT: H 2 FMAX Maximum Frequency of interest Hz 1.0G 6.5Meg -
TEXT: H 3 RPERL Resistance per unit length Z/m 1000 10 -
TEXT: H 4 CPERL Capacitance per unit length F/m 1.0e-15 1pF -
TEXT: H 5 ISPERL Saturation Current per unit length A/m 0 - -
TEXT: H 6 RSPERL Diode Resistance per unit length Z/m 0 - -
TEXT: H
TEXT: H
TEXT: H
SUBJECT: TRANSISTORS AND DIODES
TITLE: TRANSISTORS AND DIODES
TEXT: H
TEXT: H _3._4. _T_R_A_N_S_I_S_T_O_R_S _A_N_D _D_I_O_D_E_S
TEXT: H
TEXT: H
TEXT: H The area factor used on the diode, BJT, JFET, and MES-
TEXT: H FET devices determines the number of equivalent parallel
TEXT: H devices of a specified model. The affected parameters are
TEXT: H marked with an asterisk under the heading 'area' in the
TEXT: H model descriptions below. Several geometric factors associ-
TEXT: H ated with the channel and the drain and source diffusions
TEXT: H can be specified on the MOSFET device line.
TEXT: H
TEXT: H Two different forms of initial conditions may be speci-
TEXT: H fied for some devices. The first form is included to
TEXT: H improve the dc convergence for circuits that contain more
TEXT: H than one stable state. If a device is specified OFF, the dc
TEXT: H operating point is determined with the terminal voltages for
TEXT: H that device set to zero. After convergence is obtained, the
TEXT: H program continues to iterate to obtain the exact value for
TEXT: H the terminal voltages. If a circuit has more than one dc
TEXT: H stable state, the OFF option can be used to force the solu-
TEXT: H tion to correspond to a desired state. If a device is
TEXT: H specified OFF when in reality the device is conducting, the
TEXT: H program still obtains the correct solution (assuming the
TEXT: H solutions converge) but more iterations are required since
TEXT: H the program must independently converge to two separate
TEXT: H solutions. The .NODESET control line serves a similar pur-
TEXT: H pose as the OFF option. The .NODESET option is easier to
TEXT: H apply and is the preferred means to aid convergence.
TEXT: H
TEXT: H The second form of initial conditions are specified for
TEXT: H use with the transient analysis. These are true 'initial
TEXT: H conditions' as opposed to the convergence aids above. See
TEXT: H the description of the .IC control line and the .TRAN con-
TEXT: H trol line for a detailed explanation of initial conditions.
TEXT: H
TEXT: H
TEXT: H
SUBTOPIC: NGSPICE:Junction Diodes
SUBTOPIC: NGSPICE:Diode Model
SUBTOPIC: NGSPICE:Bipolar Junction Transistors
SUBTOPIC: NGSPICE:BJT Models
SUBTOPIC: NGSPICE:Junction FieldEffect Transistors
SUBTOPIC: NGSPICE:JFET Models
SUBTOPIC: NGSPICE:MOSFETs
SUBTOPIC: NGSPICE:MOSFET Models
SUBTOPIC: NGSPICE:MESFETs
SUBTOPIC: NGSPICE:MESFET Models
SUBJECT: Junction Diodes
TITLE: Junction Diodes
TEXT: H
TEXT: H _3._4._1. _J_u_n_c_t_i_o_n _D_i_o_d_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H DXXXXXXX N+ N- MNAME <AREA> <OFF> <IC=VD> <TEMP=T>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H DBRIDGE 2 10 DIODE1
TEXT: H DCLMP 3 7 DMOD 3.0 IC=0.2
TEXT: H
TEXT: H
TEXT: H
TEXT: H N+ and N- are the positive and negative nodes, respec-
TEXT: H tively. MNAME is the model name, AREA is the area factor,
TEXT: H and OFF indicates an (optional) starting condition on the
TEXT: H device for dc analysis. If the area factor is omitted, a
TEXT: H value of 1.0 is assumed. The (optional) initial condition
TEXT: H specification using IC=VD is intended for use with the UIC
TEXT: H option on the .TRAN control line, when a transient analysis
TEXT: H is desired starting from other than the quiescent operating
TEXT: H point. The (optional) TEMP value is the temperature at
TEXT: H which this device is to operate, and overrides the tempera-
TEXT: H ture specification on the .OPTION control line.
TEXT: H
TEXT: H
SUBJECT: Diode Model
TITLE: Diode Model (D)
TEXT: H
TEXT: H _3._4._2. _D_i_o_d_e _M_o_d_e_l (_D)
TEXT: H
TEXT: H
TEXT: H The dc characteristics of the diode are determined by
TEXT: H the parameters IS and N. An ohmic resistance, RS, is in-
TEXT: H cluded. Charge storage effects are modeled by a transit
TEXT: H time, TT, and a nonlinear depletion layer capacitance which
TEXT: H is determined by the parameters CJO, VJ, and M. The tem-
TEXT: H perature dependence of the saturation current is defined by
TEXT: H the parameters EG, the energy and XTI, the saturation
TEXT: H current temperature exponent. The nominal temperature at
TEXT: H which these parameters were measured is TNOM, which defaults
TEXT: H to the circuit-wide value specified on the .OPTIONS control
TEXT: H line. Reverse breakdown is modeled by an exponential in-
TEXT: H crease in the reverse diode current and is determined by the
TEXT: H parameters BV and IBV (both of which are positive numbers).
TEXT: H
TEXT: H
TEXT: H
TEXT: H name parameter units default example area
TEXT: H
TEXT: H 1 IS saturation current A 1.0e-14 1.0e-14 *
TEXT: H 2 RS ohmic resistance Z 0 10 *
TEXT: H 3 N emission coefficient - 1 1.0
TEXT: H 4 TT transit-time sec 0 0.1ns
TEXT: H 5 CJO zero-bias junction capacitance F 0 2pF *
TEXT: H 6 VJ junction potential V 1 0.6
TEXT: H 7 M grading coefficient - 0.5 0.5
TEXT: H 8 EG activation energy eV 1.11 1.11 Si
TEXT: H 0.69 Sbd
TEXT: H 0.67 Ge
TEXT: H 9 XTI saturation-current temp. exp - 3.0 3.0 jn
TEXT: H 2.0 Sbd
TEXT: H 10 KF flicker noise coefficient - 0
TEXT: H 11 AF flicker noise exponent - 1
TEXT: H 12 FC coefficient for forward-bias - 0.5
TEXT: H depletion capacitance formula
TEXT: H 13 BV reverse breakdown voltage V infinite 40.0
TEXT: H 14 IBV current at breakdown voltage A 1.0e-3
TEXT: H o
TEXT: H 15 TNOM parameter measurement temperature C 27 50
TEXT: H
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Bipolar Junction Transistors
TITLE: Bipolar Junction Transistors (BJTs)
TEXT: H
TEXT: H _3._4._3. _B_i_p_o_l_a_r _J_u_n_c_t_i_o_n _T_r_a_n_s_i_s_t_o_r_s (_B_J_T_s)
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H QXXXXXXX NC NB NE <NS> MNAME <AREA> <OFF> <IC=VBE, VCE> <TEMP=T>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H Q23 10 24 13 QMOD IC=0.6, 5.0
TEXT: H Q50A 11 26 4 20 MOD1
TEXT: H
TEXT: H
TEXT: H
TEXT: H NC, NB, and NE are the collector, base, and emitter
TEXT: H nodes, respectively. NS is the (optional) substrate node.
TEXT: H If unspecified, ground is used. MNAME is the model name,
TEXT: H AREA is the area factor, and OFF indicates an (optional)
TEXT: H initial condition on the device for the dc analysis. If the
TEXT: H area factor is omitted, a value of 1.0 is assumed. The
TEXT: H (optional) initial condition specification using IC=VBE, VCE
TEXT: H is intended for use with the UIC option on the .TRAN control
TEXT: H line, when a transient analysis is desired starting from
TEXT: H other than the quiescent operating point. See the .IC con-
TEXT: H trol line description for a better way to set transient ini-
TEXT: H tial conditions. The (optional) TEMP value is the tempera-
TEXT: H ture at which this device is to operate, and overrides the
TEXT: H temperature specification on the .OPTION control line.
TEXT: H
TEXT: H
SUBJECT: BJT Models
TITLE: BJT Models (NPN/PNP)
TEXT: H
TEXT: H _3._4._4. _B_J_T _M_o_d_e_l_s (_N_P_N/_P_N_P)
TEXT: H
TEXT: H
TEXT: H The bipolar junction transistor model in SPICE is an
TEXT: H adaptation of the integral charge control model of Gummel
TEXT: H and Poon. This modified Gummel-Poon model extends the ori-
TEXT: H ginal model to include several effects at high bias levels.
TEXT: H The model automatically simplifies to the simpler Ebers-Moll
TEXT: H model when certain parameters are not specified. The param-
TEXT: H eter names used in the modified Gummel-Poon model have been
TEXT: H chosen to be more easily understood by the program user, and
TEXT: H to reflect better both physical and circuit design thinking.
TEXT: H
TEXT: H
TEXT: H The dc model is defined by the parameters IS, BF, NF,
TEXT: H ISE, IKF, and NE which determine the forward current gain
TEXT: H characteristics, IS, BR, NR, ISC, IKR, and NC which deter-
TEXT: H mine the reverse current gain characteristics, and VAF and
TEXT: H VAR which determine the output conductance for forward and
TEXT: H reverse regions. Three ohmic resistances RB, RC, and RE are
TEXT: H included, where RB can be high current dependent. Base
TEXT: H charge storage is modeled by forward and reverse transit
TEXT: H times, TF and TR, the forward transit time TF being bias
TEXT: H dependent if desired, and nonlinear depletion layer capaci-
TEXT: H tances which are determined by CJE, VJE, and MJE for the B-E
TEXT: H junction , CJC, VJC, and MJC for the B-C junction and CJS,
TEXT: H VJS, and MJS for the C-S (Collector-Substrate) junction.
TEXT: H The temperature dependence of the saturation current, IS, is
TEXT: H determined by the energy-gap, EG, and the saturation current
TEXT: H temperature exponent, XTI. Additionally base current tem-
TEXT: H perature dependence is modeled by the beta temperature
TEXT: H exponent XTB in the new model. The values specified are
TEXT: H assumed to have been measured at the temperature TNOM, which
TEXT: H can be specified on the .OPTIONS control line or overridden
TEXT: H by a specification on the .MODEL line.
TEXT: H
TEXT: H The BJT parameters used in the modified Gummel-Poon
TEXT: H model are listed below. The parameter names used in earlier
TEXT: H versions of SPICE2 are still accepted.
TEXT: H
TEXT: H Modified Gummel-Poon BJT Parameters.
TEXT: H
TEXT: H
TEXT: H name parameter units default example area
TEXT: H
TEXT: H 1 IS transport saturation current A 1.0e-16 1.0e-15 *
TEXT: H 2 BF ideal maximum forward beta - 100 100
TEXT: H 3 NF forward current emission coefficient - 1.0 1
TEXT: H 4 VAF forward Early voltage V infinite 200
TEXT: H 5 IKF corner for forward beta
TEXT: H high current roll-off A infinite 0.01 *
TEXT: H 6 ISE B-E leakage saturation current A 0 1.0e-13 *
TEXT: H 7 NE B-E leakage emission coefficient - 1.5 2
TEXT: H 8 BR ideal maximum reverse beta - 1 0.1
TEXT: H 9 NR reverse current emission coefficient - 1 1
TEXT: H 10 VAR reverse Early voltage V infinite 200
TEXT: H 11 IKR corner for reverse beta
TEXT: H high current roll-off A infinite 0.01 *
TEXT: H 12 ISC B-C leakage saturation current A 0 1.0e-13 *
TEXT: H 13 NC B-C leakage emission coefficient - 2 1.5
TEXT: H 14 RB zero bias base resistance Z 0 100 *
TEXT: H 15 IRB current where base resistance
TEXT: H falls halfway to its min value A infinite 0.1 *
TEXT: H 16 RBM minimum base resistance
TEXT: H at high currents Z RB 10 *
TEXT: H 17 RE emitter resistance Z 0 1 *
TEXT: H 18 RC collector resistance Z 0 10 *
TEXT: H 19 CJE B-E zero-bias depletion capacitance F 0 2pF *
TEXT: H 20 VJE B-E built-in potential V 0.75 0.6
TEXT: H 21 MJE B-E junction exponential factor - 0.33 0.33
TEXT: H 22 TF ideal forward transit time sec 0 0.1ns
TEXT: H 23 XTF coefficient for bias dependence of TF - 0
TEXT: H 24 VTF voltage describing VBC
TEXT: H dependence of TF V infinite
TEXT: H 25 ITF high-current parameter
TEXT: H for effect on TF A 0 *
TEXT: H 26 PTF excess phase at freq=1.0/(TF*2PI) Hz deg 0
TEXT: H 27 CJC B-C zero-bias depletion capacitance F 0 2pF *
TEXT: H 28 VJC B-C built-in potential V 0.75 0.5
TEXT: H 29 MJC B-C junction exponential factor - 0.33 0.5
TEXT: H 30 XCJC fraction of B-C depletion capacitance - 1
TEXT: H connected to internal base node
TEXT: H 31 TR ideal reverse transit time sec 0 10ns
TEXT: H 32 CJS zero-bias collector-substrate
TEXT: H capacitance F 0 2pF *
TEXT: H 33 VJS substrate junction built-in potential V 0.75
TEXT: H 34 MJS substrate junction exponential factor - 0 0.5
TEXT: H 35 XTB forward and reverse beta
TEXT: H temperature exponent - 0
TEXT: H 36 EG energy gap for temperature
TEXT: H effect on IS eV 1.11
TEXT: H 37 XTI temperature exponent for effect on IS - 3
TEXT: H 38 KF flicker-noise coefficient - 0
TEXT: H 39 AF flicker-noise exponent - 1
TEXT: H 40 FC coefficient for forward-bias
TEXT: H depletion capacitance formula - 0.5
TEXT: H o
TEXT: H 41 TNOM Parameter measurement temperature C 27 50
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Junction FieldEffect Transistors
TITLE: Junction Field-Effect Transistors (JFETs)
TEXT: H
TEXT: H _3._4._5. _J_u_n_c_t_i_o_n _F_i_e_l_d-_E_f_f_e_c_t _T_r_a_n_s_i_s_t_o_r_s (_J_F_E_T_s)
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H JXXXXXXX ND NG NS MNAME <AREA> <OFF> <IC=VDS, VGS> <TEMP=T>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H J1 7 2 3 JM1 OFF
TEXT: H
TEXT: H
TEXT: H
TEXT: H ND, NG, and NS are the drain, gate, and source nodes,
TEXT: H respectively. MNAME is the model name, AREA is the area
TEXT: H factor, and OFF indicates an (optional) initial condition on
TEXT: H the device for dc analysis. If the area factor is omitted,
TEXT: H a value of 1.0 is assumed. The (optional) initial condition
TEXT: H specification, using IC=VDS, VGS is intended for use with
TEXT: H the UIC option on the .TRAN control line, when a transient
TEXT: H analysis is desired starting from other than the quiescent
TEXT: H operating point. See the .IC control line for a better way
TEXT: H to set initial conditions. The (optional) TEMP value is the
TEXT: H temperature at which this device is to operate, and over-
TEXT: H rides the temperature specification on the .OPTION control
TEXT: H line.
TEXT: H
TEXT: H
SUBJECT: JFET Models
TITLE: JFET Models (NJF/PJF)
TEXT: H
TEXT: H _3._4._6. _J_F_E_T _M_o_d_e_l_s (_N_J_F/_P_J_F)
TEXT: H
TEXT: H
TEXT: H The JFET model is derived from the FET model of Shich-
TEXT: H man and Hodges. The dc characteristics are defined by the
TEXT: H parameters VTO and BETA, which determine the variation of
TEXT: H drain current with gate voltage, LAMBDA, which determines
TEXT: H the output conductance, and IS, the saturation current of
TEXT: H the two gate junctions. Two ohmic resistances, RD and RS,
TEXT: H are included. Charge storage is modeled by nonlinear deple-
TEXT: H tion layer capacitances for both gate junctions which vary
TEXT: H as the -1/2 power of junction voltage and are defined by the
TEXT: H parameters CGS, CGD, and PB.
TEXT: H
TEXT: H Note that in Spice3f and later, a fitting parameter B
TEXT: H has been added. For details, see [9].
TEXT: H
TEXT: H
TEXT: H name parameter units default example area
TEXT: H
TEXT: H 1 VTO threshold voltage (V V -2.0 -2.0
TEXT: H TO 2
TEXT: H 2 BETA transconductance parameter (B) A/V 1.0e-4 1.0e-3 *
TEXT: H 3 LAMBDA channel-length modulation
TEXT: H parameter (L) 1/V 0 1.0e-4
TEXT: H 4 RD drain ohmic resistance Z 0 100 *
TEXT: H 5 RS source ohmic resistance Z 0 100 *
TEXT: H 6 CGS zero-bias G-S junction capacitance (C ) F 0 5pF *
TEXT: H gs
TEXT: H 7 CGD zero-bias G-D junction capacitance (C ) F 0 1pF *
TEXT: H gs
TEXT: H 8 PB gate junction potential V 1 0.6
TEXT: H 9 IS gate junction saturation current (I ) A 1.0e-14 1.0e-14 *
TEXT: H S
TEXT: H 10 B doping tail parameter - 1 1.1
TEXT: H 11 KF flicker noise coefficient - 0
TEXT: H 12 AF flicker noise exponent - 1
TEXT: H 13 FC coefficient for forward-bias - 0.5
TEXT: H depletion capacitance formula
TEXT: H o
TEXT: H 14 TNOM parameter measurement temperature C 27 50
TEXT: H
TEXT: H
TEXT: H
TEXT: H
SUBJECT: MOSFETs
TITLE: MOSFETs
TEXT: H
TEXT: H _3._4._7. _M_O_S_F_E_T_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H MXXXXXXX ND NG NS NB MNAME <L=VAL> <W=VAL> <AD=VAL> <AS=VAL>
TEXT: H + <PD=VAL> <PS=VAL> <NRD=VAL> <NRS=VAL> <OFF>
TEXT: H + <IC=VDS, VGS, VBS> <TEMP=T>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H M1 24 2 0 20 TYPE1
TEXT: H M31 2 17 6 10 MODM L=5U W=2U
TEXT: H M1 2 9 3 0 MOD1 L=10U W=5U AD=100P AS=100P PD=40U PS=40U
TEXT: H
TEXT: H
TEXT: H ND, NG, NS, and NB are the drain, gate, source, and bulk
TEXT: H (substrate) nodes, respectively. MNAME is the model name.
TEXT: H L and W are the channel length and width, in meters. AD and
TEXT: H AS are the areas of the drain and source diffusions, in
TEXT: H 2
TEXT: H meters . Note that the suffix U specifies microns (1e-6 m)
TEXT: H 2
TEXT: H and P sq-microns (1e-12 m ). If any of L, W, AD, or AS are
TEXT: H not specified, default values are used. The use of defaults
TEXT: H simplifies input file preparation, as well as the editing
TEXT: H required if device geometries are to be changed. PD and PS
TEXT: H are the perimeters of the drain and source junctions, in
TEXT: H meters. NRD and NRS designate the equivalent number of
TEXT: H squares of the drain and source diffusions; these values
TEXT: H multiply the sheet resistance RSH specified on the .MODEL
TEXT: H control line for an accurate representation of the parasitic
TEXT: H series drain and source resistance of each transistor. PD
TEXT: H and PS default to 0.0 while NRD and NRS to 1.0. OFF indi-
TEXT: H cates an (optional) initial condition on the device for dc
TEXT: H analysis. The (optional) initial condition specification
TEXT: H using IC=VDS, VGS, VBS is intended for use with the UIC
TEXT: H option on the .TRAN control line, when a transient analysis
TEXT: H is desired starting from other than the quiescent operating
TEXT: H point. See the .IC control line for a better and more con-
TEXT: H venient way to specify transient initial conditions. The
TEXT: H (optional) TEMP value is the temperature at which this dev-
TEXT: H ice is to operate, and overrides the temperature specifica-
TEXT: H tion on the .OPTION control line. The temperature specifi-
TEXT: H cation is ONLY valid for level 1, 2, 3, and 6 MOSFETs, not
TEXT: H for level 4 or 5 (BSIM) devices.
TEXT: H
TEXT: H
SUBJECT: MOSFET Models
TITLE: MOSFET Models (NMOS/PMOS)
TEXT: H
TEXT: H _3._4._8. _M_O_S_F_E_T _M_o_d_e_l_s (_N_M_O_S/_P_M_O_S)
TEXT: H
TEXT: H
TEXT: H SPICE provides four MOSFET device models, which differ
TEXT: H in the formulation of the I-V characteristic. The variable
TEXT: H LEVEL specifies the model to be used:
TEXT: H
TEXT: H LEVEL=1 -> Shichman-Hodges
TEXT: H LEVEL=2 -> MOS2 (as described in [1])
TEXT: H LEVEL=3 -> MOS3, a semi-empirical model(see [1])
TEXT: H LEVEL=4 -> BSIM (as described in [3])
TEXT: H LEVEL=5 -> new BSIM (BSIM2; as described in [5])
TEXT: H LEVEL=6 -> MOS6 (as described in [2])
TEXT: H
TEXT: H
TEXT: H The dc characteristics of the level 1 through level 3 MOS-
TEXT: H FETs are defined by the device parameters VTO, KP, LAMBDA,
TEXT: H PHI and GAMMA. These parameters are computed by SPICE if
TEXT: H process parameters (NSUB, TOX, ...) are given, but user-
TEXT: H specified values always override. VTO is positive (nega-
TEXT: H tive) for enhancement mode and negative (positive) for
TEXT: H depletion mode N-channel (P-channel) devices. Charge
TEXT: H storage is modeled by three constant capacitors, CGSO, CGDO,
TEXT: H and CGBO which represent overlap capacitances, by the non-
TEXT: H linear thin-oxide capacitance which is distributed among the
TEXT: H gate, source, drain, and bulk regions, and by the nonlinear
TEXT: H depletion-layer capacitances for both substrate junctions
TEXT: H divided into bottom and periphery, which vary as the MJ and
TEXT: H MJSW power of junction voltage respectively, and are deter-
TEXT: H mined by the parameters CBD, CBS, CJ, CJSW, MJ, MJSW and PB.
TEXT: H Charge storage effects are modeled by the piecewise linear
TEXT: H voltages-dependent capacitance model proposed by Meyer. The
TEXT: H thin-oxide charge-storage effects are treated slightly dif-
TEXT: H ferent for the LEVEL=1 model. These voltage-dependent capa-
TEXT: H citances are included only if TOX is specified in the input
TEXT: H description and they are represented using Meyer's formula-
TEXT: H tion.
TEXT: H
TEXT: H There is some overlap among the parameters describing
TEXT: H the junctions, e.g. the reverse current can be input either
TEXT: H 2
TEXT: H as IS (in A) or as JS (in A/m ). Whereas the first is an
TEXT: H absolute value the second is multiplied by AD and AS to give
TEXT: H the reverse current of the drain and source junctions
TEXT: H respectively. This methodology has been chosen since there
TEXT: H is no sense in relating always junction characteristics with
TEXT: H AD and AS entered on the device line; the areas can be
TEXT: H defaulted. The same idea applies also to the zero-bias
TEXT: H junction capacitances CBD and CBS (in F) on one hand, and CJ
TEXT: H 2
TEXT: H (in F/m ) on the other. The parasitic drain and source
TEXT: H series resistance can be expressed as either RD and RS (in
TEXT: H ohms) or RSH (in ohms/sq.), the latter being multiplied by
TEXT: H the number of squares NRD and NRS input on the device line.
TEXT: H
TEXT: H A discontinuity in the MOS level 3 model with respect
TEXT: H to the KAPPA parameter has been detected (see [10]). The
TEXT: H supplied fix has been implemented in Spice3f2 and later.
TEXT: H Since this fix may affect parameter fitting, the option
TEXT: H "BADMOS3" may be set to use the old implementation (see the
TEXT: H section on simulation variables and the ".OPTIONS" line).
TEXT: H SPICE level 1, 2, 3 and 6 parameters:
TEXT: H
TEXT: H
TEXT: H name parameter units default example
TEXT: H
TEXT: H 1 LEVEL model index - 1
TEXT: H 2 VTO zero-bias threshold voltage (V ) V 0.0 1.0
TEXT: H TO 2
TEXT: H 3 KP transconductance parameter A/V 2.0e-5 3.1e-5
TEXT: H 1/2
TEXT: H 4 GAMMA bulk threshold parameter (\) V 0.0 0.37
TEXT: H 5 PHI surface potential (U) V 0.6 0.65
TEXT: H 6 LAMBDA channel-length modulation
TEXT: H (MOS1 and MOS2 only) (L) 1/V 0.0 0.02
TEXT: H 7 RD drain ohmic resistance Z 0.0 1.0
TEXT: H 8 RS source ohmic resistance Z 0.0 1.0
TEXT: H 9 CBD zero-bias B-D junction capacitance F 0.0 20fF
TEXT: H 10 CBS zero-bias B-S junction capacitance F 0.0 20fF
TEXT: H 11 IS bulk junction saturation current (I ) A 1.0e-14 1.0e-15
TEXT: H S
TEXT: H 12 PB bulk junction potential V 0.8 0.87
TEXT: H 13 CGSO gate-source overlap capacitance
TEXT: H per meter channel width F/m 0.0 4.0e-11
TEXT: H 14 CGDO gate-drain overlap capacitance
TEXT: H per meter channel width F/m 0.0 4.0e-11
TEXT: H 15 CGBO gate-bulk overlap capacitance
TEXT: H per meter channel length F/m 0.0 2.0e-10
TEXT: H 16 RSH drain and source diffusion
TEXT: H sheet resistance Z/[] 0.0 10.0
TEXT: H 17 CJ zero-bias bulk junction bottom cap.
TEXT: H 2
TEXT: H per sq-meter of junction area F/m 0.0 2.0e-4
TEXT: H 18 MJ bulk junction bottom grading coeff. - 0.5 0.5
TEXT: H 19 CJSW zero-bias bulk junction sidewall cap.
TEXT: H per meter of junction perimeter F/m 0.0 1.0e-9
TEXT: H 20 MJSW bulk junction sidewall grading coeff. - 0.50(level1)
TEXT: H 0.33(level2, 3)
TEXT: H 21 JS bulk junction saturation current
TEXT: H 2
TEXT: H per sq-meter of junction area A/m 1.0e-8
TEXT: H 22 TOX oxide thickness meter 1.0e-7 1.0e-7
TEXT: H 3
TEXT: H 23 NSUB substrate doping 1/cm 0.0 4.0e15
TEXT: H 2
TEXT: H 24 NSS surface state density 1/cm 0.0 1.0e10
TEXT: H 2
TEXT: H 25 NFS fast surface state density 1/cm 0.0 1.0e10
TEXT: H
TEXT: H _c_o_n_t_i_n_u_e_d
TEXT: H
TEXT: H name parameter units default example
TEXT: H
TEXT: H 26 TPG type of gate material: - 1.0
TEXT: H +1 opp. to substrate
TEXT: H -1 same as substrate
TEXT: H 0 Al gate
TEXT: H 27 XJ metallurgical junction depth meter 0.0 1M
TEXT: H 28 LD lateral diffusion meter 0.0 0.8M
TEXT: H 2
TEXT: H 29 UO surface mobility cm /Vs 600 700
TEXT: H 30 UCRIT critical field for mobility
TEXT: H degradation (MOS2 only) V/cm 1.0e4 1.0e4
TEXT: H 31 UEXP critical field exponent in
TEXT: H mobility degradation (MOS2 only) - 0.0 0.1
TEXT: H 32 UTRA transverse field coeff. (mobility)
TEXT: H (deleted for MOS2) - 0.0 0.3
TEXT: H 33 VMAX maximum drift velocity of carriers m/s 0.0 5.0e4
TEXT: H 34 NEFF total channel-charge (fixed and
TEXT: H mobile) coefficient (MOS2 only) - 1.0 5.0
TEXT: H 35 KF flicker noise coefficient - 0.0 1.0e-26
TEXT: H 36 AF flicker noise exponent - 1.0 1.2
TEXT: H 37 FC coefficient for forward-bias
TEXT: H depletion capacitance formula - 0.5
TEXT: H 38 DELTA width effect on threshold voltage
TEXT: H (MOS2 and MOS3) - 0.0 1.0
TEXT: H 39 THETA mobility modulation (MOS3 only) 1/V 0.0 0.1
TEXT: H 40 ETA static feedback (MOS3 only) - 0.0 1.0
TEXT: H 41 KAPPA saturation field factor (MOS3 only) - 0.2 0.5
TEXT: H o
TEXT: H 42 TNOM parameter measurement temperature C 27 50
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H The level 4 and level 5 (BSIM1 and BSIM2) parameters
TEXT: H are all values obtained from process characterization, and
TEXT: H can be generated automatically. J. Pierret [4] describes a
TEXT: H means of generating a 'process' file, and the program
TEXT: H Proc2Mod provided with SPICE3 converts this file into a se-
TEXT: H quence of BSIM1 ".MODEL" lines suitable for inclusion in a
TEXT: H SPICE input file. Parameters marked below with an * in the
TEXT: H l/w column also have corresponding parameters with a length
TEXT: H and width dependency. For example, VFB is the basic parame-
TEXT: H ter with units of Volts, and LVFB and WVFB also exist and
TEXT: H have units of Volt-Mmeter The formula
TEXT: H
TEXT: H P P
TEXT: H L W
TEXT: H P = P + ---------- + ----------
TEXT: H 0
TEXT: H L W
TEXT: H effective effective
TEXT: H
TEXT: H is used to evaluate the parameter for the actual device
TEXT: H specified with
TEXT: H
TEXT: H L = L - DL
TEXT: H effective input
TEXT: H and
TEXT: H
TEXT: H W = W - DW
TEXT: H effective input
TEXT: H
TEXT: H
TEXT: H
TEXT: H Note that unlike the other models in SPICE, the BSIM
TEXT: H model is designed for use with a process characterization
TEXT: H system that provides all the parameters, thus there are no
TEXT: H defaults for the parameters, and leaving one out is con-
TEXT: H sidered an error. For an example set of parameters and the
TEXT: H format of a process file, see the SPICE2 implementation
TEXT: H notes[3].
TEXT: H
TEXT: H For more information on BSIM2, see reference [5].
TEXT: H
TEXT: H SPICE BSIM (level 4) parameters.
TEXT: H
TEXT: H
TEXT: H name parameter units l/w
TEXT: H
TEXT: H VFB flat-band voltage V *
TEXT: H PHI surface inversion potential V *
TEXT: H 1/2
TEXT: H K1 body effect coefficient V *
TEXT: H K2 drain/source depletion charge-sharing coefficient - *
TEXT: H ETA zero-bias drain-induced barrier-lowering coefficient - *
TEXT: H 2
TEXT: H MUZ zero-bias mobility cm /V-s
TEXT: H DL shortening of channel Mm
TEXT: H DW narrowing of channel Mm
TEXT: H -1
TEXT: H U0 zero-bias transverse-field mobility degradation coefficient V *
TEXT: H U1 zero-bias velocity saturation coefficient Mm/V *
TEXT: H 2 2
TEXT: H X2MZ sens. of mobility to substrate bias at v =0 cm /V -s *
TEXT: H ds -1
TEXT: H X2E sens. of drain-induced barrier lowering effect to substrate bias V *
TEXT: H -1
TEXT: H X3E sens. of drain-induced barrier lowering effect to drain bias at V =V V *
TEXT: H ds dd -2
TEXT: H X2U0 sens. of transverse field mobility degradation effect to substrate bias V *
TEXT: H -2
TEXT: H X2U1 sens. of velocity saturation effect to substrate bias MmV *
TEXT: H 2 2
TEXT: H MUS mobility at zero substrate bias and at V =V cm /V -s
TEXT: H ds dd 2 2
TEXT: H X2MS sens. of mobility to substrate bias at V =V cm /V -s *
TEXT: H ds dd 2 2
TEXT: H X3MS sens. of mobility to drain bias at V =V cm /V -s *
TEXT: H ds dd -2
TEXT: H X3U1 sens. of velocity saturation effect on drain bias at V =V MmV *
TEXT: H ds dd
TEXT: H TOX gate oxide thickness Mm
TEXT: H o
TEXT: H TEMP temperature at which parameters were measured C
TEXT: H VDD measurement bias range V
TEXT: H CGDO gate-drain overlap capacitance per meter channel width F/m
TEXT: H CGSO gate-source overlap capacitance per meter channel width F/m
TEXT: H CGBO gate-bulk overlap capacitance per meter channel length F/m
TEXT: H XPART gate-oxide capacitance-charge model flag -
TEXT: H N0 zero-bias subthreshold slope coefficient - *
TEXT: H NB sens. of subthreshold slope to substrate bias - *
TEXT: H ND sens. of subthreshold slope to drain bias - *
TEXT: H RSH drain and source diffusion sheet resistance Z/[]
TEXT: H 2
TEXT: H JS source drain junction current density A/m
TEXT: H PB built in potential of source drain junction V
TEXT: H MJ Grading coefficient of source drain junction -
TEXT: H PBSW built in potential of source, drain junction sidewall V
TEXT: H MJSW grading coefficient of source drain junction sidewall -
TEXT: H 2
TEXT: H CJ Source drain junction capacitance per unit area F/m
TEXT: H CJSW source drain junction sidewall capacitance per unit length F/m
TEXT: H WDF source drain junction default width m
TEXT: H DELL Source drain junction length reduction m
TEXT: H
TEXT: H
TEXT: H
TEXT: H XPART = 0 selects a 40/60 drain/source charge partition
TEXT: H in saturation, while XPART=1 selects a 0/100 drain/source
TEXT: H charge partition.
TEXT: H
TEXT: H
TEXT: H ND, NG, and NS are the drain, gate, and source nodes,
TEXT: H respectively. MNAME is the model name, AREA is the area
TEXT: H factor, and OFF indicates an (optional) initial condition on
TEXT: H the device for dc analysis. If the area factor is omitted,
TEXT: H a value of 1.0 is assumed. The (optional) initial condition
TEXT: H specification, using IC=VDS, VGS is intended for use with
TEXT: H the UIC option on the .TRAN control line, when a transient
TEXT: H analysis is desired starting from other than the quiescent
TEXT: H operating point. See the .IC control line for a better way
TEXT: H to set initial conditions.
TEXT: H
TEXT: H
SUBJECT: MESFETs
TITLE: MESFETs
TEXT: H
TEXT: H _3._4._9. _M_E_S_F_E_T_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H ZXXXXXXX ND NG NS MNAME <AREA> <OFF> <IC=VDS, VGS>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H Z1 7 2 3 ZM1 OFF
TEXT: H
TEXT: H
TEXT: H
TEXT: H
SUBJECT: MESFET Models
TITLE: MESFET Models (NMF/PMF)
TEXT: H
TEXT: H _3._4._1_0. _M_E_S_F_E_T _M_o_d_e_l_s (_N_M_F/_P_M_F)
TEXT: H
TEXT: H
TEXT: H The MESFET model is derived from the GaAs FET model of
TEXT: H Statz et al. as described in [11]. The dc characteristics
TEXT: H are defined by the parameters VTO, B, and BETA, which deter-
TEXT: H mine the variation of drain current with gate voltage, AL-
TEXT: H PHA, which determines saturation voltage, and LAMBDA, which
TEXT: H determines the output conductance. The formula are given
TEXT: H by:
TEXT: H
TEXT: H 3
TEXT: H 2
TEXT: H B (V -V ) | | V | | 3
TEXT: H gs T ds _
TEXT: H I = --------------- |1 - |1-A---| |(1 + L V ) for 0 < V <
TEXT: H d ds ds
TEXT: H 1 + b(V - V ) | | 3 | | A
TEXT: H gs T
TEXT: H 2
TEXT: H B (V -V ) 3
TEXT: H gs T _
TEXT: H I = ---------------(1 + L V ) for V >
TEXT: H d ds ds
TEXT: H 1 + b(V - V ) A
TEXT: H gs T
TEXT: H
TEXT: H
TEXT: H Two ohmic resistances, RD and RS, are included. Charge
TEXT: H storage is modeled by total gate charge as a function of
TEXT: H gate-drain and gate-source voltages and is defined by the
TEXT: H parameters CGS, CGD, and PB.
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H name parameter units default example area
TEXT: H
TEXT: H 1 VTO pinch-off voltage V -2.0 -2.0
TEXT: H 2
TEXT: H 2 BETA transconductance parameter A/V 1.0e-4 1.0e-3 *
TEXT: H 3 B doping tail extending parameter 1/V 0.3 0.3 *
TEXT: H 4 ALPHA saturation voltage parameter 1/V 2 2 *
TEXT: H 5 LAMBDA channel-length modulation
TEXT: H parameter 1/V 0 1.0e-4
TEXT: H 6 RD drain ohmic resistance Z 0 100 *
TEXT: H 7 RS source ohmic resistance Z 0 100 *
TEXT: H 8 CGS zero-bias G-S junction capacitance F 0 5pF *
TEXT: H 9 CGD zero-bias G-D junction capacitance F 0 1pF *
TEXT: H 10 PB gate junction potential V 1 0.6
TEXT: H 11 KF flicker noise coefficient - 0
TEXT: H 12 AF flicker noise exponent - 1
TEXT: H 13 FC coefficient for forward-bias - 0.5
TEXT: H depletion capacitance formula
TEXT: H
TEXT: H
SUBJECT: ANALYSES AND OUTPUT CONTROL
TITLE: ANALYSES AND OUTPUT CONTROL
TEXT: H
TEXT: H _4. _A_N_A_L_Y_S_E_S _A_N_D _O_U_T_P_U_T _C_O_N_T_R_O_L
TEXT: H
TEXT: H
TEXT: H The following command lines are for specifying analyses
TEXT: H or plots within the circuit description file. Parallel com-
TEXT: H mands exist in the interactive command interpreter (detailed
TEXT: H in the following section). Specifying analyses and plots
TEXT: H (or tables) in the input file is useful for batch runs.
TEXT: H Batch mode is entered when either the -b option is given or
TEXT: H when the default input source is redirected from a file. In
TEXT: H batch mode, the analyses specified by the control lines in
TEXT: H the input file (e.g. ".ac", ".tran", etc.) are immediately
TEXT: H executed (unless ".control" lines exists; see the section on
TEXT: H the interactive command interpretor). If the -r _r_a_w_f_i_l_e
TEXT: H option is given then all data generated is written to a
TEXT: H Spice3 rawfile. The rawfile may be read by either the
TEXT: H interactive mode of Spice3 or by nutmeg; see the previous
TEXT: H section for details. In this case, the .SAVE line (see
TEXT: H below) may be used to record the value of internal device
TEXT: H variables (see Appendix B).
TEXT: H
TEXT: H If a rawfile is not specified, then output plots (in
TEXT: H "line-printer" form) and tables can be printed according to
TEXT: H the .PRINT, .PLOT, and .FOUR control lines, described next.
TEXT: H .PLOT, .PRINT, and .FOUR lines are meant for compatibility
TEXT: H with Spice2.
TEXT: H
SUBTOPIC: NGSPICE:SIMULATOR VARIABLES
SUBTOPIC: NGSPICE:INITIAL CONDITIONS
SUBTOPIC: NGSPICE:ANALYSES
SUBTOPIC: NGSPICE:BATCH OUTPUT
SUBJECT: SIMULATOR VARIABLES
TITLE: SIMULATOR VARIABLES (.OPTIONS)
TEXT: H
TEXT: H _4._1. _S_I_M_U_L_A_T_O_R _V_A_R_I_A_B_L_E_S (._O_P_T_I_O_N_S)
TEXT: H
TEXT: H
TEXT: H Various parameters of the simulations available in
TEXT: H Spice3 can be altered to control the accuracy, speed, or
TEXT: H default values for some devices. These parameters may be
TEXT: H changed via the "set" command (described later in the sec-
TEXT: H tion on the interactive front-end) or via the ".OPTIONS"
TEXT: H line:
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .OPTIONS OPT1 OPT2 ... (or OPT=OPTVAL ...)
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .OPTIONS RELTOL=.005 TRTOL=8
TEXT: H
TEXT: H
TEXT: H The options line allows the user to reset program con-
TEXT: H trol and user options for specific simulation purposes.
TEXT: H Additional options for Nutmeg may be specified as well and
TEXT: H take effect when Nutmeg reads the input file. Options
TEXT: H specified to Nutmeg via the 'set' command are also passed on
TEXT: H to SPICE3 as if specified on a .OPTIONS line. See the fol-
TEXT: H lowing section on the interactive command interpreter for
TEXT: H the parameters which may be set with a .OPTIONS line and the
TEXT: H format of the 'set' command. Any combination of the follow-
TEXT: H ing options may be included, in any order. 'x' (below)
TEXT: H represents some positive number.
TEXT: H
TEXT: H option effect
TEXT: H
TEXT: H ABSTOL=x resets the absolute current error tolerance of the
TEXT: H program.
TEXT: H The default value is 1 picoamp.
TEXT: H BADMOS3 Use the older version of the MOS3 model with the "kappa"
TEXT: H discontinuity.
TEXT: H CHGTOL=x resets the charge tolerance of the program. The default
TEXT: H value is 1.0e-14.
TEXT: H DEFAD=x resets the value for MOS drain diffusion area; the
TEXT: H default is 0.0.
TEXT: H DEFAS=x resets the value for MOS source diffusion area; the
TEXT: H default is 0.0.
TEXT: H DEFL=x resets the value for MOS channel length; the default
TEXT: H is 100.0 micrometer.
TEXT: H DEFW=x resets the value for MOS channel width; the default
TEXT: H is 100.0 micrometer.
TEXT: H GMIN=x resets the value of GMIN, the minimum conductance
TEXT: H allowed by the program.
TEXT: H The default value is 1.0e-12.
TEXT: H ITL1=x resets the dc iteration limit. The default is 100.
TEXT: H ITL2=x resets the dc transfer curve iteration limit. The
TEXT: H default is 50.
TEXT: H ITL3=x resets the lower transient analysis iteration limit.
TEXT: H the default value is 4. (Note: not implemented in Spice3).
TEXT: H ITL4=x resets the transient analysis timepoint iteration limit.
TEXT: H the default is 10.
TEXT: H ITL5=x resets the transient analysis total iteration limit.
TEXT: H the default is 5000. Set ITL5=0 to omit this test.
TEXT: H (Note: not implemented in Spice3).
TEXT: H KEEPOPINFO Retain the operating point information when either an
TEXT: H AC, Distortion, or Pole-Zero analysis is run.
TEXT: H This is particularly useful if the circuit is large
TEXT: H and you do not want to run a (redundant) ".OP" analysis.
TEXT: H METHOD=name sets the numerical integration method used by SPICE.
TEXT: H Possible names are "Gear" or "trapezoidal" (or just "trap").
TEXT: H The default is trapezoidal.
TEXT: H PIVREL=x resets the relative ratio between the largest column entry
TEXT: H and an acceptable pivot value. The default value is 1.0e-3.
TEXT: H In the numerical pivoting algorithm the allowed minimum
TEXT: H pivot value is determined by
TEXT: H EPSREL=AMAX1(PIVREL*MAXVAL, PIVTOL)
TEXT: H where MAXVAL is the maximum element in the column where
TEXT: H a pivot is sought (partial pivoting).
TEXT: H PIVTOL=x resets the absolute minimum value for a matrix entry
TEXT: H to be accepted as a pivot. The default value is 1.0e-13.
TEXT: H RELTOL=x resets the relative error tolerance of the program.
TEXT: H The
TEXT: H default value is 0.001 (0.1%).
TEXT: H TEMP=x Resets the operating temperature of the circuit. The
TEXT: H default value is 27 deg C (300 deg K). TEMP can be overridden
TEXT: H by a temperature specification on any temperature dependent
TEXT: H instance.
TEXT: H TNOM=x resets the nominal temperature at which device parameters
TEXT: H are measured. The default value is 27 deg C (300 deg K).
TEXT: H TNOM can be overridden by a specification on any temperature
TEXT: H dependent device model.
TEXT: H TRTOL=x resets the transient error tolerance. The default value
TEXT: H is 7.0. This parameter is an estimate of the factor by
TEXT: H which SPICE overestimates the actual truncation error.
TEXT: H TRYTOCOMPACT Applicable only to the LTRA model.
TEXT: H When specified, the simulator tries to condense LTRA transmission
TEXT: H lines' past history of input voltages and currents.
TEXT: H VNTOL=x resets the absolute voltage error tolerance of the
TEXT: H program. The default value is 1 microvolt.
TEXT: H
TEXT: H
TEXT: H In addition, the following options have the listed
TEXT: H effect when operating in spice2 emulation mode:
TEXT: H
TEXT: H option effect
TEXT: H
TEXT: H option effect
TEXT: H ACCT causes accounting and run time statistics to be printed
TEXT: H LIST causes the summary listing of the input data to be printed
TEXT: H NOMOD suppresses the printout of the model parameters
TEXT: H NOPAGE suppresses page ejects
TEXT: H NODE causes the printing of the node table.
TEXT: H OPTS causes the option values to be printed.
TEXT: H
TEXT: H
SUBJECT: INITIAL CONDITIONS
TITLE: INITIAL CONDITIONS
TEXT: H
TEXT: H _4._2. _I_N_I_T_I_A_L _C_O_N_D_I_T_I_O_N_S
TEXT: H
SUBTOPIC: NGSPICE:.NODESET
SUBTOPIC: NGSPICE:.IC
SUBJECT: .NODESET
TITLE: .NODESET: Specify Initial Node Voltage Guesses
TEXT: H
TEXT: H _4._2._1. ._N_O_D_E_S_E_T: _S_p_e_c_i_f_y _I_n_i_t_i_a_l _N_o_d_e _V_o_l_t_a_g_e _G_u_e_s_s_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .NODESET V(NODNUM)=VAL V(NODNUM)=VAL ...
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .NODESET V(12)=4.5 V(4)=2.23
TEXT: H
TEXT: H
TEXT: H
TEXT: H The Nodeset line helps the program find the dc or ini-
TEXT: H tial transient solution by making a preliminary pass with
TEXT: H the specified nodes held to the given voltages. The res-
TEXT: H triction is then released and the iteration continues to the
TEXT: H true solution. The .NODESET line may be necessary for con-
TEXT: H vergence on bistable or a-stable circuits. In general, this
TEXT: H line should not be necessary.
TEXT: H
TEXT: H
SUBJECT: .IC
TITLE: .IC: Set Initial Conditions
TEXT: H
TEXT: H _4._2._2. ._I_C: _S_e_t _I_n_i_t_i_a_l _C_o_n_d_i_t_i_o_n_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .IC V(NODNUM)=VAL V(NODNUM)=VAL ...
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .IC V(11)=5 V(4)=-5 V(2)=2.2
TEXT: H
TEXT: H
TEXT: H
TEXT: H The IC line is for setting transient initial condi-
TEXT: H tions. It has two different interpretations, depending on
TEXT: H whether the UIC parameter is specified on the .TRAN control
TEXT: H line. Also, one should not confuse this line with the
TEXT: H .NODESET line. The .NODESET line is only to help dc conver-
TEXT: H gence, and does not affect final bias solution (except for
TEXT: H multi-stable circuits). The two interpretations of this
TEXT: H line are as follows:
TEXT: H
TEXT: H 1. When the UIC parameter is specified on the .TRAN line,
TEXT: H then the node voltages specified on the .IC control line are
TEXT: H used to compute the capacitor, diode, BJT, JFET, and MOSFET
TEXT: H initial conditions. This is equivalent to specifying the
TEXT: H IC=... parameter on each device line, but is much more con-
TEXT: H venient. The IC=... parameter can still be specified and
TEXT: H takes precedence over the .IC values. Since no dc bias
TEXT: H (initial transient) solution is computed before the tran-
TEXT: H sient analysis, one should take care to specify all dc
TEXT: H source voltages on the .IC control line if they are to be
TEXT: H used to compute device initial conditions.
TEXT: H
TEXT: H 2. When the UIC parameter is not specified on the .TRAN
TEXT: H control line, the dc bias (initial transient) solution is
TEXT: H computed before the transient analysis. In this case, the
TEXT: H node voltages specified on the .IC control line is forced to
TEXT: H the desired initial values during the bias solution. During
TEXT: H transient analysis, the constraint on these node voltages is
TEXT: H removed. This is the preferred method since it allows SPICE
TEXT: H to compute a consistent dc solution.
TEXT: H
SUBJECT: ANALYSES
TITLE: ANALYSES
TEXT: H
TEXT: H _4._3. _A_N_A_L_Y_S_E_S
TEXT: H
TEXT: H
SUBTOPIC: NGSPICE:.AC
SUBTOPIC: NGSPICE:.DC
SUBTOPIC: NGSPICE:.DISTO
SUBTOPIC: NGSPICE:.NOISE
SUBTOPIC: NGSPICE:.OP
SUBTOPIC: NGSPICE:.PZ
SUBTOPIC: NGSPICE:.SENS
SUBTOPIC: NGSPICE:.TF
SUBTOPIC: NGSPICE:.TRAN
SUBJECT: .AC
TITLE: .AC: Small-Signal AC Analysis
TEXT: H
TEXT: H _4._3._1. ._A_C: _S_m_a_l_l-_S_i_g_n_a_l _A_C _A_n_a_l_y_s_i_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .AC DEC ND FSTART FSTOP
TEXT: H .AC OCT NO FSTART FSTOP
TEXT: H .AC LIN NP FSTART FSTOP
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .AC DEC 10 1 10K
TEXT: H .AC DEC 10 1K 100MEG
TEXT: H .AC LIN 100 1 100HZ
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H DEC stands for decade variation, and ND is the number
TEXT: H of points per decade. OCT stands for octave variation, and
TEXT: H NO is the number of points per octave. LIN stands for
TEXT: H linear variation, and NP is the number of points. FSTART is
TEXT: H the starting frequency, and FSTOP is the final frequency.
TEXT: H If this line is included in the input file, SPICE performs
TEXT: H an AC analysis of the circuit over the specified frequency
TEXT: H range. Note that in order for this analysis to be meaning-
TEXT: H ful, at least one independent source must have been speci-
TEXT: H fied with an ac value.
TEXT: H
TEXT: H
SUBJECT: .DC
TITLE: .DC: DC Transfer Function
TEXT: H
TEXT: H _4._3._2. ._D_C: _D_C _T_r_a_n_s_f_e_r _F_u_n_c_t_i_o_n
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .DC SRCNAM VSTART VSTOP VINCR [SRC2 START2 STOP2 INCR2]
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .DC VIN 0.25 5.0 0.25
TEXT: H .DC VDS 0 10 .5 VGS 0 5 1
TEXT: H .DC VCE 0 10 .25 IB 0 10U 1U
TEXT: H
TEXT: H
TEXT: H
TEXT: H The DC line defines the dc transfer curve source and
TEXT: H sweep limits (again with capacitors open and inductors
TEXT: H shorted). SRCNAM is the name of an independent voltage or
TEXT: H current source. VSTART, VSTOP, and VINCR are the starting,
TEXT: H final, and incrementing values respectively. The first
TEXT: H example causes the value of the voltage source VIN to be
TEXT: H swept from 0.25 Volts to 5.0 Volts in increments of 0.25
TEXT: H Volts. A second source (SRC2) may optionally be specified
TEXT: H with associated sweep parameters. In this case, the first
TEXT: H source is swept over its range for each value of the second
TEXT: H source. This option can be useful for obtaining semiconduc-
TEXT: H tor device output characteristics. See the second example
TEXT: H circuit description in Appendix A.
TEXT: H
TEXT: H
SUBJECT: .DISTO
TITLE: .DISTO: Distortion Analysis
TEXT: H
TEXT: H _4._3._3. ._D_I_S_T_O: _D_i_s_t_o_r_t_i_o_n _A_n_a_l_y_s_i_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .DISTO DEC ND FSTART FSTOP <F2OVERF1>
TEXT: H .DISTO OCT NO FSTART FSTOP <F2OVERF1>
TEXT: H .DISTO LIN NP FSTART FSTOP <F2OVERF1>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .DISTO DEC 10 1kHz 100MHz
TEXT: H .DISTO DEC 10 1kHz 100MHz 0.9
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H The Disto line does a small-signal distortion analysis
TEXT: H of the circuit. A multi-dimensional Volterra series
TEXT: H analysis is done using multi-dimensional Taylor series to
TEXT: H represent the nonlinearities at the operating point. Terms
TEXT: H of up to third order are used in the series expansions.
TEXT: H
TEXT: H If the optional parameter F2OVERF1 is not specified,
TEXT: H .DISTO does a harmonic analysis - i.e., it analyses distor-
TEXT: H tion in the circuit using only a single input frequency F1,
TEXT: H which is swept as specified by arguments of the .DISTO com-
TEXT: H mand exactly as in the .AC command. Inputs at this fre-
TEXT: H quency may be present at more than one input source, and
TEXT: H their magnitudes and phases are specified by the arguments
TEXT: H of the DISTOF1 keyword in the input file lines for the input
TEXT: H sources (see the description for independent sources). (The
TEXT: H arguments of the DISTOF2 keyword are not relevant in this
TEXT: H case). The analysis produces information about the A.C.
TEXT: H values of all node voltages and branch currents at the har-
TEXT: H monic frequencies 2F1 and 3F1, vs. the input frequency F1 as
TEXT: H it is swept. (A value of 1 (as a complex distortion output)
TEXT: H signifies cos(2J(2F1)t) at 2F1 and cos(2J(3F1)t) at 3F1,
TEXT: H using the convention that 1 at the input fundamental fre-
TEXT: H quency is equivalent to cos(2JF1t).) The distortion com-
TEXT: H ponent desired (2F1 or 3F1) can be selected using commands
TEXT: H in nutmeg, and then printed or plotted. (Normally, one is
TEXT: H interested primarily in the magnitude of the harmonic com-
TEXT: H ponents, so the magnitude of the AC distortion value is
TEXT: H looked at). It should be noted that these are the A.C.
TEXT: H values of the actual harmonic components, and are not equal
TEXT: H to HD2 and HD3. To obtain HD2 and HD3, one must divide by
TEXT: H the corresponding A.C. values at F1, obtained from an .AC
TEXT: H line. This division can be done using nutmeg commands.
TEXT: H
TEXT: H If the optional F2OVERF1 parameter is specified, it
TEXT: H should be a real number between (and not equal to) 0.0 and
TEXT: H 1.0; in this case, .DISTO does a spectral analysis. It con-
TEXT: H siders the circuit with sinusoidal inputs at two different
TEXT: H frequencies F1 and F2. F1 is swept according to the .DISTO
TEXT: H control line options exactly as in the .AC control line. F2
TEXT: H is kept fixed at a single frequency as F1 sweeps - the value
TEXT: H at which it is kept fixed is equal to F2OVERF1 times FSTART.
TEXT: H Each independent source in the circuit may potentially have
TEXT: H two (superimposed) sinusoidal inputs for distortion, at the
TEXT: H frequencies F1 and F2. The magnitude and phase of the F1
TEXT: H component are specified by the arguments of the DISTOF1 key-
TEXT: H word in the source's input line (see the description of
TEXT: H independent sources); the magnitude and phase of the F2 com-
TEXT: H ponent are specified by the arguments of the DISTOF2 key-
TEXT: H word. The analysis produces plots of all node
TEXT: H voltages/branch currents at the intermodulation product fre-
TEXT: H quencies F1 + F2, F1 - F2, and (2 F1) - F2, vs the swept
TEXT: H frequency F1. The IM product of interest may be selected
TEXT: H using the setplot command, and displayed with the print and
TEXT: H plot commands. It is to be noted as in the harmonic
TEXT: H analysis case, the results are the actual AC voltages and
TEXT: H currents at the intermodulation frequencies, and need to be
TEXT: H normalized with respect to .AC values to obtain the IM
TEXT: H parameters.
TEXT: H
TEXT: H If the DISTOF1 or DISTOF2 keywords are missing from the
TEXT: H description of an independent source, then that source is
TEXT: H assumed to have no input at the corresponding frequency.
TEXT: H The default values of the magnitude and phase are 1.0 and
TEXT: H 0.0 respectively. The phase should be specified in degrees.
TEXT: H
TEXT: H It should be carefully noted that the number F2OVERF1
TEXT: H should ideally be an irrational number, and that since this
TEXT: H is not possible in practice, efforts should be made to keep
TEXT: H the denominator in its fractional representation as large as
TEXT: H possible, certainly above 3, for accurate results (i.e., if
TEXT: H F2OVERF1 is represented as a fraction A/B, where A and B are
TEXT: H integers with no common factors, B should be as large as
TEXT: H possible; note that A < B because F2OVERF1 is constrained to
TEXT: H be < 1). To illustrate why, consider the cases where
TEXT: H F2OVERF1 is 49/100 and 1/2. In a spectral analysis, the
TEXT: H outputs produced are at F1 + F2, F1 - F2 and 2 F1 - F2. In
TEXT: H the latter case, F1 - F2 = F2, so the result at the F1-F2
TEXT: H component is erroneous because there is the strong fundamen-
TEXT: H tal F2 component at the same frequency. Also, F1 + F2 = 2
TEXT: H F1 - F2 in the latter case, and each result is erroneous
TEXT: H individually. This problem is not there in the case where
TEXT: H F2OVERF1 = 49/100, because F1-F2 = 51/100 F1 < > 49/100 F1 =
TEXT: H F2. In this case, there are two very closely spaced fre-
TEXT: H quency components at F2 and F1 - F2. One of the advantages
TEXT: H of the Volterra series technique is that it computes distor-
TEXT: H tions at mix frequencies expressed symbolically (i.e. n F1 +
TEXT: H m F2), therefore one is able to obtain the strengths of dis-
TEXT: H tortion components accurately even if the separation between
TEXT: H them is very small, as opposed to transient analysis for
TEXT: H example. The disadvantage is of course that if two of the
TEXT: H mix frequencies coincide, the results are not merged
TEXT: H together and presented (though this could presumably be done
TEXT: H as a postprocessing step). Currently, the interested user
TEXT: H should keep track of the mix frequencies himself or herself
TEXT: H and add the distortions at coinciding mix frequencies
TEXT: H together should it be necessary.
TEXT: H
TEXT: H
SUBJECT: .NOISE
TITLE: .NOISE: Noise Analysis
TEXT: H
TEXT: H _4._3._4. ._N_O_I_S_E: _N_o_i_s_e _A_n_a_l_y_s_i_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .NOISE V(OUTPUT <,REF>) SRC ( DEC | LIN | OCT ) PTS FSTART FSTOP
TEXT: H + <PTS_PER_SUMMARY>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .NOISE V(5) VIN DEC 10 1kHz 100MHz
TEXT: H .NOISE V(5,3) V1 OCT 8 1.0 1.0e6 1
TEXT: H
TEXT: H
TEXT: H
TEXT: H The Noise line does a noise analysis of the circuit.
TEXT: H OUTPUT is the node at which the total output noise is
TEXT: H desired; if REF is specified, then the noise voltage
TEXT: H V(OUTPUT) - V(REF) is calculated. By default, REF is
TEXT: H assumed to be ground. SRC is the name of an independent
TEXT: H source to which input noise is referred. PTS, FSTART and
TEXT: H FSTOP are .AC type parameters that specify the frequency
TEXT: H range over which plots are desired. PTS_PER_SUMMARY is an
TEXT: H optional integer; if specified, the noise contributions of
TEXT: H each noise generator is produced every PTS_PER_SUMMARY fre-
TEXT: H quency points.
TEXT: H
TEXT: H The .NOISE control line produces two plots - one for
TEXT: H the Noise Spectral Density curves and one for the total
TEXT: H Integrated Noise over the specified frequency range. All
TEXT: H 2
TEXT: H noise voltages/currents are in squared units (V /Hz and
TEXT: H 2 2 2
TEXT: H A /Hz for spectral density, V and A for integrated noise).
TEXT: H
SUBJECT: .OP
TITLE: .OP: Operating Point Analysis
TEXT: H
TEXT: H _4._3._5. ._O_P: _O_p_e_r_a_t_i_n_g _P_o_i_n_t _A_n_a_l_y_s_i_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .OP
TEXT: H
TEXT: H
TEXT: H
TEXT: H The inclusion of this line in an input file directs
TEXT: H SPICE to determine the dc operating point of the circuit
TEXT: H with inductors shorted and capacitors opened. Note: a DC
TEXT: H analysis is automatically performed prior to a transient
TEXT: H analysis to determine the transient initial conditions, and
TEXT: H prior to an AC small-signal, Noise, and Pole-Zero analysis
TEXT: H to determine the linearized, small-signal models for non-
TEXT: H linear devices (see the KEEPOPINFO variable above).
TEXT: H
TEXT: H
SUBJECT: .PZ
TITLE: .PZ: Pole-Zero Analysis
TEXT: H
TEXT: H _4._3._6. ._P_Z: _P_o_l_e-_Z_e_r_o _A_n_a_l_y_s_i_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .PZ NODE1 NODE2 NODE3 NODE4 CUR POL
TEXT: H .PZ NODE1 NODE2 NODE3 NODE4 CUR ZER
TEXT: H .PZ NODE1 NODE2 NODE3 NODE4 CUR PZ
TEXT: H .PZ NODE1 NODE2 NODE3 NODE4 VOL POL
TEXT: H .PZ NODE1 NODE2 NODE3 NODE4 VOL ZER
TEXT: H .PZ NODE1 NODE2 NODE3 NODE4 VOL PZ
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .PZ 1 0 3 0 CUR POL
TEXT: H .PZ 2 3 5 0 VOL ZER
TEXT: H .PZ 4 1 4 1 CUR PZ
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H CUR stands for a transfer function of the type (output
TEXT: H voltage)/(input current) while VOL stands for a transfer
TEXT: H function of the type (output voltage)/(input voltage). POL
TEXT: H stands for pole analysis only, ZER for zero analysis only
TEXT: H and PZ for both. This feature is provided mainly because if
TEXT: H there is a nonconvergence in finding poles or zeros, then,
TEXT: H at least the other can be found. Finally, NODE1 and NODE2
TEXT: H are the two input nodes and NODE3 and NODE4 are the two out-
TEXT: H put nodes. Thus, there is complete freedom regarding the
TEXT: H output and input ports and the type of transfer function.
TEXT: H
TEXT: H In interactive mode, the command syntax is the same
TEXT: H except that the first field is PZ instead of .PZ. To print
TEXT: H the results, one should use the command 'print all'.
TEXT: H
TEXT: H
SUBJECT: .SENS
TITLE: .SENS: DC or Small-Signal AC Sensitivity Analysis
TEXT: H
TEXT: H _4._3._7. ._S_E_N_S: _D_C _o_r _S_m_a_l_l-_S_i_g_n_a_l _A_C _S_e_n_s_i_t_i_v_i_t_y _A_n_a_l_y_s_i_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .SENS OUTVAR
TEXT: H .SENS OUTVAR AC DEC ND FSTART FSTOP
TEXT: H .SENS OUTVAR AC OCT NO FSTART FSTOP
TEXT: H .SENS OUTVAR AC LIN NP FSTART FSTOP
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .SENS V(1,OUT)
TEXT: H .SENS V(OUT) AC DEC 10 100 100k
TEXT: H .SENS I(VTEST)
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H The sensitivity of OUTVAR to all non-zero device param-
TEXT: H eters is calculated when the SENS analysis is specified.
TEXT: H OUTVAR is a circuit variable (node voltage or voltage-source
TEXT: H branch current). The first form calculates sensitivity of
TEXT: H the DC operating-point value of OUTVAR. The second form
TEXT: H calculates sensitivity of the AC values of OUTVAR. The
TEXT: H parameters listed for AC sensitivity are the same as in an
TEXT: H AC analysis (see ".AC" above). The output values are in
TEXT: H dimensions of change in output per unit change of input (as
TEXT: H opposed to percent change in output or per percent change of
TEXT: H input).
TEXT: H
TEXT: H
SUBJECT: .TF
TITLE: .TF: Transfer Function Analysis
TEXT: H
TEXT: H _4._3._8. ._T_F: _T_r_a_n_s_f_e_r _F_u_n_c_t_i_o_n _A_n_a_l_y_s_i_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .TF OUTVAR INSRC
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .TF V(5, 3) VIN
TEXT: H .TF I(VLOAD) VIN
TEXT: H
TEXT: H
TEXT: H
TEXT: H The TF line defines the small-signal output and input
TEXT: H for the dc small-signal analysis. OUTVAR is the small-
TEXT: H signal output variable and INSRC is the small-signal input
TEXT: H source. If this line is included, SPICE computes the dc
TEXT: H small-signal value of the transfer function (output/input),
TEXT: H input resistance, and output resistance. For the first
TEXT: H example, SPICE would compute the ratio of V(5, 3) to VIN,
TEXT: H the small-signal input resistance at VIN, and the small-
TEXT: H signal output resistance measured across nodes 5 and 3.
TEXT: H
TEXT: H
SUBJECT: .TRAN
TITLE: .TRAN: Transient Analysis
TEXT: H
TEXT: H _4._3._9. ._T_R_A_N: _T_r_a_n_s_i_e_n_t _A_n_a_l_y_s_i_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .TRAN TSTEP TSTOP <TSTART <TMAX>>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .TRAN 1NS 100NS
TEXT: H .TRAN 1NS 1000NS 500NS
TEXT: H .TRAN 10NS 1US
TEXT: H
TEXT: H
TEXT: H
TEXT: H TSTEP is the printing or plotting increment for line-
TEXT: H printer output. For use with the post-processor, TSTEP is
TEXT: H the suggested computing increment. TSTOP is the final time,
TEXT: H and TSTART is the initial time. If TSTART is omitted, it is
TEXT: H assumed to be zero. The transient analysis always begins at
TEXT: H time zero. In the interval <zero, TSTART>, the circuit is
TEXT: H analyzed (to reach a steady state), but no outputs are
TEXT: H stored. In the interval <TSTART, TSTOP>, the circuit is
TEXT: H analyzed and outputs are stored. TMAX is the maximum step-
TEXT: H size that SPICE uses; for default, the program chooses
TEXT: H either TSTEP or (TSTOP-TSTART)/50.0, whichever is smaller.
TEXT: H TMAX is useful when one wishes to guarantee a computing
TEXT: H interval which is smaller than the printer increment, TSTEP.
TEXT: H
TEXT: H UIC (use initial conditions) is an optional keyword
TEXT: H which indicates that the user does not want SPICE to solve
TEXT: H for the quiescent operating point before beginning the tran-
TEXT: H sient analysis. If this keyword is specified, SPICE uses
TEXT: H the values specified using IC=... on the various elements as
TEXT: H the initial transient condition and proceeds with the
TEXT: H analysis. If the .IC control line has been specified, then
TEXT: H the node voltages on the .IC line are used to compute the
TEXT: H initial conditions for the devices. Look at the description
TEXT: H on the .IC control line for its interpretation when UIC is
TEXT: H not specified.
TEXT: H
SUBJECT: BATCH OUTPUT
TITLE: BATCH OUTPUT
TEXT: H
TEXT: H _4._4. _B_A_T_C_H _O_U_T_P_U_T
TEXT: H
TEXT: H
SUBTOPIC: NGSPICE:.SAVE Lines
SUBTOPIC: NGSPICE:.PRINT Lines
SUBTOPIC: NGSPICE:.PLOT Lines
SUBTOPIC: NGSPICE:.FOUR
SUBJECT: .SAVE Lines
TITLE: .SAVE Lines
TEXT: H
TEXT: H _4._4._1. ._S_A_V_E _L_i_n_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .SAVE _v_e_c_t_o_r _v_e_c_t_o_r _v_e_c_t_o_r ...
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .SAVE i(vin) input output
TEXT: H .SAVE @m1[id]
TEXT: H
TEXT: H
TEXT: H
TEXT: H The vectors listed on the .SAVE line are recorded in
TEXT: H the rawfile for use later with spice3 or nutmeg (nutmeg is
TEXT: H just the data-analysis half of spice3, without the ability
TEXT: H to simulate). The standard vector names are accepted. If
TEXT: H no .SAVE line is given, then the default set of vectors are
TEXT: H saved (node voltages and voltage source branch currents).
TEXT: H If .SAVE lines are given, only those vectors specified are
TEXT: H saved. For more discussion on internal device data, see
TEXT: H Appendix B. See also the section on the interactive command
TEXT: H interpretor for information on how to use the rawfile.
TEXT: H
SUBJECT: .PRINT Lines
TITLE: .PRINT Lines
TEXT: H
TEXT: H _4._4._2. ._P_R_I_N_T _L_i_n_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .PRINT PRTYPE OV1 <OV2 ... OV8>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .PRINT TRAN V(4) I(VIN)
TEXT: H .PRINT DC V(2) I(VSRC) V(23, 17)
TEXT: H .PRINT AC VM(4, 2) VR(7) VP(8, 3)
TEXT: H
TEXT: H
TEXT: H The Print line defines the contents of a tabular list-
TEXT: H ing of one to eight output variables. PRTYPE is the type of
TEXT: H the analysis (DC, AC, TRAN, NOISE, or DISTO) for which the
TEXT: H specified outputs are desired. The form for voltage or
TEXT: H current output variables is the same as given in the previ-
TEXT: H ous section for the print command; Spice2 restricts the out-
TEXT: H put variable to the following forms (though this restriction
TEXT: H is not enforced by Spice3):
TEXT: H
TEXT: H
TEXT: H V(N1<,N2>)
TEXT: H specifies the voltage difference between nodes N1
TEXT: H and N2. If N2 (and the preceding comma) is omit-
TEXT: H ted, ground (0) is assumed. See the print command
TEXT: H in the previous section for more details. For
TEXT: H compatibility with spice2, the following five
TEXT: H additional values can be accessed for the ac
TEXT: H analysis by replacing the "V" in V(N1,N2) with:
TEXT: H
TEXT: H
TEXT: H VR - real part
TEXT: H VI - imaginary part
TEXT: H VM - magnitude
TEXT: H VP - phase
TEXT: H VDB - 20 log10(magnitude)
TEXT: H
TEXT: H
TEXT: H
TEXT: H I(VXXXXXXX)
TEXT: H specifies the current flowing in the independent
TEXT: H voltage source named VXXXXXXX. Positive current
TEXT: H flows from the positive node, through the source,
TEXT: H to the negative node. For the ac analysis, the
TEXT: H corresponding replacements for the letter I may be
TEXT: H made in the same way as described for voltage out-
TEXT: H puts.
TEXT: H
TEXT: H
TEXT: H Output variables for the noise and distortion analyses
TEXT: H have a different general form from that of the other ana-
TEXT: H lyses.
TEXT: H
TEXT: H There is no limit on the number of .PRINT lines for
TEXT: H each type of analysis.
TEXT: H
TEXT: H
SUBJECT: .PLOT Lines
TITLE: .PLOT Lines
TEXT: H
TEXT: H _4._4._3. ._P_L_O_T _L_i_n_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .PLOT PLTYPE OV1 <(PLO1, PHI1)> <OV2 <(PLO2, PHI2)> ... OV8>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .PLOT DC V(4) V(5) V(1)
TEXT: H .PLOT TRAN V(17, 5) (2, 5) I(VIN) V(17) (1, 9)
TEXT: H .PLOT AC VM(5) VM(31, 24) VDB(5) VP(5)
TEXT: H .PLOT DISTO HD2 HD3(R) SIM2
TEXT: H .PLOT TRAN V(5, 3) V(4) (0, 5) V(7) (0, 10)
TEXT: H
TEXT: H
TEXT: H The Plot line defines the contents of one plot of
TEXT: H from one to eight output variables. PLTYPE is the type
TEXT: H of analysis (DC, AC, TRAN, NOISE, or DISTO) for which
TEXT: H the specified outputs are desired. The syntax for the
TEXT: H OVI is identical to that for the .PRINT line and for the
TEXT: H plot command in the interactive mode.
TEXT: H
TEXT: H
TEXT: H The overlap of two or more traces on any plot is indi-
TEXT: H cated by the letter X.
TEXT: H
TEXT: H When more than one output variable appears on the same
TEXT: H plot, the first variable specified is printed as well as
TEXT: H plotted. If a printout of all variables is desired, then a
TEXT: H companion .PRINT line should be included.
TEXT: H
TEXT: H There is no limit on the number of .PLOT lines speci-
TEXT: H fied for each type of analysis.
TEXT: H
TEXT: H
SUBJECT: .FOUR
TITLE: .FOUR: Fourier Analysis of Transient Analysis Output
TEXT: H
TEXT: H _4._4._4. ._F_O_U_R: _F_o_u_r_i_e_r _A_n_a_l_y_s_i_s _o_f _T_r_a_n_s_i_e_n_t _A_n_a_l_y_s_i_s _O_u_t-
TEXT: H _p_u_t
TEXT: H
TEXT: H _G_e_n_e_r_a_l _f_o_r_m:
TEXT: H
TEXT: H .FOUR FREQ OV1 <OV2 OV3 ...>
TEXT: H
TEXT: H
TEXT: H _E_x_a_m_p_l_e_s:
TEXT: H
TEXT: H .FOUR 100K V(5)
TEXT: H
TEXT: H
TEXT: H The Four (or Fourier) line controls whether SPICE
TEXT: H performs a Fourier analysis as a part of the transient
TEXT: H analysis. FREQ is the fundamental frequency, and OV1,
TEXT: H desired. The Fourier analysis is performed over the in-
TEXT: H terval <TSTOP-period, TSTOP>, where TSTOP is the final
TEXT: H time specified for the transient analysis, and period is
TEXT: H one period of the fundamental frequency. The dc com-
TEXT: H ponent and the first nine harmonics are determined. For
TEXT: H maximum accuracy, TMAX (see the .TRAN line) should be
TEXT: H set to period/100.0 (or less for very high-Q circuits).
TEXT: H
SUBJECT: INTERACTIVE INTERPRETER
TITLE: INTERACTIVE INTERPRETER
TEXT: H
TEXT: H _5. _I_N_T_E_R_A_C_T_I_V_E _I_N_T_E_R_P_R_E_T_E_R
TEXT: H
TEXT: H Spice3 consists of a simulator and a front-end for data
TEXT: H analysis and plotting. The front-end may be run as a
TEXT: H separate "stand-alone" program under the name Nutmeg.
TEXT: H
TEXT: H _N_u_t_m_e_g will read in the "raw" data output file created
TEXT: H by spice -r or with the write command in an interactive
TEXT: H Spice3 session. Nutmeg or interactive Spice3 can plot data
TEXT: H from a simulation on a graphics terminal or a workstation
TEXT: H display. Most of the commands available in the interactive
TEXT: H Spice3 front end are available in nutmeg; where this is not
TEXT: H the case, Spice-only commands have been marked with an
TEXT: H asterisk ("*"). Note that the raw output file is different
TEXT: H from the data that Spice2 writes to the standard output,
TEXT: H which may also be produced by spice3 with the "-b" command
TEXT: H line option.
TEXT: H
TEXT: H Spice and Nutmeg use the X Window System for plotting
TEXT: H if they find the environment variable DISPLAY. Otherwise, a
TEXT: H graphics-terminal independent interface (MFB) is used. If
TEXT: H you are using X on a workstation, the DISPLAY variable
TEXT: H should already be set; if you want to display graphics on a
TEXT: H system different from the one you are running Spice3 or Nut-
TEXT: H meg on, DISPLAY should be of the form "_m_a_c_h_i_n_e:0.0". See
TEXT: H the appropriate documentation on the X Window Sytem for more
TEXT: H details.
TEXT: H
TEXT: H
TEXT: H _C_o_m_m_a_n_d _S_y_n_o_p_s_i_s
TEXT: H
TEXT: H spice [ -n ] [ -t term ] [ -r rawfile] [ -b ] [ -i ] [ input file ... ]
TEXT: H
TEXT: H nutmeg [ - ] [ -n ] [ -t term ] [ datafile ... ]
TEXT: H
TEXT: H
TEXT: H
TEXT: H
TEXT: H Options are:
TEXT: H
TEXT: H - Don't try to load the default data file
TEXT: H ("rawspice.raw") if no other files are given. Nutmeg
TEXT: H only.
TEXT: H
TEXT: H -n (or -N)
TEXT: H Don't try to source the file ".spiceinit" upon startup.
TEXT: H Normally spice and nutmeg try to find the file in the
TEXT: H current directory, and if it is not found then in the
TEXT: H user's home directory.
TEXT: H
TEXT: H -t term (or -T term)
TEXT: H The program is being run on a terminal with _m_f_b name
TEXT: H term.
TEXT: H
TEXT: H -b (or -B)
TEXT: H Run in batch mode. Spice3 reads the default input
TEXT: H source (e.g. keyboard) or reads the given input file
TEXT: H and performs the analyses specified; output is either
TEXT: H Spice2-like line-printer plots ("ascii plots") or a
TEXT: H spice rawfile. See the following section for details.
TEXT: H Note that if the input source is not a terminal (e.g.
TEXT: H using the IO redirection notation of "<") Spice3 de-
TEXT: H faults to batch mode (-i overrides). This option is
TEXT: H valid for Spice3 only.
TEXT: H
TEXT: H
TEXT: H
TEXT: H -s (or -S)
TEXT: H Run in server mode. This is like batch mode, except
TEXT: H that a temporary rawfile is used and then written to
TEXT: H the standard output, preceded by a line with a single
TEXT: H "@", after the simulation is done. This mode is used
TEXT: H by the spice daemon. This option is valid for Spice3
TEXT: H only.
TEXT: H
TEXT: H
TEXT: H
TEXT: H -i (or -I)
TEXT: H Run in interactive mode. This is useful if the stan-
TEXT: H dard input is not a terminal but interactive mode is
TEXT: H desired. Command completion is not available unless
TEXT: H the standard input is a terminal, however. This option
TEXT: H is valid for Spice3 only.
TEXT: H
TEXT: H
TEXT: H
TEXT: H -r _r_a_w_f_i_l_e (or -P _r_a_w_f_i_l_e)
TEXT: H Use _r_a_w_f_i_l_e as the default file into which the results
TEXT: H of the simulation are saved. This option is valid for
TEXT: H Spice3 only.
TEXT: H
TEXT: H
TEXT: H Further arguments to spice are taken to be Spice3 input
TEXT: H files, which are read and saved (if running in batch mode
TEXT: H then they are run immediately). Spice3 accepts most Spice2
TEXT: H input file, and output ascii plots, fourier analyses, and
TEXT: H node printouts as specified in .plot, .four, and .print
TEXT: H cards. If an out parameter is given on a .width card, the
TEXT: H effect is the same as set width = .... Since Spice3 ascii
TEXT: H plots do not use multiple ranges, however, if vectors
TEXT: H together on a .plot card have different ranges they are not
TEXT: H provide as much information as they would in Spice2. The
TEXT: H output of Spice3 is also much less verbose than Spice2, in
TEXT: H that the only data printed is that requested by the above
TEXT: H cards.
TEXT: H
TEXT: H For nutmeg, further arguments are taken to be data
TEXT: H files in binary or ascii format (see sconvert(1)) which are
TEXT: H loaded into nutmeg. If the file is in binary format, it may
TEXT: H be only partially completed (useful for examining Spice2
TEXT: H output before the simulation is finished). One file may
TEXT: H contain any number of data sets from different analyses.
SUBTOPIC: NGSPICE:EXPRESSIONS FUNCTIONS AND CONSTANTS
SUBTOPIC: NGSPICE:COMMAND INTERPRETATION
SUBTOPIC: NGSPICE:COMMANDS
SUBTOPIC: NGSPICE:CONTROL STRUCTURES
SUBTOPIC: NGSPICE:VARIABLES
SUBTOPIC: NGSPICE:MISCELLANEOUS
SUBTOPIC: NGSPICE:BUGS
SUBJECT: EXPRESSIONS FUNCTIONS AND CONSTANTS
TITLE: EXPRESSIONS, FUNCTIONS, AND CONSTANTS
TEXT: H
TEXT: H _5._1. _E_X_P_R_E_S_S_I_O_N_S, _F_U_N_C_T_I_O_N_S, _A_N_D _C_O_N_S_T_A_N_T_S
TEXT: H
TEXT: H Spice and Nutmeg data is in the form of vectors: time,
TEXT: H voltage, etc. Each vector has a type, and vectors can be
TEXT: H operated on and combined algebraicly in ways consistent with
TEXT: H their types. Vectors are normally created when a data file
TEXT: H is read in (see the _l_o_a_d command below), and when the ini-
TEXT: H tial datafile is loaded. They can also be created with the
TEXT: H _l_e_t command.
TEXT: H
TEXT: H
TEXT: H An expression is an algebraic formula involving vectors
TEXT: H and scalars (a scalar is a vector of length 1) and the fol-
TEXT: H lowing operations:
TEXT: H
TEXT: H + - * / ^ %
TEXT: H
TEXT: H
TEXT: H % is the modulo operator, and the comma operator has two
TEXT: H meanings: if it is present in the argument list of a user-
TEXT: H definable function, it serves to separate the arguments.
TEXT: H Otherwise, the term x , y is synonymous with x + j(y).
TEXT: H
TEXT: H
TEXT: H
TEXT: H Also available are the logical operations & (and), |
TEXT: H (or), ! (not), and the relational operations <, >, >=, <=,
TEXT: H =, and <> (not equal). If used in an algebraic expression
TEXT: H they work like they would in C, producing values of 0 or 1.
TEXT: H The relational operators have the following synonyms:
TEXT: H
TEXT: H
TEXT: H gt >
TEXT: H lt <
TEXT: H ge >=
TEXT: H le <=
TEXT: H ne <>
TEXT: H eq =
TEXT: H and &
TEXT: H or |
TEXT: H not !
TEXT: H
TEXT: H
TEXT: H These are useful when < and > might be confused with IO
TEXT: H redirection (which is almost always).
TEXT: H
TEXT: H
TEXT: H
TEXT: H The following functions are available:
TEXT: H
TEXT: H mag(vector) The magnitude of vector
TEXT: H ph(vector) The phase of vector
TEXT: H j(vector) _i (sqrt(-1)) times vector
TEXT: H real(vector) The real component of vector
TEXT: H imag(vector) The imaginary part of vector
TEXT: H db(vector) 20 log10(mag(vector))
TEXT: H log(vector) The logarithm (base 10) of vector
TEXT: H ln(vector) The natural logarithm (base e) of vector
TEXT: H exp(vector) e to the vector power
TEXT: H abs(vector) The absolute value of vector.
TEXT: H sqrt(vector) The square root of vector.
TEXT: H sin(vector) The sine of vector.
TEXT: H cos(vector) The cosine of vector.
TEXT: H tan(vector) The tangent of vector.
TEXT: H atan(vector) The inverse tangent of vector.
TEXT: H norm(vector) The vector normalized to 1 (i.e, the
TEXT: H largest magnitude of any component is
TEXT: H 1).
TEXT: H rnd(vector) A vector with each component a random
TEXT: H integer between 0 and the absolute value
TEXT: H of the vectors's corresponding com-
TEXT: H ponent.
TEXT: H mean(vector) The result is a scalar (a length 1 vec-
TEXT: H tor) that is the mean of the elements of
TEXT: H vector.
TEXT: H vector(number) The result is a vector of length number,
TEXT: H with elements 0, 1, ... number - 1. If
TEXT: H number is a vector then just the first
TEXT: H element is taken, and if it isn't an in-
TEXT: H teger then the floor of the magnitude is
TEXT: H used.
TEXT: H length(vector) The length of vector.
TEXT: H interpolate(plot.vector) The result of interpolating the named
TEXT: H vector onto the scale of the current
TEXT: H plot. This function uses the variable
TEXT: H polydegree to determine the degree of
TEXT: H interpolation.
TEXT: H deriv(vector) Calculates the derivative of the given
TEXT: H vector. This uses numeric differentia-
TEXT: H tion by interpolating a polynomial and
TEXT: H may not produce satisfactory results
TEXT: H (particularly with iterated differentia-
TEXT: H tion). The implementation only cacu-
TEXT: H lates the dirivative with respect to the
TEXT: H real componant of that vector's scale.
TEXT: H
TEXT: H
TEXT: H A vector may be either the name of a vector already
TEXT: H defined or a floating-point number (a scalar). A number may
TEXT: H be written in any format acceptable to SPICE, such as
TEXT: H 14.6Meg or -1.231e-4. Note that you can either use scien-
TEXT: H tific notation or one of the abbreviations like _M_E_G or _G,
TEXT: H but not both. As with SPICE, a number may have trailing
TEXT: H alphabetic characters after it.
TEXT: H
TEXT: H The notation expr [num] denotes the num'th element of
TEXT: H expr. For multi-dimensional vectors, a vector of one less
TEXT: H dimension is returned. Also for multi-dimensional vectors,
TEXT: H the notation expr[m][n] will return the _nth element of the
TEXT: H mth subvector. To get a subrange of a vector, use the form
TEXT: H expr[lower, upper].
TEXT: H
TEXT: H To reference vectors in a plot that is not the _c_u_r_r_e_n_t
TEXT: H _p_l_o_t (see the setplot command, below), the notation
TEXT: H plotname.vecname can be used.
TEXT: H
TEXT: H
TEXT: H Either a plotname or a vector name may be the wildcard
TEXT: H all. If the plotname is all, matching vectors from all
TEXT: H plots are specified, and if the vector name is all, all vec-
TEXT: H tors in the specified plots are referenced. Note that you
TEXT: H may not use binary operations on expressions involving wild-
TEXT: H cards - it is not obvious what all + all should denote, for
TEXT: H instance. Thus some (contrived) examples of expressions
TEXT: H are:
TEXT: H
TEXT: H cos(TIME) + db(v(3))
TEXT: H sin(cos(log([1 2 3 4 5 6 7 8 9 10])))
TEXT: H TIME * rnd(v(9)) - 15 * cos(vin#branch) ^ [7.9e5 8]
TEXT: H not ((ac3.FREQ[32] & tran1.TIME[10]) gt 3)
TEXT: H
TEXT: H
TEXT: H
TEXT: H Vector names in spice may have a name such as
TEXT: H @name[param], where name is either the name of a device
TEXT: H instance or model. This denotes the value of the param
TEXT: H parameter of the device or model. See Appendix B for
TEXT: H details of what parameters are available. The value is a
TEXT: H vector of length 1. This function is also available with
TEXT: H the show command, and is available with variables for con-
TEXT: H venience for command scripts.
TEXT: H
TEXT: H
TEXT: H There are a number of pre-defined constants in nutmeg.
TEXT: H They are:
TEXT: H
TEXT: H pi J (3.14159...)
TEXT: H e The base of natural logarithms (2.71828...)
TEXT: H c The speed of light (299,792,500 m/sec)
TEXT: H i The square root of -1
TEXT: H o
TEXT: H kelvin Absolute 0 in Centigrade (-273.15 C)
TEXT: H echarge The charge on an electron (1.6021918e-19 C)
TEXT: H boltz Boltzman's constant (1.3806226e-23)
TEXT: H planck Planck's constant (h = 6.626200e-34)
TEXT: H
TEXT: H
TEXT: H These are all in MKS units. If you have another vari-
TEXT: H able with a name that conflicts with one of these then it
TEXT: H takes precedence.
TEXT: H
SUBJECT: COMMAND INTERPRETATION
TITLE: COMMAND INTERPRETATION
TEXT: H
TEXT: H _5._2. _C_O_M_M_A_N_D _I_N_T_E_R_P_R_E_T_A_T_I_O_N
TEXT: H
TEXT: H If a word is typed as a command, and there is no
TEXT: H built-in command with that name, the directories in the
TEXT: H _s_o_u_r_c_e_p_a_t_h list are searched in order for the file. If it
TEXT: H is found, it is read in as a command file (as if it were
TEXT: H sourced). Before it is read, however, the variables _a_r_g_c
TEXT: H and _a_r_g_v are set to the number of words following the
TEXT: H filename on the command line, and a list of those words
TEXT: H respectively. After the file is finished, these variables
TEXT: H are unset. Note that if a command file calls another, it
TEXT: H must save its _a_r_g_v and _a_r_g_c since they are altered. Also,
TEXT: H command files may not be re-entrant since there are no local
TEXT: H variables. (Of course, the procedures may explicitly mani-
TEXT: H pulate a stack...) This way one can write scripts analogous
TEXT: H to shell scripts for nutmeg and Spice3.
TEXT: H
TEXT: H Note that for the script to work with Spice3, it must
TEXT: H begin with a blank line (or whatever else, since it is
TEXT: H thrown away) and then a line with .control on it. This is
TEXT: H an unfortunate result of the source command being used for
TEXT: H both circuit input and command file execution. Note also
TEXT: H that this allows the user to merely type the name of a cir-
TEXT: H cuit file as a command and it is automatically run. The
TEXT: H commands are executed immediately, without running any ana-
TEXT: H lyses that may be spicified in the circuit (to execute the
TEXT: H analyses before the script executes, include a "run" command
TEXT: H in the script).
TEXT: H
TEXT: H There are various command scripts installed in
TEXT: H /_u_s_r/_l_o_c_a_l/_l_i_b/_s_p_i_c_e/_s_c_r_i_p_t_s (or whatever the path is on
TEXT: H your machine), and the default _s_o_u_r_c_e_p_a_t_h includes this
TEXT: H directory, so you can use these command files (almost) like
TEXT: H builtin commands.
SUBJECT: COMMANDS
TITLE: COMMANDS
TEXT: H
TEXT: H _5._3. _C_O_M_M_A_N_D_S
TEXT: H
TEXT: H
SUBTOPIC: NGSPICE:Ac
SUBTOPIC: NGSPICE:Alias
SUBTOPIC: NGSPICE:Alter
SUBTOPIC: NGSPICE:Asciiplot
SUBTOPIC: NGSPICE:Aspice
SUBTOPIC: NGSPICE:Bug
SUBTOPIC: NGSPICE:Cd
SUBTOPIC: NGSPICE:Destroy
SUBTOPIC: NGSPICE:Dc
SUBTOPIC: NGSPICE:Define
SUBTOPIC: NGSPICE:Delete
SUBTOPIC: NGSPICE:Diff
SUBTOPIC: NGSPICE:Display
SUBTOPIC: NGSPICE:Echo
SUBTOPIC: NGSPICE:Edit
SUBTOPIC: NGSPICE:Fourier
SUBTOPIC: NGSPICE:Hardcopy
SUBTOPIC: NGSPICE:Help
SUBTOPIC: NGSPICE:History
SUBTOPIC: NGSPICE:Iplot
SUBTOPIC: NGSPICE:Jobs
SUBTOPIC: NGSPICE:Let
SUBTOPIC: NGSPICE:Linearize
SUBTOPIC: NGSPICE:Listing
SUBTOPIC: NGSPICE:Load
SUBTOPIC: NGSPICE:Op
SUBTOPIC: NGSPICE:Plot
SUBTOPIC: NGSPICE:Print
SUBTOPIC: NGSPICE:Quit
SUBTOPIC: NGSPICE:Rehash
SUBTOPIC: NGSPICE:Reset
SUBTOPIC: NGSPICE:Reshape
SUBTOPIC: NGSPICE:Resume
SUBTOPIC: NGSPICE:Rspice
SUBTOPIC: NGSPICE:Run
SUBTOPIC: NGSPICE:Rusage
SUBTOPIC: NGSPICE:Save
SUBTOPIC: NGSPICE:Sens
SUBTOPIC: NGSPICE:Set
SUBTOPIC: NGSPICE:Setcirc
SUBTOPIC: NGSPICE:Setplot
SUBTOPIC: NGSPICE:Settype
SUBTOPIC: NGSPICE:Shell
SUBTOPIC: NGSPICE:Shift
SUBTOPIC: NGSPICE:Show
SUBTOPIC: NGSPICE:Showmod
SUBTOPIC: NGSPICE:Source
SUBTOPIC: NGSPICE:Status
SUBTOPIC: NGSPICE:Step
SUBTOPIC: NGSPICE:Stop
SUBTOPIC: NGSPICE:Tf
SUBTOPIC: NGSPICE:Trace
SUBTOPIC: NGSPICE:Tran
SUBTOPIC: NGSPICE:Transpose
SUBTOPIC: NGSPICE:Unalias
SUBTOPIC: NGSPICE:Undefine
SUBTOPIC: NGSPICE:Unset
SUBTOPIC: NGSPICE:Version
SUBTOPIC: NGSPICE:Where
SUBTOPIC: NGSPICE:Write
SUBTOPIC: NGSPICE:Xgraph
SUBJECT: Ac
TITLE: Ac*: Perform an AC, small-signal frequency response analysis
TEXT: H
TEXT: H _5._3._1. _A_c*: _P_e_r_f_o_r_m _a_n _A_C, _s_m_a_l_l-_s_i_g_n_a_l _f_r_e_q_u_e_n_c_y _r_e_s_p_o_n_s_e
TEXT: H _a_n_a_l_y_s_i_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H ac ( DEC | OCT | LIN ) _N _F_s_t_a_r_t _F_s_t_o_p
TEXT: H
TEXT: H
TEXT: H Do an ac analysis. See the previous sections of
TEXT: H this manual for more details.
TEXT: H
TEXT: H
SUBJECT: Alias
TITLE: Alias: Create an alias for a command
TEXT: H
TEXT: H _5._3._2. _A_l_i_a_s: _C_r_e_a_t_e _a_n _a_l_i_a_s _f_o_r _a _c_o_m_m_a_n_d
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H alias [word] [text ...]
TEXT: H
TEXT: H
TEXT: H Causes word to be aliased to text. History substi-
TEXT: H tutions may be used, as in C-shell aliases.
TEXT: H
TEXT: H
SUBJECT: Alter
TITLE: Alter*: Change a device or model parameter
TEXT: H
TEXT: H _5._3._3. _A_l_t_e_r*: _C_h_a_n_g_e _a _d_e_v_i_c_e _o_r _m_o_d_e_l _p_a_r_a_m_e_t_e_r
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H alter _d_e_v_i_c_e _v_a_l_u_e
TEXT: H alter _d_e_v_i_c_e _p_a_r_a_m_e_t_e_r _v_a_l_u_e [ _p_a_r_a_m_e_t_e_r _v_a_l_u_e ]
TEXT: H
TEXT: H
TEXT: H Alter changes the value for a device or a specified
TEXT: H parameter of a device or model. The first form is used
TEXT: H by simple devices which have one principal value (resis-
TEXT: H tors, capacitors, etc.) where the second form is for
TEXT: H more complex devices (bjt's, etc.). Model parameters
TEXT: H can be changed with the second form if the name contains
TEXT: H a "#".
TEXT: H
TEXT: H For specifying vectors as values, start the vector
TEXT: H with "[", followed by the values in the vector, and end
TEXT: H with "]". Be sure to place a space between each of the
TEXT: H values and before and after the "[" and "]".
TEXT: H
TEXT: H
SUBJECT: Asciiplot
TITLE: Asciiplot: Plot values using old-style character plots
TEXT: H
TEXT: H _5._3._4. _A_s_c_i_i_p_l_o_t: _P_l_o_t _v_a_l_u_e_s _u_s_i_n_g _o_l_d-_s_t_y_l_e _c_h_a_r_a_c_t_e_r
TEXT: H _p_l_o_t_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H asciiplot _p_l_o_t_a_r_g_s
TEXT: H
TEXT: H
TEXT: H Produce a line printer plot of the vectors. The
TEXT: H plot is sent to the standard output, so you can put it
TEXT: H into a file with _a_s_c_i_i_p_l_o_t _a_r_g_s ... > _f_i_l_e. The set op-
TEXT: H tions width, height, and nobreak determine the width and
TEXT: H height of the plot, and whether there are page breaks,
TEXT: H respectively. Note that you will have problems if you
TEXT: H try to asciiplot something with an X-scale that isn't
TEXT: H monotonic (i.e, something like _s_i_n(_T_I_M_E) ), because as-
TEXT: H ciiplot uses a simple-minded linear interpolation.
TEXT: H
TEXT: H
SUBJECT: Aspice
TITLE: Aspice: Asynchronous spice run
TEXT: H
TEXT: H _5._3._5. _A_s_p_i_c_e: _A_s_y_n_c_h_r_o_n_o_u_s _s_p_i_c_e _r_u_n
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H aspice input-file [output-file]
TEXT: H
TEXT: H
TEXT: H Start a SPICE-3 run, and when it is finished load
TEXT: H the resulting data. The raw data is kept in a temporary
TEXT: H file. If _o_u_t_p_u_t-_f_i_l_e is specified then the diagnostic
TEXT: H output is directed into that file, otherwise it is
TEXT: H thrown away.
TEXT: H
TEXT: H
SUBJECT: Bug
TITLE: Bug: Mail a bug report
TEXT: H
TEXT: H _5._3._6. _B_u_g: _M_a_i_l _a _b_u_g _r_e_p_o_r_t
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H bug
TEXT: H
TEXT: H
TEXT: H Send a bug report. Please include a short summary
TEXT: H of the problem, the version number and name of the
TEXT: H operating system that you are running, the version of
TEXT: H Spice that you are running, and the relevant spice input
TEXT: H file. (If you have defined BUGADDR, the mail is
TEXT: H delivered to there.)
TEXT: H
TEXT: H
SUBJECT: Cd
TITLE: Cd: Change directory
TEXT: H
TEXT: H _5._3._7. _C_d: _C_h_a_n_g_e _d_i_r_e_c_t_o_r_y
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H cd [directory]
TEXT: H
TEXT: H
TEXT: H Change the current working directory to directory,
TEXT: H or to the user's home directory if none is given.
TEXT: H
TEXT: H
SUBJECT: Destroy
TITLE: Destroy: Delete a data set
TEXT: H
TEXT: H _5._3._8. _D_e_s_t_r_o_y: _D_e_l_e_t_e _a _d_a_t_a _s_e_t
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H destroy [_p_l_o_t_n_a_m_e_s | all]
TEXT: H
TEXT: H
TEXT: H Release the memory holding the data for the speci-
TEXT: H fied runs.
TEXT: H
TEXT: H
SUBJECT: Dc
TITLE: Dc*: Perform a DC-sweep analysis
TEXT: H
TEXT: H _5._3._9. _D_c*: _P_e_r_f_o_r_m _a _D_C-_s_w_e_e_p _a_n_a_l_y_s_i_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H dc _S_o_u_r_c_e-_N_a_m_e _V_s_t_a_r_t _V_s_t_o_p _V_i_n_c_r [ _S_o_u_r_c_e_2 _V_s_t_a_r_t_2 _V_s_t_o_p_2 _V_i_n_c_r_2 ]
TEXT: H
TEXT: H
TEXT: H Do a dc transfer curve analysis. See the previous
TEXT: H sections of this manual for more details.
TEXT: H
TEXT: H
SUBJECT: Define
TITLE: Define: Define a function
TEXT: H
TEXT: H _5._3._1_0. _D_e_f_i_n_e: _D_e_f_i_n_e _a _f_u_n_c_t_i_o_n
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H define function(arg1, arg2, ...) expression
TEXT: H
TEXT: H
TEXT: H Define the _u_s_e_r-_d_e_f_i_n_a_b_l_e _f_u_n_c_t_i_o_n with the name
TEXT: H _f_u_n_c_t_i_o_n and arguments _a_r_g_1, _a_r_g_2, ... to be _e_x_p_r_e_s_s_i_o_n,
TEXT: H which may involve the arguments. When the function is
TEXT: H later used, the arguments it is given are substituted
TEXT: H for the formal arguments when it is parsed. If _e_x_p_r_e_s-
TEXT: H _s_i_o_n is not present, any definition for _f_u_n_c_t_i_o_n is
TEXT: H printed, and if there are no arguments to _d_e_f_i_n_e then
TEXT: H all currently active definitions are printed. Note that
TEXT: H you may have different functions defined with the same
TEXT: H name but different arities.
TEXT: H
TEXT: H
TEXT: H
TEXT: H Some useful definitions are:
TEXT: H
TEXT: H define max(x,y) (x > y) * x + (x <= y) * y
TEXT: H define min(x,y) (x < y) * x + (x >= y) * y
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Delete
TITLE: Delete*: Remove a trace or breakpoint
TEXT: H
TEXT: H _5._3._1_1. _D_e_l_e_t_e*: _R_e_m_o_v_e _a _t_r_a_c_e _o_r _b_r_e_a_k_p_o_i_n_t
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H delete [ _d_e_b_u_g-_n_u_m_b_e_r ... ]
TEXT: H
TEXT: H
TEXT: H Delete the specified breakpoints and traces. The
TEXT: H debug numbers are those shown by the status command (un-
TEXT: H less you do status > file, in which case the debug
TEXT: H numbers are not printed).
TEXT: H
TEXT: H
SUBJECT: Diff
TITLE: Diff: Compare vectors
TEXT: H
TEXT: H _5._3._1_2. _D_i_f_f: _C_o_m_p_a_r_e _v_e_c_t_o_r_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H diff plot1 plot2 [vec ...]
TEXT: H
TEXT: H
TEXT: H Compare all the vectors in the specified _p_l_o_t_s, or
TEXT: H only the named vectors if any are given. There are dif-
TEXT: H ferent vectors in the two plots, or any values in the
TEXT: H vectors differ significantly the difference is reported.
TEXT: H The variable diff_abstol, diff_reltol, and diff_vntol
TEXT: H are used to determine a significant difference.
TEXT: H
TEXT: H
SUBJECT: Display
TITLE: Display: List known vectors and types
TEXT: H
TEXT: H _5._3._1_3. _D_i_s_p_l_a_y: _L_i_s_t _k_n_o_w_n _v_e_c_t_o_r_s _a_n_d _t_y_p_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H display [varname ...]
TEXT: H
TEXT: H
TEXT: H Prints a summary of currently defined vectors, or
TEXT: H of the names specified. The vectors are sorted by name
TEXT: H unless the variable nosort is set. The information
TEXT: H given is the name of the vector, the length, the type of
TEXT: H the vector, and whether it is real or complex data. Ad-
TEXT: H ditionally, one vector is labeled [scale]. When a com-
TEXT: H mand such as _p_l_o_t is given without a _v_s argument, this
TEXT: H scale is used for the X-axis. It is always the first
TEXT: H vector in a rawfile, or the first vector defined in a
TEXT: H new plot. If you undefine the scale (i.e, _l_e_t _T_I_M_E =
TEXT: H []), one of the remaining vectors becomes the new scale
TEXT: H (which is undetermined).
TEXT: H
TEXT: H
SUBJECT: Echo
TITLE: Echo: Print text
TEXT: H
TEXT: H _5._3._1_4. _E_c_h_o: _P_r_i_n_t _t_e_x_t
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H echo [text...]
TEXT: H
TEXT: H
TEXT: H Echos the given text to the screen.
TEXT: H
TEXT: H
SUBJECT: Edit
TITLE: Edit*: Edit the current circuit
TEXT: H
TEXT: H _5._3._1_5. _E_d_i_t*: _E_d_i_t _t_h_e _c_u_r_r_e_n_t _c_i_r_c_u_i_t
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H edit [ _f_i_l_e ]
TEXT: H
TEXT: H
TEXT: H Print the current Spice3 input file into a file,
TEXT: H call up the editor on that file and allow the user to
TEXT: H modify it, and then read it back in, replacing the ori-
TEXT: H ginal file. If a _f_i_l_e_n_a_m_e is given, then edit that file
TEXT: H and load it, making the circuit the current one.
TEXT: H
TEXT: H
SUBJECT: Fourier
TITLE: Fourier: Perform a fourier transform
TEXT: H
TEXT: H _5._3._1_6. _F_o_u_r_i_e_r: _P_e_r_f_o_r_m _a _f_o_u_r_i_e_r _t_r_a_n_s_f_o_r_m
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H fourier fundamental_frequency [value ...]
TEXT: H
TEXT: H
TEXT: H Does a fourier analysis of each of the given
TEXT: H values, using the first 10 multiples of the fundamental
TEXT: H frequency (or the first _n_f_r_e_q_s, if that variable is set
TEXT: H - see below). The output is like that of the .four
TEXT: H Spice3 line. The values may be any valid expression.
TEXT: H The values are interpolated onto a fixed-space grid with
TEXT: H the number of points given by the fourgridsize variable,
TEXT: H or 200 if it is not set. The interpolation is of degree
TEXT: H polydegree if that variable is set, or 1. If polydegree
TEXT: H is 0, then no interpolation is done. This is likely to
TEXT: H give erroneous results if the time scale is not monoton-
TEXT: H ic, though.
TEXT: H
TEXT: H
SUBJECT: Hardcopy
TITLE: Hardcopy: Save a plot to a file for printing
TEXT: H
TEXT: H _5._3._1_7. _H_a_r_d_c_o_p_y: _S_a_v_e _a _p_l_o_t _t_o _a _f_i_l_e _f_o_r _p_r_i_n_t_i_n_g
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H hardcopy file _p_l_o_t_a_r_g_s
TEXT: H
TEXT: H
TEXT: H Just like plot, except creates a file called _f_i_l_e
TEXT: H containing the plot. The file is an image in _p_l_o_t(_5)
TEXT: H format, and can be printed by either the plot(1) program
TEXT: H or lpr with the -g flag.
TEXT: H
TEXT: H
SUBJECT: Help
TITLE: Help: Print summaries of Spice3 commands
TEXT: H
TEXT: H _5._3._1_8. _H_e_l_p: _P_r_i_n_t _s_u_m_m_a_r_i_e_s _o_f _S_p_i_c_e_3 _c_o_m_m_a_n_d_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H help [all] [command ...]
TEXT: H
TEXT: H
TEXT: H Prints help. If the argument all is given, a short
TEXT: H description of everything you could possibly type is
TEXT: H printed. If commands are given, descriptions of those
TEXT: H commands are printed. Otherwise help for only a few ma-
TEXT: H jor commands is printed.
TEXT: H
TEXT: H
SUBJECT: History
TITLE: History: Review previous commands
TEXT: H
TEXT: H _5._3._1_9. _H_i_s_t_o_r_y: _R_e_v_i_e_w _p_r_e_v_i_o_u_s _c_o_m_m_a_n_d_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H history [number]
TEXT: H
TEXT: H
TEXT: H Print out the history, or the last number commands
TEXT: H typed at the keyboard. _N_o_t_e: in Spice3 version 3a7 and
TEXT: H earlier, all commands (including ones read from files)
TEXT: H were saved.
TEXT: H
TEXT: H
SUBJECT: Iplot
TITLE: Iplot*: Incremental plot
TEXT: H
TEXT: H _5._3._2_0. _I_p_l_o_t*: _I_n_c_r_e_m_e_n_t_a_l _p_l_o_t
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H iplot [ node ...]
TEXT: H
TEXT: H
TEXT: H Incrementally plot the values of the nodes while
TEXT: H Spice3 runs. The iplot command can be used with the
TEXT: H where command to find trouble spots in a transient simu-
TEXT: H lation.
TEXT: H
TEXT: H
SUBJECT: Jobs
TITLE: Jobs: List active asynchronous spice runs
TEXT: H
TEXT: H _5._3._2_1. _J_o_b_s: _L_i_s_t _a_c_t_i_v_e _a_s_y_n_c_h_r_o_n_o_u_s _s_p_i_c_e _r_u_n_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H jobs
TEXT: H
TEXT: H
TEXT: H Report on the asynchronous SPICE-3 jobs currently
TEXT: H running. Nutmeg checks to see if the jobs are finished
TEXT: H every time you execute a command. If it is done then
TEXT: H the data is loaded and becomes available.
TEXT: H
TEXT: H
SUBJECT: Let
TITLE: Let: Assign a value to a vector
TEXT: H
TEXT: H _5._3._2_2. _L_e_t: _A_s_s_i_g_n _a _v_a_l_u_e _t_o _a _v_e_c_t_o_r
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H let name = expr
TEXT: H
TEXT: H
TEXT: H Creates a new vector called _n_a_m_e with the value
TEXT: H specified by _e_x_p_r, an expression as described above. If
TEXT: H expr is [] (a zero-length vector) then the vector be-
TEXT: H comes undefined. Individual elements of a vector may be
TEXT: H modified by appending a subscript to name (ex. name[0]).
TEXT: H If there are no arguments, let is the same as display.
TEXT: H
TEXT: H
SUBJECT: Linearize
TITLE: Linearize*: Interpolate to a linear scale
TEXT: H
TEXT: H _5._3._2_3. _L_i_n_e_a_r_i_z_e*: _I_n_t_e_r_p_o_l_a_t_e _t_o _a _l_i_n_e_a_r _s_c_a_l_e
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H linearize vec ...
TEXT: H
TEXT: H
TEXT: H Create a new plot with all of the vectors in the
TEXT: H current plot, or only those mentioned if arguments are
TEXT: H given. The new vectors are interpolated onto a linear
TEXT: H time scale, which is determined by the values of tstep,
TEXT: H tstart, and tstop in the currently active transient
TEXT: H analysis. The currently loaded input file must include
TEXT: H a transient analysis (a tran command may be run interac-
TEXT: H tively before the last reset, alternately), and the
TEXT: H current plot must be from this transient analysis. This
TEXT: H command is needed because Spice3 doesn't output the
TEXT: H results from a transient analysis in the same manner
TEXT: H that Spice2 did.
TEXT: H
TEXT: H
SUBJECT: Listing
TITLE: Listing*: Print a listing of the current circuit
TEXT: H
TEXT: H _5._3._2_4. _L_i_s_t_i_n_g*: _P_r_i_n_t _a _l_i_s_t_i_n_g _o_f _t_h_e _c_u_r_r_e_n_t _c_i_r_c_u_i_t
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H listing [logical] [physical] [deck] [expand]
TEXT: H
TEXT: H
TEXT: H If the logical argument is given, the listing is
TEXT: H with all continuation lines collapsed into one line, and
TEXT: H if the physical argument is given the lines are printed
TEXT: H out as they were found in the file. The default is log-
TEXT: H ical. A deck listing is just like the physical listing,
TEXT: H except without the line numbers it recreates the input
TEXT: H file verbatim (except that it does not preserve case).
TEXT: H If the word expand is present, the circuit is printed
TEXT: H with all subcircuits expanded.
TEXT: H
TEXT: H
SUBJECT: Load
TITLE: Load: Load rawfile data
TEXT: H
TEXT: H _5._3._2_5. _L_o_a_d: _L_o_a_d _r_a_w_f_i_l_e _d_a_t_a
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H load [filename] ...
TEXT: H
TEXT: H
TEXT: H Loads either binary or ascii format rawfile data
TEXT: H from the files named. The default filename is
TEXT: H rawspice.raw, or the argument to the -r flag if there
TEXT: H was one.
TEXT: H
TEXT: H
SUBJECT: Op
TITLE: Op*: Perform an operating point analysis
TEXT: H
TEXT: H _5._3._2_6. _O_p*: _P_e_r_f_o_r_m _a_n _o_p_e_r_a_t_i_n_g _p_o_i_n_t _a_n_a_l_y_s_i_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H op
TEXT: H
TEXT: H
TEXT: H Do an operating point analysis. See the previous
TEXT: H sections of this manual for more details.
TEXT: H
TEXT: H
SUBJECT: Plot
TITLE: Plot: Plot values on the display
TEXT: H
TEXT: H _5._3._2_7. _P_l_o_t: _P_l_o_t _v_a_l_u_e_s _o_n _t_h_e _d_i_s_p_l_a_y
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H plot exprs [ylimit ylo yhi] [xlimit xlo xhi] [xindices xilo xihi]
TEXT: H [xcompress comp] [xdelta xdel] [ydelta ydel] [xlog] [ylog] [loglog]
TEXT: H [vs xname] [xlabel word] [ylabel word] [title word] [samep]
TEXT: H [linear]
TEXT: H
TEXT: H
TEXT: H
TEXT: H Plot the given _e_x_p_r_s on the screen (if you are on a
TEXT: H graphics terminal). The _x_l_i_m_i_t and _y_l_i_m_i_t arguments deter-
TEXT: H mine the high and low x- and y-limits of the axes, respec-
TEXT: H tively. The _x_i_n_d_i_c_e_s arguments determine what range of
TEXT: H points are to be plotted - everything between the xilo'th
TEXT: H point and the xihi'th point is plotted. The _x_c_o_m_p_r_e_s_s argu-
TEXT: H ment specifies that only one out of every comp points should
TEXT: H be plotted. If an xdelta or a ydelta parameter is present,
TEXT: H it specifies the spacing between grid lines on the X- and
TEXT: H Y-axis. These parameter names may be abbreviated to _x_l, _y_l,
TEXT: H _x_i_n_d, _x_c_o_m_p, _x_d_e_l, and _y_d_e_l respectively.
TEXT: H
TEXT: H The _x_n_a_m_e argument is an expression to use as the scale
TEXT: H on the x-axis. If xlog or ylog are present then the X or Y
TEXT: H scale, respectively, is logarithmic (loglog is the same as
TEXT: H specifying both). The xlabel and ylabel arguments cause the
TEXT: H specified labels to be used for the X and Y axes, respec-
TEXT: H tively.
TEXT: H
TEXT: H If samep is given, the values of the other parameters
TEXT: H (other than xname) from the previous plot, hardcopy, or
TEXT: H asciiplot command is used unless re-defined on the command
TEXT: H line.
TEXT: H
TEXT: H The title argument is used in the place of the plot
TEXT: H name at the bottom of the graph.
TEXT: H
TEXT: H The linear keyword is used to override a default log-
TEXT: H scale plot (as in the output for an AC analysis).
TEXT: H
TEXT: H Finally, the keyword polar to generate a polar plot.
TEXT: H To produce a smith plot, use the keyword smith. Note that
TEXT: H the data is transformed, so for smith plots you will see the
TEXT: H data transformed by the function (x-1)/(x+1). To produce a
TEXT: H polar plot with a smith grid but without performing the
TEXT: H smith transform, use the keyword smithgrid.
TEXT: H
SUBJECT: Print
TITLE: Print: Print values
TEXT: H
TEXT: H _5._3._2_8. _P_r_i_n_t: _P_r_i_n_t _v_a_l_u_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H print [col] [line] expr ...
TEXT: H
TEXT: H
TEXT: H Prints the vector described by the expression _e_x_p_r.
TEXT: H If the _c_o_l argument is present, print the vectors named
TEXT: H side by side. If line is given, the vectors are printed
TEXT: H horizontally. col is the default, unless all the vec-
TEXT: H tors named have a length of one, in which case line is
TEXT: H the default. The options width, length, and nobreak are
TEXT: H effective for this command (see asciiplot). If the ex-
TEXT: H pression is all, all of the vectors available are print-
TEXT: H ed. Thus print col all > file prints everything in the
TEXT: H file in SPICE2 format. The scale vector (time, frequen-
TEXT: H cy) is always in the first column unless the variable
TEXT: H noprintscale is true.
TEXT: H
TEXT: H
SUBJECT: Quit
TITLE: Quit: Leave Spice3 or Nutmeg
TEXT: H
TEXT: H _5._3._2_9. _Q_u_i_t: _L_e_a_v_e _S_p_i_c_e_3 _o_r _N_u_t_m_e_g
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H quit
TEXT: H
TEXT: H
TEXT: H Quit nutmeg or spice.
TEXT: H
TEXT: H
SUBJECT: Rehash
TITLE: Rehash: Reset internal hash tables
TEXT: H
TEXT: H _5._3._3_0. _R_e_h_a_s_h: _R_e_s_e_t _i_n_t_e_r_n_a_l _h_a_s_h _t_a_b_l_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H rehash
TEXT: H
TEXT: H
TEXT: H Recalculate the internal hash tables used when
TEXT: H looking up UNIX commands, and make all UNIX commands in
TEXT: H the user's PATH available for command completion. This
TEXT: H is useless unless you have set unixcom first (see
TEXT: H above).
TEXT: H
TEXT: H
SUBJECT: Reset
TITLE: Reset*: Reset an analysis
TEXT: H
TEXT: H _5._3._3_1. _R_e_s_e_t*: _R_e_s_e_t _a_n _a_n_a_l_y_s_i_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H reset
TEXT: H
TEXT: H
TEXT: H Throw out any intermediate data in the circuit
TEXT: H (e.g, after a breakpoint or after one or more analyses
TEXT: H have been done already), and re-parse the input file.
TEXT: H The circuit can then be re-run from it's initial state,
TEXT: H overriding the effect of any set or alter commands. In
TEXT: H Spice-3e and earlier versions this was done automatical-
TEXT: H ly by the run command.
TEXT: H
TEXT: H
SUBJECT: Reshape
TITLE: Reshape: Alter the dimensionality or dimensions of a vector
TEXT: H
TEXT: H _5._3._3_2. _R_e_s_h_a_p_e: _A_l_t_e_r _t_h_e _d_i_m_e_n_s_i_o_n_a_l_i_t_y _o_r _d_i_m_e_n_s_i_o_n_s _o_f
TEXT: H _a _v_e_c_t_o_r
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H reshape _v_e_c_t_o_r _v_e_c_t_o_r ...
TEXT: H or
TEXT: H reshape _v_e_c_t_o_r _v_e_c_t_o_r ... [ _d_i_m_e_n_s_i_o_n, _d_i_m_e_n_s_i_o_n, ... ]
TEXT: H or
TEXT: H reshape _v_e_c_t_o_r _v_e_c_t_o_r ... [ _d_i_m_e_n_s_i_o_n ][ _d_i_m_e_n_s_i_o_n ] ...
TEXT: H
TEXT: H
TEXT: H This command changes the dimensions of a vector or
TEXT: H a set of vectors. The final dimension may be left off
TEXT: H and it will be filled in automatically. If no dimen-
TEXT: H sions are specified, then the dimensions of the first
TEXT: H vector are copied to the other vectors. An error mes-
TEXT: H sage of the form 'dimensions of _x were inconsistent' can
TEXT: H be ignored.
TEXT: H
TEXT: H
SUBJECT: Resume
TITLE: Resume*: Continue a simulation after a stop
TEXT: H
TEXT: H _5._3._3_3. _R_e_s_u_m_e*: _C_o_n_t_i_n_u_e _a _s_i_m_u_l_a_t_i_o_n _a_f_t_e_r _a _s_t_o_p
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H resume
TEXT: H
TEXT: H
TEXT: H Resume a simulation after a stop or interruption
TEXT: H (control-C).
TEXT: H
TEXT: H
SUBJECT: Rspice
TITLE: Rspice: Remote spice submission
TEXT: H
TEXT: H _5._3._3_4. _R_s_p_i_c_e: _R_e_m_o_t_e _s_p_i_c_e _s_u_b_m_i_s_s_i_o_n
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H rspice _i_n_p_u_t _f_i_l_e
TEXT: H
TEXT: H
TEXT: H Runs a SPICE-3 remotely taking the input file as a
TEXT: H SPICE-3 input file, or the current circuit if no argu-
TEXT: H ment is given. Nutmeg or Spice3 waits for the job to
TEXT: H complete, and passes output from the remote job to the
TEXT: H user's standard output. When the job is finished the
TEXT: H data is loaded in as with aspice. If the variable _r_h_o_s_t
TEXT: H is set, nutmeg connects to this host instead of the de-
TEXT: H fault remote Spice3 server machine. This command uses
TEXT: H the "rsh" command and thereby requires authentication
TEXT: H via a ".rhosts" file or other equivalent method. Note
TEXT: H that "rsh" refers to the "remote shell" program, which
TEXT: H may be "remsh" on your system; to override the default
TEXT: H name of "rsh", set the variable _r_e_m_o_t_e__s_h_e_l_l. If the
TEXT: H variable _r_p_r_o_g_r_a_m is set, then rspice uses this as the
TEXT: H pathname to the program to run on the remote system.
TEXT: H
TEXT: H Note: rspice will not acknowledge elements that
TEXT: H have been changed via the "alter" or "altermod" com-
TEXT: H mands.
TEXT: H
TEXT: H
SUBJECT: Run
TITLE: Run*: Run analysis from the input file
TEXT: H
TEXT: H _5._3._3_5. _R_u_n*: _R_u_n _a_n_a_l_y_s_i_s _f_r_o_m _t_h_e _i_n_p_u_t _f_i_l_e
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H run [rawfile]
TEXT: H
TEXT: H
TEXT: H Run the simulation as specified in the input file.
TEXT: H If there were any of the control lines .ac, .op, .tran,
TEXT: H or .dc, they are executed. The output is put in rawfile
TEXT: H if it was given, in addition to being available interac-
TEXT: H tively. In Spice-3e and earlier versions, the input
TEXT: H file would be re-read and any effects of the set or
TEXT: H alter commands would be reversed. This is no longer the
TEXT: H effect.
TEXT: H
TEXT: H
SUBJECT: Rusage
TITLE: Rusage: Resource usage
TEXT: H
TEXT: H _5._3._3_6. _R_u_s_a_g_e: _R_e_s_o_u_r_c_e _u_s_a_g_e
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H rusage [resource ...]
TEXT: H
TEXT: H
TEXT: H Print resource usage statistics. If any resources
TEXT: H are given, just print the usage of that resource. Most
TEXT: H resources require that a circuit be loaded. Currently
TEXT: H valid resources are:
TEXT: H
TEXT: H elapsed The amount of time elapsed since the last rusage
TEXT: H elaped call.
TEXT: H faults Number of page faults and context switches (BSD only).
TEXT: H space Data space used.
TEXT: H time CPU time used so far.
TEXT: H
TEXT: H temp Operating temperature.
TEXT: H tnom Temperature at which device parameters were measured.
TEXT: H equations Circuit Equations
TEXT: H
TEXT: H time Total Analysis Time
TEXT: H totiter Total iterations
TEXT: H accept Accepted timepoints
TEXT: H rejected Rejected timepoints
TEXT: H
TEXT: H loadtime Time spent loading the circuit matrix and RHS.
TEXT: H reordertime Matrix reordering time
TEXT: H lutime L-U decomposition time
TEXT: H solvetime Matrix solve time
TEXT: H
TEXT: H trantime Transient analysis time
TEXT: H tranpoints Transient timepoints
TEXT: H traniter Transient iterations
TEXT: H trancuriters Transient iterations for the last time point*
TEXT: H tranlutime Transient L-U decomposition time
TEXT: H transolvetime Transient matrix solve time
TEXT: H
TEXT: H everything All of the above.
TEXT: H
TEXT: H * listed incorrectly as "Transient iterations per point".
TEXT: H
TEXT: H
SUBJECT: Save
TITLE: Save*: Save a set of outputs
TEXT: H
TEXT: H _5._3._3_7. _S_a_v_e*: _S_a_v_e _a _s_e_t _o_f _o_u_t_p_u_t_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H save [all | _o_u_t_p_u_t ...]
TEXT: H .save [all | _o_u_t_p_u_t ...]
TEXT: H
TEXT: H
TEXT: H Save a set of outputs, discarding the rest. If a
TEXT: H node has been mentioned in a save command, it appears in
TEXT: H the working plot after a run has completed, or in the
TEXT: H rawfile if spice is run in batch mode. If a node is
TEXT: H traced or plotted (see below) it is also saved. For
TEXT: H backward compatibility, if there are no save commands
TEXT: H given, all outputs are saved.
TEXT: H
TEXT: H When the keyword "all" or the keyword "allv", appears in
TEXT: H the save command, all node voltages, voltage source
TEXT: H currents and inductor currents are saved in addition to
TEXT: H any other values listed. If the keyword "alli" appears
TEXT: H in the save command, all devices currents are saved.
TEXT: H
TEXT: H Note: the current implementation saves only the currents
TEXT: H of devices which have internal nodes, i.e. MOSFETs
TEXT: H with non zero RD and RS; BJTs with non-zero RC, RB
TEXT: H and RE; DIODEs with non-zero RS; etc. Resistor and
TEXT: H capacitor currents are not saved with this option.
TEXT: H These deficiencies will be addressed in a later
TEXT: H revision.
SUBJECT: Sens
TITLE: Sens*: Run a sensitivity analysis
TEXT: H
TEXT: H _5._3._3_8. _S_e_n_s*: _R_u_n _a _s_e_n_s_i_t_i_v_i_t_y _a_n_a_l_y_s_i_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H sens _o_u_t_p_u_t__v_a_r_i_a_b_l_e
TEXT: H sens _o_u_t_p_u_t__v_a_r_i_a_b_l_e ac ( DEC | OCT | LIN ) _N _F_s_t_a_r_t _F_s_t_o_p
TEXT: H
TEXT: H
TEXT: H Perform a Sensitivity analysis. _o_u_t_p_u_t__v_a_r_i_a_b_l_e is
TEXT: H either a node voltage (ex. "v(1)" or "v(A,out)") or a
TEXT: H current through a voltage source (ex. "i(vtest)"). The
TEXT: H first form calculates DC sensitivities, the second form
TEXT: H calculates AC sensitivies. The output values are in di-
TEXT: H mensions of change in output per unit change of input
TEXT: H (as opposed to percent change in output or per percent
TEXT: H change of input).
TEXT: H
TEXT: H
SUBJECT: Set
TITLE: Set: Set the value of a variable
TEXT: H
TEXT: H _5._3._3_9. _S_e_t: _S_e_t _t_h_e _v_a_l_u_e _o_f _a _v_a_r_i_a_b_l_e
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H set [word]
TEXT: H set [word = value] ...
TEXT: H
TEXT: H
TEXT: H Set the value of word to be value, if it is
TEXT: H present. You can set any word to be any value, numeric
TEXT: H or string. If no value is given then the value is the
TEXT: H boolean 'true'.
TEXT: H
TEXT: H
TEXT: H The value of _w_o_r_d may be inserted into a command by
TEXT: H writing $_w_o_r_d. If a variable is set to a list of values
TEXT: H that are enclosed in parentheses (which must be separated
TEXT: H from their values by white space), the value of the variable
TEXT: H is the list.
TEXT: H
TEXT: H The variables used by nutmeg are listed in the follow-
TEXT: H ing section.
TEXT: H
SUBJECT: Setcirc
TITLE: Setcirc*: Change the current circuit
TEXT: H
TEXT: H _5._3._4_0. _S_e_t_c_i_r_c*: _C_h_a_n_g_e _t_h_e _c_u_r_r_e_n_t _c_i_r_c_u_i_t
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H setcirc [circuit name]
TEXT: H
TEXT: H
TEXT: H The current circuit is the one that is used for the
TEXT: H simulation commands below. When a circuit is loaded
TEXT: H with the source command (see below) it becomes the
TEXT: H current circuit.
TEXT: H
TEXT: H
SUBJECT: Setplot
TITLE: Setplot: Switch the current set of vectors
TEXT: H
TEXT: H _5._3._4_1. _S_e_t_p_l_o_t: _S_w_i_t_c_h _t_h_e _c_u_r_r_e_n_t _s_e_t _o_f _v_e_c_t_o_r_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H setplot [plotname]
TEXT: H
TEXT: H
TEXT: H Set the current plot to the plot with the given
TEXT: H name, or if no name is given, prompt the user with a
TEXT: H menu. (Note that the plots are named as they are loaded,
TEXT: H with names like tran1 or op2. These names are shown by
TEXT: H the setplot and display commands and are used by diff,
TEXT: H below.) If the "New plot" item is selected, the current
TEXT: H plot becomes one with no vectors defined.
TEXT: H
TEXT: H Note that here the word "plot" refers to a group of
TEXT: H vectors that are the result of one SPICE run. When more
TEXT: H than one file is loaded in, or more than one plot is
TEXT: H present in one file, nutmeg keeps them separate and only
TEXT: H shows you the vectors in the current plot.
TEXT: H
TEXT: H
SUBJECT: Settype
TITLE: Settype: Set the type of a vector
TEXT: H
TEXT: H _5._3._4_2. _S_e_t_t_y_p_e: _S_e_t _t_h_e _t_y_p_e _o_f _a _v_e_c_t_o_r
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H settype type vector ...
TEXT: H
TEXT: H
TEXT: H Change the type of the named vectors to type. Type
TEXT: H names can be found in the manual page for sconvert.
TEXT: H
TEXT: H
SUBJECT: Shell
TITLE: Shell: Call the command interpreter
TEXT: H
TEXT: H _5._3._4_3. _S_h_e_l_l: _C_a_l_l _t_h_e _c_o_m_m_a_n_d _i_n_t_e_r_p_r_e_t_e_r
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H shell [ _c_o_m_m_a_n_d ]
TEXT: H
TEXT: H
TEXT: H Call the operating system's command interpreter;
TEXT: H execute the specified command or call for interactive
TEXT: H use.
TEXT: H
TEXT: H
SUBJECT: Shift
TITLE: Shift: Alter a list variable
TEXT: H
TEXT: H _5._3._4_4. _S_h_i_f_t: _A_l_t_e_r _a _l_i_s_t _v_a_r_i_a_b_l_e
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H shift [varname] [number]
TEXT: H
TEXT: H
TEXT: H If _v_a_r_n_a_m_e is the name of a list variable, it is
TEXT: H shifted to the left by _n_u_m_b_e_r elements (i.e, the _n_u_m_b_e_r
TEXT: H leftmost elements are removed). The default _v_a_r_n_a_m_e is
TEXT: H argv, and the default _n_u_m_b_e_r is 1.
TEXT: H
TEXT: H
SUBJECT: Show
TITLE: Show*: List device state
TEXT: H
TEXT: H _5._3._4_5. _S_h_o_w*: _L_i_s_t _d_e_v_i_c_e _s_t_a_t_e
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H show _d_e_v_i_c_e_s [ : _p_a_r_a_m_e_t_e_r_s ] , ...
TEXT: H
TEXT: H
TEXT: H _O_l_d _F_o_r_m
TEXT: H
TEXT: H show -v @_d_e_v_i_c_e [ [ _n_a_m_e ] ]
TEXT: H
TEXT: H
TEXT: H The show command prints out tables summarizing the
TEXT: H operating condition of selected devices (much like the
TEXT: H spice2 operation point summary). If _d_e_v_i_c_e is missing,
TEXT: H a default set of devices are listed, if _d_e_v_i_c_e is a sin-
TEXT: H gle letter, devices of that type are listed; if _d_e_v_i_c_e
TEXT: H is a subcircuit name (beginning and ending in ":") only
TEXT: H devices in that subcircuit are shown (end the name in a
TEXT: H double-":" to get devices within sub-subcircuits recur-
TEXT: H sively). The second and third forms may be combined
TEXT: H ("letter:subcircuit:") or "letter:subcircuit::") to
TEXT: H select a specific type of device from a subcircuit. A
TEXT: H device's full name may be specified to list only that
TEXT: H device. Finally, devices may be selected by model by
TEXT: H using the form "#modelname" or ":subcircuit#modelname"
TEXT: H or "letter:subcircuit#modelname".
TEXT: H
TEXT: H If no _p_a_r_a_m_e_t_e_r_s are specified, the values for a
TEXT: H standard set of parameters are listed. If the list of
TEXT: H _p_a_r_a_m_e_t_e_r_s contains a "+", the default set of parameters
TEXT: H is listed along with any other specified parameters.
TEXT: H
TEXT: H For both _d_e_v_i_c_e_s and _p_a_r_a_m_e_t_e_r_s, the word "all" has
TEXT: H the obvious meaning. Note: there must be spaces
TEXT: H separating the ":" that divides the _d_e_v_i_c_e list from the
TEXT: H _p_a_r_a_m_e_t_e_r list.
TEXT: H
TEXT: H The "old form" (with "-v") prints the data in a
TEXT: H older, more verbose pre-spice3f format.
TEXT: H
TEXT: H
SUBJECT: Showmod
TITLE: Showmod*: List model parameter values
TEXT: H
TEXT: H _5._3._4_6. _S_h_o_w_m_o_d*: _L_i_s_t _m_o_d_e_l _p_a_r_a_m_e_t_e_r _v_a_l_u_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H showmod _m_o_d_e_l_s [ : _p_a_r_a_m_e_t_e_r_s ] , ...
TEXT: H
TEXT: H
TEXT: H The showmod command operates like the show command
TEXT: H (above) but prints out model parameter values. The ap-
TEXT: H plicable forms for _m_o_d_e_l_s are a single letter specifying
TEXT: H the device type letter, "letter:subckt:", "modelname",
TEXT: H ":subckt:modelname", or "letter:subcircuit:modelname".
TEXT: H
TEXT: H
SUBJECT: Source
TITLE: Source: Read a Spice3 input file
TEXT: H
TEXT: H _5._3._4_7. _S_o_u_r_c_e: _R_e_a_d _a _S_p_i_c_e_3 _i_n_p_u_t _f_i_l_e
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H source _f_i_l_e
TEXT: H
TEXT: H
TEXT: H For Spice3: Read the Spice3 input file file. Nut-
TEXT: H meg and Spice3 commands may be included in the file, and
TEXT: H must be enclosed between the lines ._c_o_n_t_r_o_l and ._e_n_d_c.
TEXT: H These commands are executed immediately after the cir-
TEXT: H cuit is loaded, so a control line of _a_c ... works the
TEXT: H same as the corresponding ._a_c card. The first line in
TEXT: H any input file is considered a title line and not parsed
TEXT: H but kept as the name of the circuit. The exception to
TEXT: H this rule is the file ._s_p_i_c_e_i_n_i_t. Thus, a Spice3 com-
TEXT: H mand script must begin with a blank line and then with a
TEXT: H .control line. Also, any line beginning with the char-
TEXT: H acters *# is considered a control line. This makes it
TEXT: H possible to imbed commands in Spice3 input files that
TEXT: H are ignored by earlier versions of Spice2
TEXT: H
TEXT: H For Nutmeg: Reads commands from the file _f_i_l_e_n_a_m_e.
TEXT: H Lines beginning with the character * are considered com-
TEXT: H ments and ignored.
TEXT: H
TEXT: H
SUBJECT: Status
TITLE: Status*: Display breakpoint information
TEXT: H
TEXT: H _5._3._4_8. _S_t_a_t_u_s*: _D_i_s_p_l_a_y _b_r_e_a_k_p_o_i_n_t _i_n_f_o_r_m_a_t_i_o_n
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H status
TEXT: H
TEXT: H
TEXT: H Display all of the traces and breakpoints currently
TEXT: H in effect.
TEXT: H
TEXT: H
SUBJECT: Step
TITLE: Step*: Run a fixed number of timepoints
TEXT: H
TEXT: H _5._3._4_9. _S_t_e_p*: _R_u_n _a _f_i_x_e_d _n_u_m_b_e_r _o_f _t_i_m_e_p_o_i_n_t_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H step [number]
TEXT: H
TEXT: H
TEXT: H Iterate number times, or once, and then stop.
TEXT: H
TEXT: H
SUBJECT: Stop
TITLE: Stop*: Set a breakpoint
TEXT: H
TEXT: H _5._3._5_0. _S_t_o_p*: _S_e_t _a _b_r_e_a_k_p_o_i_n_t
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H stop [ after n] [ when _v_a_l_u_e _c_o_n_d _v_a_l_u_e ] ...
TEXT: H
TEXT: H
TEXT: H Set a breakpoint. The argument after n means stop
TEXT: H after n iteration number n, and the argument when _v_a_l_u_e
TEXT: H _c_o_n_d _v_a_l_u_e means stop when the first _v_a_l_u_e is in the
TEXT: H given relation with the second _v_a_l_u_e, the possible rela-
TEXT: H tions being
TEXT: H
TEXT: H eq or = equal to
TEXT: H ne or <> not equal to
TEXT: H gt or > greater than
TEXT: H lt or < less than
TEXT: H ge or >= greater than or equal to
TEXT: H le or <= less than or equal to
TEXT: H
TEXT: H
TEXT: H IO redirection is disabled for the stop command, since the
TEXT: H relational operations conflict with it (it doesn't produce
TEXT: H any output anyway). The _v_a_l_u_es above may be node names in
TEXT: H the running circuit, or real values. If more than one con-
TEXT: H dition is given, e.g. stop after 4 when v(1) > 4 when v(2)
TEXT: H < 2, the conjunction of the conditions is implied.
TEXT: H
TEXT: H
SUBJECT: Tf
TITLE: Tf*: Run a Transfer Function analysis
TEXT: H
TEXT: H _5._3._5_1. _T_f*: _R_u_n _a _T_r_a_n_s_f_e_r _F_u_n_c_t_i_o_n _a_n_a_l_y_s_i_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H tf _o_u_t_p_u_t__n_o_d_e _i_n_p_u_t__s_o_u_r_c_e
TEXT: H
TEXT: H
TEXT: H The tf command performs a transfer function
TEXT: H analysis, returning the transfer function
TEXT: H (output/input), output resistance, and input resistance
TEXT: H between the given output node and the given input
TEXT: H source. The analysis assumes a small-signal DC (slowly
TEXT: H varying) input.
TEXT: H
TEXT: H
SUBJECT: Trace
TITLE: Trace*: Trace nodes
TEXT: H
TEXT: H _5._3._5_2. _T_r_a_c_e*: _T_r_a_c_e _n_o_d_e_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H trace [ node ...]
TEXT: H
TEXT: H
TEXT: H For every step of an analysis, the value of the
TEXT: H node is printed. Several traces may be active at once.
TEXT: H Tracing is not applicable for all analyses. To remove a
TEXT: H trace, use the delete command.
TEXT: H
TEXT: H
SUBJECT: Tran
TITLE: Tran*: Perform a transient analysis
TEXT: H
TEXT: H _5._3._5_3. _T_r_a_n*: _P_e_r_f_o_r_m _a _t_r_a_n_s_i_e_n_t _a_n_a_l_y_s_i_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H tran _T_s_t_e_p _T_s_t_o_p [ _T_s_t_a_r_t [ _T_m_a_x ] ] [ UIC ]
TEXT: H
TEXT: H
TEXT: H Perform a transient analysis. See the previous
TEXT: H sections of this manual for more details.
TEXT: H
TEXT: H
SUBJECT: Transpose
TITLE: Transpose: Swap the elements in a multi-dimensional data set
TEXT: H
TEXT: H _5._3._5_4. _T_r_a_n_s_p_o_s_e: _S_w_a_p _t_h_e _e_l_e_m_e_n_t_s _i_n _a _m_u_l_t_i-_d_i_m_e_n_s_i_o_n_a_l
TEXT: H _d_a_t_a _s_e_t
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H transpose _v_e_c_t_o_r _v_e_c_t_o_r ...
TEXT: H
TEXT: H
TEXT: H This command transposes a multidimensional vector.
TEXT: H No analysis in Spice3 produces multidimensional vectors,
TEXT: H although the DC transfer curve may be run with two vary-
TEXT: H ing sources. You must use the "reshape" command to re-
TEXT: H form the one-dimensional vectors into two dimensional
TEXT: H vectors. In addition, the default scale is incorrect
TEXT: H for plotting. You must plot versus the vector
TEXT: H corresponding to the second source, but you must also
TEXT: H refer only to the first segment of this second source
TEXT: H vector. For example (circuit to produce the tranfer
TEXT: H characteristic of a MOS transistor):
TEXT: H
TEXT: H spice3 > dc vgg 0 5 1 vdd 0 5 1
TEXT: H spice3 > plot i(vdd)
TEXT: H spice3 > reshape all [6,6]
TEXT: H spice3 > transpose i(vdd) v(drain)
TEXT: H spice3 > plot i(vdd) vs v(drain)[0]
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Unalias
TITLE: Unalias: Retract an alias
TEXT: H
TEXT: H _5._3._5_5. _U_n_a_l_i_a_s: _R_e_t_r_a_c_t _a_n _a_l_i_a_s
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H unalias [word ...]
TEXT: H
TEXT: H
TEXT: H Removes any aliases present for the words.
TEXT: H
TEXT: H
SUBJECT: Undefine
TITLE: Undefine: Retract a definition
TEXT: H
TEXT: H _5._3._5_6. _U_n_d_e_f_i_n_e: _R_e_t_r_a_c_t _a _d_e_f_i_n_i_t_i_o_n
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H undefine function
TEXT: H
TEXT: H
TEXT: H Definitions for the named user-defined functions
TEXT: H are deleted.
TEXT: H
TEXT: H
SUBJECT: Unset
TITLE: Unset: Clear a variable
TEXT: H
TEXT: H _5._3._5_7. _U_n_s_e_t: _C_l_e_a_r _a _v_a_r_i_a_b_l_e
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H unset [_w_o_r_d ...]
TEXT: H
TEXT: H
TEXT: H Clear the value of the specified variable(s)
TEXT: H (_w_o_r_d).
TEXT: H
TEXT: H
SUBJECT: Version
TITLE: Version: Print the version of Spice
TEXT: H
TEXT: H _5._3._5_8. _V_e_r_s_i_o_n: _P_r_i_n_t _t_h_e _v_e_r_s_i_o_n _o_f _S_p_i_c_e
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H version [version id]
TEXT: H
TEXT: H
TEXT: H Print out the version of nutmeg that is running.
TEXT: H If there are arguments, it checks to make sure that the
TEXT: H arguments match the current version of SPICE. (This is
TEXT: H mainly used as a Command: line in rawfiles.)
TEXT: H
TEXT: H
SUBJECT: Where
TITLE: Where: Identify troublesome node or device
TEXT: H
TEXT: H _5._3._5_9. _W_h_e_r_e: _I_d_e_n_t_i_f_y _t_r_o_u_b_l_e_s_o_m_e _n_o_d_e _o_r _d_e_v_i_c_e
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H where
TEXT: H
TEXT: H
TEXT: H When performing a transient or operating point
TEXT: H analysis, the name of the last node or device to cause
TEXT: H non-convergence is saved. The where command prints out
TEXT: H this information so that you can examine the circuit and
TEXT: H either correct the problem or make a bug report. You
TEXT: H may do this either in the middle of a run or after the
TEXT: H simulator has given up on the analysis. For transient
TEXT: H simulation, the iplot command can be used to monitor the
TEXT: H progress of the analysis. When the analysis slows down
TEXT: H severly or hangs, interrupt the simulator (with
TEXT: H control-C) and issue the where command. Note that only
TEXT: H one node or device is printed; there may be problems
TEXT: H with more than one node.
TEXT: H
TEXT: H
SUBJECT: Write
TITLE: Write: Write data to a file
TEXT: H
TEXT: H _5._3._6_0. _W_r_i_t_e: _W_r_i_t_e _d_a_t_a _t_o _a _f_i_l_e
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H write [file] [exprs]
TEXT: H
TEXT: H
TEXT: H Writes out the expressions to _f_i_l_e.
TEXT: H
TEXT: H First vectors are grouped together by plots, and
TEXT: H written out as such (i.e, if the expression list con-
TEXT: H tained three vectors from one plot and two from another,
TEXT: H then two plots are written, one with three vectors and
TEXT: H one with two). Additionally, if the scale for a vector
TEXT: H isn't present, it is automatically written out as well.
TEXT: H
TEXT: H The default format is ascii, but this can be
TEXT: H changed with the set filetype command. The default
TEXT: H filename is rawspice.raw, or the argument to the -r flag
TEXT: H on the command line, if there was one, and the default
TEXT: H expression list is all.
TEXT: H
TEXT: H
SUBJECT: Xgraph
TITLE: Xgraph: use the xgraph(1) program for plotting.
TEXT: H
TEXT: H _5._3._6_1. _X_g_r_a_p_h: _u_s_e _t_h_e _x_g_r_a_p_h(_1) _p_r_o_g_r_a_m _f_o_r _p_l_o_t_t_i_n_g.
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H xgraph _f_i_l_e [exprs] [plot options]
TEXT: H
TEXT: H
TEXT: H The spice3/nutmeg xgraph command plots data like
TEXT: H the plot command but via xgraph, a popular X11 plotting
TEXT: H program.
TEXT: H
TEXT: H If _f_i_l_e is either "temp" or "tmp" a temporary file
TEXT: H is used to hold the data while being plotted. For
TEXT: H available plot options, see the plot command. All op-
TEXT: H tions except for polar or smith plots are supported.
TEXT: H
SUBJECT: CONTROL STRUCTURES
TITLE: CONTROL STRUCTURES
TEXT: H
TEXT: H _5._4. _C_O_N_T_R_O_L _S_T_R_U_C_T_U_R_E_S
TEXT: H
TEXT: H
SUBTOPIC: NGSPICE:While End
SUBTOPIC: NGSPICE:Repeat End
SUBTOPIC: NGSPICE:Dowhile End
SUBTOPIC: NGSPICE:Foreach End
SUBTOPIC: NGSPICE:If Then Else
SUBTOPIC: NGSPICE:Label
SUBTOPIC: NGSPICE:Goto
SUBTOPIC: NGSPICE:Continue
SUBTOPIC: NGSPICE:Break
SUBJECT: While End
TITLE: While - End
TEXT: H
TEXT: H _5._4._1. _W_h_i_l_e - _E_n_d
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H while _c_o_n_d_i_t_i_o_n
TEXT: H statement
TEXT: H ...
TEXT: H end
TEXT: H
TEXT: H
TEXT: H While _c_o_n_d_i_t_i_o_n, an arbitrary algebraic expression,
TEXT: H is true, execute the statements.
TEXT: H
TEXT: H
SUBJECT: Repeat End
TITLE: Repeat - End
TEXT: H
TEXT: H _5._4._2. _R_e_p_e_a_t - _E_n_d
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H repeat [_n_u_m_b_e_r]
TEXT: H statement
TEXT: H ...
TEXT: H end
TEXT: H
TEXT: H
TEXT: H Execute the statements _n_u_m_b_e_r times, or forever if
TEXT: H no argument is given.
TEXT: H
TEXT: H
SUBJECT: Dowhile End
TITLE: Dowhile - End
TEXT: H
TEXT: H _5._4._3. _D_o_w_h_i_l_e - _E_n_d
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H dowhile _c_o_n_d_i_t_i_o_n
TEXT: H statement
TEXT: H ...
TEXT: H end
TEXT: H
TEXT: H
TEXT: H The same as while, except that the _c_o_n_d_i_t_i_o_n is
TEXT: H tested after the statements are executed.
TEXT: H
TEXT: H
SUBJECT: Foreach End
TITLE: Foreach - End
TEXT: H
TEXT: H _5._4._4. _F_o_r_e_a_c_h - _E_n_d
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H foreach _v_a_r _v_a_l_u_e ...
TEXT: H statement
TEXT: H ...
TEXT: H end
TEXT: H
TEXT: H
TEXT: H The statements are executed once for each of the
TEXT: H _v_a_l_u_es, each time with the variable _v_a_r set to the
TEXT: H current one. (_v_a_r can be accessed by the $_v_a_r notation
TEXT: H - see below).
TEXT: H
TEXT: H
SUBJECT: If Then Else
TITLE: If - Then - Else
TEXT: H
TEXT: H _5._4._5. _I_f - _T_h_e_n - _E_l_s_e
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H if _c_o_n_d_i_t_i_o_n
TEXT: H statement
TEXT: H ...
TEXT: H else
TEXT: H statement
TEXT: H ...
TEXT: H end
TEXT: H
TEXT: H
TEXT: H If the _c_o_n_d_i_t_i_o_n is non-zero then the first set of
TEXT: H statements are executed, otherwise the second set. The
TEXT: H else and the second set of statements may be omitted.
TEXT: H
TEXT: H
SUBJECT: Label
TITLE: Label
TEXT: H
TEXT: H _5._4._6. _L_a_b_e_l
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H label _w_o_r_d
TEXT: H
TEXT: H
TEXT: H If a statement of the form goto _w_o_r_d is encoun-
TEXT: H tered, control is transferred to this point, otherwise
TEXT: H this is a no-op.
TEXT: H
TEXT: H
SUBJECT: Goto
TITLE: Goto
TEXT: H
TEXT: H _5._4._7. _G_o_t_o
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H goto _w_o_r_d
TEXT: H
TEXT: H
TEXT: H If a statement of the form label _w_o_r_d is present in
TEXT: H the block or an enclosing block, control is transferred
TEXT: H there. Note that if the label is at the top level, it
TEXT: H _m_u_s_t be before the goto _s_t_a_t_e_m_e_n_t (_i._e, _a _f_o_r_w_a_r_d _g_o_t_o
TEXT: H may occur only within a block).
TEXT: H
TEXT: H
SUBJECT: Continue
TITLE: Continue
TEXT: H
TEXT: H _5._4._8. _C_o_n_t_i_n_u_e
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H continue
TEXT: H
TEXT: H
TEXT: H If there is a while, dowhile, or foreach block en-
TEXT: H closing this statement, control passes to the test, or
TEXT: H in the case of foreach, the next value is taken. Other-
TEXT: H wise an error results.
TEXT: H
TEXT: H
SUBJECT: Break
TITLE: Break
TEXT: H
TEXT: H _5._4._9. _B_r_e_a_k
TEXT: H
TEXT: H _G_e_n_e_r_a_l _F_o_r_m
TEXT: H
TEXT: H break
TEXT: H
TEXT: H
TEXT: H If there is a while, dowhile, or foreach block en-
TEXT: H closing this statement, control passes out of the block.
TEXT: H Otherwise an error results.
TEXT: H
TEXT: H Of course, control structures may be nested. When
TEXT: H a block is entered and the input is the terminal, the
TEXT: H prompt becomes a number of >'s corresponding to the
TEXT: H number of blocks the user has entered. The current con-
TEXT: H trol structures may be examined with the debugging com-
TEXT: H mand _c_d_u_m_p.
TEXT: H
SUBJECT: VARIABLES
TITLE: VARIABLES
TEXT: H
TEXT: H _5._5. _V_A_R_I_A_B_L_E_S
TEXT: H
TEXT: H
TEXT: H The operation of both Nutmeg and Spice3 may be affected
TEXT: H by setting variables with the "set" command. In addition to
TEXT: H the variables mentioned below, the set command in Spice3
TEXT: H also affect the behaviour of the simulator via the options
TEXT: H previously described under the section on ".OPTIONS".
TEXT: H
TEXT: H The variables meaningful to nutmeg which may be altered
TEXT: H by the set command are:
TEXT: H
TEXT: H diff_abstol The absolute tolerance used by the diff command.
TEXT: H appendwrite Append to the file when a write command is is-
TEXT: H sued, if one already exists.
TEXT: H color_N These variables determine the colors used, if X
TEXT: H is being run on a color display. _N may be
TEXT: H between 0 and 15. Color 0 is the background,
TEXT: H color 1 is the grid and text color, and colors 2
TEXT: H through 15 are used in order for vectors plot-
TEXT: H ted. The value of the color variables should be
TEXT: H names of colors, which may be found in the file
TEXT: H /usr/lib/rgb.txt.
TEXT: H combplot Plot vectors by drawing a vertical line from
TEXT: H each point to the X-axis, as opposed to joining
TEXT: H the points. Note that this option is subsumed
TEXT: H in the _p_l_o_t_t_y_p_e option, below.
TEXT: H cpdebug Print _c_s_h_p_a_r debugging information (must be com-
TEXT: H plied with the -DCPDEBUG flag). Unsupported in
TEXT: H the current release.
TEXT: H
TEXT: H
TEXT: H debug If set then a lot of debugging information is
TEXT: H printed (must be compiled with the -DFTEDEBUG
TEXT: H flag). Unsupported in the current release.
TEXT: H device The name (/dev/tty??) of the graphics device.
TEXT: H If this variable isn't set then the user's
TEXT: H terminal is used. To do plotting on another
TEXT: H monitor you probably have to set both the
TEXT: H device and term variables. (If device is set
TEXT: H to the name of a file, nutmeg dumps the
TEXT: H graphics control codes into this file -- this
TEXT: H is useful for saving plots.)
TEXT: H echo Print out each command before it is executed.
TEXT: H filetype This can be either _a_s_c_i_i or _b_i_n_a_r_y, and
TEXT: H determines what format are. The default is
TEXT: H _a_s_c_i_i.
TEXT: H
TEXT: H
TEXT: H fourgridsize How many points to use for interpolating
TEXT: H into when doing fourier analysis.
TEXT: H gridsize If this variable is set to an integer,
TEXT: H this number is used as the number of
TEXT: H equally spaced points to use for the Y-
TEXT: H axis when plotting. Otherwise the
TEXT: H current scale is used (which may not
TEXT: H have equally spaced points). If the
TEXT: H current scale isn't strictly monotonic,
TEXT: H then this option has no effect.
TEXT: H hcopydev If this is set, when the hardcopy com-
TEXT: H mand is run the resulting file is au-
TEXT: H tomatically printed on the printer named
TEXT: H hcopydev with the command _l_p_r -_Phcopydev
TEXT: H -_g file.
TEXT: H
TEXT: H
TEXT: H hcopyfont This variable specifies the font name
TEXT: H for hardcopy output plots. The value is
TEXT: H device dependent.
TEXT: H hcopyfontsize This is a scaling factor for the font
TEXT: H used in hardcopy plots.
TEXT: H hcopydevtype This variable specifies the type of the
TEXT: H printer output to use in the hardcopy
TEXT: H command. If hcopydevtype is not set,
TEXT: H plot (5) format is assumed. The stan-
TEXT: H dard distribution currently recognizes
TEXT: H postscript as an alternative output for-
TEXT: H mat. When used in conjunction with
TEXT: H hcopydev, hcopydevtype should specify a
TEXT: H format supported by the printer.
TEXT: H height The length of the page for asciiplot and
TEXT: H print col.
TEXT: H history The number of events to save in the his-
TEXT: H tory list.
TEXT: H lprplot5 This is a printf(3s) style format string
TEXT: H used to specify the command to use for
TEXT: H sending plot(5)-style plots to a printer
TEXT: H or plotter. The first parameter sup-
TEXT: H plied is the printer name, the second
TEXT: H parameter supplied is a file name con-
TEXT: H taining the plot. Both parameters are
TEXT: H strings. It is trivial to cause Spice3
TEXT: H to abort by supplying a unreasonable
TEXT: H format string.
TEXT: H lprps This is a printf(3s) style format string
TEXT: H used to specify the command to use for
TEXT: H sending PostScript plots to a printer or
TEXT: H plotter. The first parameter supplied
TEXT: H is the printer name, the second parame-
TEXT: H ter supplied is a file name containing
TEXT: H the plot. Both parameters are strings.
TEXT: H It is trivial to cause Spice3 to abort
TEXT: H by supplying a unreasonable format
TEXT: H string.
TEXT: H nfreqs The number of frequencies to compute in
TEXT: H the _f_o_u_r_i_e_r command. (Defaults to 10.)
TEXT: H nobreak Don't have asciiplot and print col break
TEXT: H between pages.
TEXT: H
TEXT: H
TEXT: H noasciiplotvalue Don't print the first vector plotted to
TEXT: H the left when doing an asciiplot.
TEXT: H noclobber Don't overwrite existing files when do-
TEXT: H ing IO redirection.
TEXT: H noglob Don't expand the global characters `*',
TEXT: H `?', `[', and `]'. This is the default.
TEXT: H nogrid Don't plot a grid when graphing curves
TEXT: H (but do label the axes).
TEXT: H nomoremode If nomoremode is not set, whenever a
TEXT: H large amount of data is being printed to
TEXT: H the screen (e.g, the print or asciiplot
TEXT: H commands), the output is stopped every
TEXT: H screenful and continues when a carriage
TEXT: H return is typed. If nomoremode is set
TEXT: H then data scrolls off the screen without
TEXT: H check.
TEXT: H nonomatch If noglob is unset and a global expres-
TEXT: H sion cannot be matched, use the global
TEXT: H characters literally instead of com-
TEXT: H plaining.
TEXT: H
TEXT: H
TEXT: H nosort Don't have display sort the variable names.
TEXT: H noprintscale Don't print the scale in the leftmost
TEXT: H column when a print col command is given.
TEXT: H numdgt The number of digits to print when printing
TEXT: H tables of data (fourier, print col). The
TEXT: H default precision is 6 digits. On the VAX,
TEXT: H approximately 16 decimal digits are avail-
TEXT: H able using double precision, so numdgt
TEXT: H should not be more than 16. If the number
TEXT: H is negative, one fewer digit is printed to
TEXT: H ensure constant widths in tables.
TEXT: H plottype This should be one of normal, comb, or
TEXT: H point:_c_h_a_r_s. normal, the default, causes
TEXT: H points to be plotted as parts of connected
TEXT: H lines. comb causes a comb plot to be done
TEXT: H (see the description of the combplot vari-
TEXT: H able above). point causes each point to be
TEXT: H plotted separately - the chars are a list
TEXT: H of characters that are used for each vector
TEXT: H plotted. If they are omitted then a de-
TEXT: H fault set is used.
TEXT: H polydegree The degree of the polynomial that the plot
TEXT: H command should fit to the data. If _p_o_l_y_d_e-
TEXT: H _g_r_e_e is N, then nutmeg fits a degree N po-
TEXT: H lynomial to every set of N points and draw
TEXT: H 10 intermediate points in between each end-
TEXT: H point. If the points aren't monotonic,
TEXT: H then it tries rotating the curve and reduc-
TEXT: H ing the degree until a fit is achieved.
TEXT: H polysteps The number of points to interpolate between
TEXT: H every pair of points available when doing
TEXT: H curve fitting. The default is 10.
TEXT: H program The name of the current program (_a_r_g_v[_0]).
TEXT: H prompt The prompt, with the character `!' replaced
TEXT: H by the current event number.
TEXT: H
TEXT: H
TEXT: H rawfile The default name for rawfiles created.
TEXT: H diff_reltol The relative tolerance used by the diff command.
TEXT: H remote_shell Overrides the name used for generating rspice
TEXT: H runs (default is "rsh").
TEXT: H rhost The machine to use for remote SPICE-3 runs, in-
TEXT: H stead of the default one (see the description of
TEXT: H the rspice command, below).
TEXT: H rprogram The name of the remote program to use in the
TEXT: H rspice command.
TEXT: H slowplot Stop between each graph plotted and wait for the
TEXT: H user to type return before continuing.
TEXT: H sourcepath A list of the directories to search when a
TEXT: H source command is given. The default is the
TEXT: H current directory and the standard spice library
TEXT: H (/_u_s_r/_l_o_c_a_l/_l_i_b/_s_p_i_c_e, or whatever LIBPATH is
TEXT: H #defined to in the Spice3 source.
TEXT: H spicepath The program to use for the aspice command. The
TEXT: H default is /cad/bin/spice.
TEXT: H term The _m_f_b name of the current terminal.
TEXT: H units If this is degrees, then all the trig functions
TEXT: H will use degrees instead of radians.
TEXT: H unixcom If a command isn't defined, try to execute it as
TEXT: H a UNIX command. Setting this option has the ef-
TEXT: H fect of giving a rehash command, below. This is
TEXT: H useful for people who want to use nutmeg as a
TEXT: H login shell.
TEXT: H verbose Be verbose. This is midway between echo and de-
TEXT: H bug / cpdebug.
TEXT: H diff_vntol The absolute voltage tolerance used by the diff
TEXT: H command.
TEXT: H
TEXT: H
TEXT: H width The width of the page for asciiplot and
TEXT: H print col.
TEXT: H x11lineararcs Some X11 implementations have poor arc
TEXT: H drawing. If you set this option, Spice3
TEXT: H will plot using an approximation to the
TEXT: H curve using straight lines.
TEXT: H xbrushheight The height of the brush to use if X is
TEXT: H being run.
TEXT: H xbrushwidth The width of the brush to use if X is
TEXT: H being run.
TEXT: H xfont The name of the X font to use when plot-
TEXT: H ting data and entering labels. The plot
TEXT: H may not look good if this is a
TEXT: H variable-width font.
TEXT: H
TEXT: H
TEXT: H There are several set variables that Spice3 uses but
TEXT: H Nutmeg does not. They are:
TEXT: H
TEXT: H editor The editor to use for the edit command.
TEXT: H modelcard The name of the model card (normally
TEXT: H .model).
TEXT: H noaskquit Do not check to make sure that there are
TEXT: H no circuits suspended and no plots un-
TEXT: H saved. Normally Spice3 warns the user
TEXT: H when he tries to quit if this is the
TEXT: H case.
TEXT: H noparse Don't attempt to parse input files when
TEXT: H they are read in (useful for debugging).
TEXT: H Of course, they cannot be run if they
TEXT: H are not parsed.
TEXT: H nosubckt Don't expand subcircuits.
TEXT: H renumber Renumber input lines when an input file
TEXT: H has .include's.
TEXT: H subend The card to end subcircuits (normally
TEXT: H .ends).
TEXT: H subinvoke The prefix to invoke subcircuits (nor-
TEXT: H mally x).
TEXT: H substart The card to begin subcircuits (normally
TEXT: H .subckt).
TEXT: H
TEXT: H
SUBJECT: MISCELLANEOUS
TITLE: MISCELLANEOUS
TEXT: H
TEXT: H _5._6. _M_I_S_C_E_L_L_A_N_E_O_U_S
TEXT: H
TEXT: H If there are subcircuits in the input file, Spice3
TEXT: H expands instances of them. A subcircuit is delimited by the
TEXT: H cards ._s_u_b_c_k_t and ._e_n_d_s, or whatever the value of the vari-
TEXT: H ables _s_u_b_s_t_a_r_t and _s_u_b_e_n_d is, respectively. An instance of
TEXT: H a subcircuit is created by specifying a device with type 'x'
TEXT: H - the device line is written
TEXT: H
TEXT: H xname node1 node2 ... subcktname
TEXT: H
TEXT: H
TEXT: H where the nodes are the node names that replace the formal
TEXT: H parameters on the .subckt line. All nodes that are not for-
TEXT: H mal parameters are prepended with the name given to the
TEXT: H instance and a ':', as are the names of the devices in the
TEXT: H subcircuit. If there are several nested subcircuits, node
TEXT: H and device names look like subckt1:subckt2:...:name. If the
TEXT: H variable subinvoke is set, then it is used as the prefix
TEXT: H that specifies instances of subcircuits, instead of 'x'.
TEXT: H
TEXT: H Nutmeg occasionally checks to see if it is getting
TEXT: H close to running out of space, and warns the user if this is
TEXT: H the case. (This is more likely to be useful with the SPICE
TEXT: H front end.)
TEXT: H
TEXT: H C-shell type quoting with "" and '', and backquote sub-
TEXT: H stitution may be used. Within single quotes, no further
TEXT: H substitution (like history substitution) is done, and within
TEXT: H double quotes, the words are kept together but further sub-
TEXT: H stitution is done. Any text between backquotes is replaced
TEXT: H by the result of executing the text as a command to the
TEXT: H shell.
TEXT: H
TEXT: H Tenex-style ('set filec' in the 4.3 C-shell) command,
TEXT: H filename, and keyword completion is possible: If EOF
TEXT: H (control-D) is typed after the first character on the line,
TEXT: H a list of the commands or possible arguments is printed (If
TEXT: H it is alone on the line it exits nutmeg). If escape is
TEXT: H typed, then nutmeg trys to complete what the user has
TEXT: H already typed. To get a list of all commands, the user
TEXT: H should type <space> ^D.
TEXT: H
TEXT: H The values of variables may be used in commands by
TEXT: H writing $varname where the value of the variable is to
TEXT: H appear. The special variables $$ and $< refer to the pro-
TEXT: H cess ID of the program and a line of input which is read
TEXT: H from the terminal when the variable is evaluated, respec-
TEXT: H tively. If a variable has a name of the form $&word, then
TEXT: H word is considered a vector (see above), and its value is
TEXT: H taken to be the value of the variable. If $_f_o_o is a valid
TEXT: H variable, and is of type list, then the expression
TEXT: H $_f_o_o[_l_o_w-_h_i_g_h] represents a range of elements. Either the
TEXT: H upper index or the lower may be left out, and the reverse of
TEXT: H a list may be obtained with $_f_o_o[_l_e_n-_0]. Also, the notation
TEXT: H $?_f_o_o evaluates to 1 if the variable _f_o_o is defined, 0 oth-
TEXT: H erwise, and $#_f_o_o evaluates to the number of elements in _f_o_o
TEXT: H if it is a list, 1 if it is a number or string, and 0 if it
TEXT: H is a boolean variable.
TEXT: H
TEXT: H History substitutions, similar to C-shell history sub-
TEXT: H stitutions, are also available - see the C-shell manual page
TEXT: H for all of the details.
TEXT: H
TEXT: H The characters ~, {, and } have the same effects as
TEXT: H they do in the C-Shell, i.e., home directory and alternative
TEXT: H expansion. It is possible to use the wildcard characters *,
TEXT: H ?, [, and ] also, but only if you unset noglob first. This
TEXT: H makes them rather useless for typing algebraic expressions,
TEXT: H so you should set noglob again after you are done with wild-
TEXT: H card expansion. Note that the pattern [^abc] matchs all
TEXT: H characters _e_x_c_e_p_t a, b, _a_n_d c.
TEXT: H
TEXT: H IO redirection is available - the symbols >, >>, >&,
TEXT: H >>&, and < have the same effects as in the C-shell.
TEXT: H
TEXT: H You may type multiple commands on one line, separated
TEXT: H by semicolons.
TEXT: H
TEXT: H If you want to use a different mfbcap file than the
TEXT: H default (usually ~cad/lib/mfbcap), you have to set the
TEXT: H environment variable SPICE_MFBCAP before you start nutmeg or
TEXT: H spice. The -m option and the mfbcap variable no longer
TEXT: H work.
TEXT: H
TEXT: H If X is being used, the cursor may be positioned at any
TEXT: H point on the screen when the window is up and characters
TEXT: H typed at the keyboard are added to the window at that point.
TEXT: H The window may then be sent to a printer using the xpr(1)
TEXT: H program.
TEXT: H
TEXT: H Nutmeg can be run under VAX/VMS, as well as several
TEXT: H other operating systems. Some features like command comple-
TEXT: H tion, expansion of *, ?, and [], backquote substitution, the
TEXT: H shell command, and so forth do not work.
TEXT: H
TEXT: H On some systems you have to respond to the -_m_o_r_e-
TEXT: H prompt during plot with a carriage return instead of any key
TEXT: H as you can do on UNIX.
SUBJECT: BUGS
TITLE: BUGS
TEXT: H
TEXT: H _5._7. _B_U_G_S
TEXT: H
TEXT: H The label entry facilities are primitive. You must be
TEXT: H careful to type slowly when entering labels -- nutmeg checks
TEXT: H for input once every second, and can get confused if charac-
TEXT: H ters arrive faster.
TEXT: H
TEXT: H If you redefine colors after creating a plot window
TEXT: H with X, and then cause the window to be redrawn, it does not
TEXT: H redraw in the correct colors.
TEXT: H
TEXT: H
TEXT: H When defining aliases like
TEXT: H
TEXT: H alias pdb plot db( '!:1' - '!:2' )
TEXT: H
TEXT: H
TEXT: H you must be careful to quote the argument list substitu-
TEXT: H tions in this manner. If you quote the whole argument
TEXT: H it might not work properly.
TEXT: H
TEXT: H
TEXT: H
TEXT: H In a user-defined function, the arguments cannot be
TEXT: H part of a name that uses the _p_l_o_t._v_e_c syntax. For example:
TEXT: H
TEXT: H define check(v(1)) cos(tran1.v(1))
TEXT: H
TEXT: H
TEXT: H does not work.
TEXT: H
TEXT: H
TEXT: H If you type plot all all, or otherwise use a wildcard
TEXT: H reference for one plot twice in a command, the effect is
TEXT: H unpredictable.
TEXT: H
TEXT: H The asciiplot command doesn't deal with log scales or
TEXT: H the delta keywords.
TEXT: H
TEXT: H
TEXT: H Often the names of terminals recognized by MFB are dif-
TEXT: H ferent from those in /etc/termcap. Thus you may have to
TEXT: H reset your terminal type with the command
TEXT: H
TEXT: H set term = termname
TEXT: H
TEXT: H
TEXT: H where termname is the name in the mfbcap file.
TEXT: H
TEXT: H
TEXT: H The hardcopy command is useless on VMS and other sys-
TEXT: H tems without the plot command, unless the user has a program
TEXT: H that understands _p_l_o_t(_5) format.
TEXT: H
TEXT: H Spice3 recognizes all the notations used in SPICE2
TEXT: H .plot cards, and translates vp(1) into ph(v(1)), and so
TEXT: H forth. However, if there are spaces in these names it won't
TEXT: H work. Hence v(1, 2) and (-.5, .5) aren't recognized.
TEXT: H
TEXT: H BJTs can have either 3 or 4 nodes, which makes it dif-
TEXT: H ficult for the subcircuit expansion routines to decide what
TEXT: H to rename. If the fourth parameter has been declared as a
TEXT: H model name, then it is assumed that there are 3 nodes, oth-
TEXT: H erwise it is considered a node.
TEXT: H
TEXT: H The @name[param] notation might not work with trace,
TEXT: H iplot, etc. yet.
TEXT: H
TEXT: H The first line of a command file (except for the ._s_p_i_-
TEXT: H _c_e_i_n_i_t file) should be a comment, otherwise SPICE may create
TEXT: H an empty circuit.
TEXT: H
TEXT: H Files specified on the command line are read before
TEXT: H .spiceinit is read.
SUBJECT: BIBLIOGRAPHY
TITLE: BIBLIOGRAPHY
TEXT: H
TEXT: H _6. _B_I_B_L_I_O_G_R_A_P_H_Y
TEXT: H
TEXT: H
TEXT: H [1] A. Vladimirescu and S. Liu, _T_h_e _S_i_m_u_l_a_t_i_o_n _o_f _M_O_S
TEXT: H _I_n_t_e_g_r_a_t_e_d _C_i_r_c_u_i_t_s _U_s_i_n_g _S_P_I_C_E_2
TEXT: H ERL Memo No. ERL M80/7, Electronics Research Laboratory
TEXT: H University of California, Berkeley, October 1980
TEXT: H
TEXT: H [2] T. Sakurai and A. R. Newton, _A _S_i_m_p_l_e _M_O_S_F_E_T _M_o_d_e_l _f_o_r
TEXT: H _C_i_r_c_u_i_t _A_n_a_l_y_s_i_s _a_n_d _i_t_s _a_p_p_l_i_c_a_t_i_o_n _t_o _C_M_O_S _g_a_t_e _d_e_l_a_y
TEXT: H _a_n_a_l_y_s_i_s _a_n_d _s_e_r_i_e_s-_c_o_n_n_e_c_t_e_d _M_O_S_F_E_T _S_t_r_u_c_t_u_r_e
TEXT: H ERL Memo No. ERL M90/19, Electronics Research Labora-
TEXT: H tory,
TEXT: H University of California, Berkeley, March 1990
TEXT: H
TEXT: H [3] B. J. Sheu, D. L. Scharfetter, and P. K. Ko, _S_P_I_C_E_2
TEXT: H _I_m_p_l_e_m_e_n_t_a_t_i_o_n _o_f _B_S_I_M
TEXT: H ERL Memo No. ERL M85/42, Electronics Research Labora-
TEXT: H tory
TEXT: H University of California, Berkeley, May 1985
TEXT: H
TEXT: H [4] J. R. Pierret, _A _M_O_S _P_a_r_a_m_e_t_e_r _E_x_t_r_a_c_t_i_o_n _P_r_o_g_r_a_m _f_o_r
TEXT: H _t_h_e _B_S_I_M _M_o_d_e_l
TEXT: H ERL Memo Nos. ERL M84/99 and M84/100, Electronics
TEXT: H Research Laboratory
TEXT: H University of California, Berkeley, November 1984
TEXT: H
TEXT: H [5] Min-Chie Jeng, _D_e_s_i_g_n _a_n_d _M_o_d_e_l_i_n_g _o_f _D_e_e_p-
TEXT: H _S_u_b_m_i_c_r_o_m_e_t_e_r _M_O_S_F_E_T_S_s
TEXT: H ERL Memo Nos. ERL M90/90, Electronics Research Labora-
TEXT: H tory
TEXT: H University of California, Berkeley, October 1990
TEXT: H
TEXT: H [6] Soyeon Park, _A_n_a_l_y_s_i_s _a_n_d _S_P_I_C_E _i_m_p_l_e_m_e_n_t_a_t_i_o_n _o_f _H_i_g_h
TEXT: H _T_e_m_p_e_r_a_t_u_r_e _E_f_f_e_c_t_s _o_n _M_O_S_F_E_T,
TEXT: H Master's thesis, University of California, Berkeley,
TEXT: H December 1986.
TEXT: H
TEXT: H [7] Clement Szeto, _S_i_m_u_l_a_t_o_r _o_f _T_e_m_p_e_r_a_t_u_r_e _E_f_f_e_c_t_s _i_n _M_O_S_-
TEXT: H _F_E_T_s (_S_T_E_I_M),
TEXT: H Master's thesis, University of California, Berkeley,
TEXT: H May 1988.
TEXT: H
TEXT: H [8] J.S. Roychowdhury and D.O. Pederson, _E_f_f_i_c_i_e_n_t _T_r_a_n_-
TEXT: H _s_i_e_n_t _S_i_m_u_l_a_t_i_o_n _o_f _L_o_s_s_y _I_n_t_e_r_c_o_n_n_e_c_t,
TEXT: H Proc. of the 28th ACM/IEEE Design Automation Confer-
TEXT: H ence, June 17-21 1991, San Francisco
TEXT: H
TEXT: H [9] A. E. Parker and D. J. Skellern, _A_n _I_m_p_r_o_v_e_d _F_E_T _M_o_d_e_l
TEXT: H _f_o_r _C_o_m_p_u_t_e_r _S_i_m_u_l_a_t_o_r_s,
TEXT: H IEEE Trans CAD, vol. 9, no. 5, pp. 551-553, May 1990.
TEXT: H
TEXT: H [10] R. Saleh and A. Yang, Editors, _S_i_m_u_l_a_t_i_o_n _a_n_d _M_o_d_e_l_i_n_g,
TEXT: H IEEE Circuits and Devices, vol. 8, no. 3, pp. 7-8 and
TEXT: H 49, May 1992
TEXT: H
TEXT: H [11] H.Statz et al., _G_a_A_s _F_E_T _D_e_v_i_c_e _a_n_d _C_i_r_c_u_i_t _S_i_m_u_l_a_t_i_o_n
TEXT: H _i_n _S_P_I_C_E,
TEXT: H IEEE Transactions on Electron Devices, V34, Number 2,
TEXT: H February, 1987 pp160-169.
SUBJECT: APPENDIX A
TITLE: APPENDIX A: EXAMPLE CIRCUITS
TEXT: H
TEXT: H _A. _A_P_P_E_N_D_I_X _A: _E_X_A_M_P_L_E _C_I_R_C_U_I_T_S
TEXT: H
TEXT: H
SUBTOPIC: NGSPICE:Circuit 1
SUBTOPIC: NGSPICE:Circuit 2
SUBTOPIC: NGSPICE:Circuit 3
SUBTOPIC: NGSPICE:Circuit 4
SUBTOPIC: NGSPICE:Circuit 5
SUBJECT: Circuit 1
TITLE: Circuit 1: Differential Pair
TEXT: H
TEXT: H _A._1. _C_i_r_c_u_i_t _1: _D_i_f_f_e_r_e_n_t_i_a_l _P_a_i_r
TEXT: H
TEXT: H
TEXT: H The following deck determines the dc operating point of
TEXT: H a simple differential pair. In addition, the ac small-signal
TEXT: H response is computed over the frequency range 1Hz to
TEXT: H 100MEGHz.
TEXT: H
TEXT: H SIMPLE DIFFERENTIAL PAIR
TEXT: H VCC 7 0 12
TEXT: H VEE 8 0 -12
TEXT: H VIN 1 0 AC 1
TEXT: H RS1 1 2 1K
TEXT: H RS2 6 0 1K
TEXT: H Q1 3 2 4 MOD1
TEXT: H Q2 5 6 4 MOD1
TEXT: H RC1 7 3 10K
TEXT: H RC2 7 5 10K
TEXT: H RE 4 8 10K
TEXT: H .MODEL MOD1 NPN BF=50 VAF=50 IS=1.E-12 RB=100 CJC=.5PF TF=.6NS
TEXT: H .TF V(5) VIN
TEXT: H .AC DEC 10 1 100MEG
TEXT: H .END
TEXT: H
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Circuit 2
TITLE: Circuit 2: MOSFET Characterization
TEXT: H
TEXT: H _A._2. _C_i_r_c_u_i_t _2: _M_O_S_F_E_T _C_h_a_r_a_c_t_e_r_i_z_a_t_i_o_n
TEXT: H
TEXT: H The following deck computes the output characteristics of a
TEXT: H MOSFET device over the range 0-10V for VDS and 0-5V for VGS.
TEXT: H
TEXT: H
TEXT: H MOS OUTPUT CHARACTERISTICS
TEXT: H .OPTIONS NODE NOPAGE
TEXT: H VDS 3 0
TEXT: H VGS 2 0
TEXT: H M1 1 2 0 0 MOD1 L=4U W=6U AD=10P AS=10P
TEXT: H * VIDS MEASURES ID, WE COULD HAVE USED VDS, BUT ID WOULD BE NEGATIVE
TEXT: H VIDS 3 1
TEXT: H .MODEL MOD1 NMOS VTO=-2 NSUB=1.0E15 UO=550
TEXT: H .DC VDS 0 10 .5 VGS 0 5 1
TEXT: H .END
TEXT: H
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Circuit 3
TITLE: Circuit 3: RTL Inverter
TEXT: H
TEXT: H _A._3. _C_i_r_c_u_i_t _3: _R_T_L _I_n_v_e_r_t_e_r
TEXT: H
TEXT: H
TEXT: H The following deck determines the dc transfer curve and
TEXT: H the transient pulse response of a simple RTL inverter. The
TEXT: H input is a pulse from 0 to 5 Volts with delay, rise, and
TEXT: H fall times of 2ns and a pulse width of 30ns. The transient
TEXT: H interval is 0 to 100ns, with printing to be done every
TEXT: H nanosecond.
TEXT: H
TEXT: H
TEXT: H SIMPLE RTL INVERTER
TEXT: H VCC 4 0 5
TEXT: H VIN 1 0 PULSE 0 5 2NS 2NS 2NS 30NS
TEXT: H RB 1 2 10K
TEXT: H Q1 3 2 0 Q1
TEXT: H RC 3 4 1K
TEXT: H .MODEL Q1 NPN BF 20 RB 100 TF .1NS CJC 2PF
TEXT: H .DC VIN 0 5 0.1
TEXT: H .TRAN 1NS 100NS
TEXT: H .END
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Circuit 4
TITLE: Circuit 4: Four-Bit Binary Adder
TEXT: H
TEXT: H _A._4. _C_i_r_c_u_i_t _4: _F_o_u_r-_B_i_t _B_i_n_a_r_y _A_d_d_e_r
TEXT: H
TEXT: H
TEXT: H The following deck simulates a four-bit binary adder,
TEXT: H using several subcircuits to describe various pieces of the
TEXT: H overall circuit.
TEXT: H
TEXT: H
TEXT: H ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER
TEXT: H
TEXT: H *** SUBCIRCUIT DEFINITIONS
TEXT: H .SUBCKT NAND 1 2 3 4
TEXT: H * NODES: INPUT(2), OUTPUT, VCC
TEXT: H Q1 9 5 1 QMOD
TEXT: H D1CLAMP 0 1 DMOD
TEXT: H Q2 9 5 2 QMOD
TEXT: H D2CLAMP 0 2 DMOD
TEXT: H RB 4 5 4K
TEXT: H R1 4 6 1.6K
TEXT: H Q3 6 9 8 QMOD
TEXT: H R2 8 0 1K
TEXT: H RC 4 7 130
TEXT: H Q4 7 6 10 QMOD
TEXT: H DVBEDROP 10 3 DMOD
TEXT: H Q5 3 8 0 QMOD
TEXT: H .ENDS NAND
TEXT: H
TEXT: H .SUBCKT ONEBIT 1 2 3 4 5 6
TEXT: H * NODES: INPUT(2), CARRY-IN, OUTPUT, CARRY-OUT, VCC
TEXT: H X1 1 2 7 6 NAND
TEXT: H X2 1 7 8 6 NAND
TEXT: H X3 2 7 9 6 NAND
TEXT: H X4 8 9 10 6 NAND
TEXT: H X5 3 10 11 6 NAND
TEXT: H X6 3 11 12 6 NAND
TEXT: H X7 10 11 13 6 NAND
TEXT: H X8 12 13 4 6 NAND
TEXT: H X9 11 7 5 6 NAND
TEXT: H .ENDS ONEBIT
TEXT: H
TEXT: H .SUBCKT TWOBIT 1 2 3 4 5 6 7 8 9
TEXT: H * NODES: INPUT - BIT0(2) / BIT1(2), OUTPUT - BIT0 / BIT1,
TEXT: H * CARRY-IN, CARRY-OUT, VCC
TEXT: H X1 1 2 7 5 10 9 ONEBIT
TEXT: H X2 3 4 10 6 8 9 ONEBIT
TEXT: H .ENDS TWOBIT
TEXT: H
TEXT: H .SUBCKT FOURBIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TEXT: H * NODES: INPUT - BIT0(2) / BIT1(2) / BIT2(2) / BIT3(2),
TEXT: H * OUTPUT - BIT0 / BIT1 / BIT2 / BIT3, CARRY-IN, CARRY-OUT, VCC
TEXT: H X1 1 2 3 4 9 10 13 16 15 TWOBIT
TEXT: H X2 5 6 7 8 11 12 16 14 15 TWOBIT
TEXT: H .ENDS FOURBIT
TEXT: H
TEXT: H *** DEFINE NOMINAL CIRCUIT
TEXT: H .MODEL DMOD D
TEXT: H .MODEL QMOD NPN(BF=75 RB=100 CJE=1PF CJC=3PF)
TEXT: H VCC 99 0 DC 5V
TEXT: H VIN1A 1 0 PULSE(0 3 0 10NS 10NS 10NS 50NS)
TEXT: H VIN1B 2 0 PULSE(0 3 0 10NS 10NS 20NS 100NS)
TEXT: H VIN2A 3 0 PULSE(0 3 0 10NS 10NS 40NS 200NS)
TEXT: H VIN2B 4 0 PULSE(0 3 0 10NS 10NS 80NS 400NS)
TEXT: H VIN3A 5 0 PULSE(0 3 0 10NS 10NS 160NS 800NS)
TEXT: H VIN3B 6 0 PULSE(0 3 0 10NS 10NS 320NS 1600NS)
TEXT: H VIN4A 7 0 PULSE(0 3 0 10NS 10NS 640NS 3200NS)
TEXT: H VIN4B 8 0 PULSE(0 3 0 10NS 10NS 1280NS 6400NS)
TEXT: H X1 1 2 3 4 5 6 7 8 9 10 11 12 0 13 99 FOURBIT
TEXT: H RBIT0 9 0 1K
TEXT: H RBIT1 10 0 1K
TEXT: H RBIT2 11 0 1K
TEXT: H RBIT3 12 0 1K
TEXT: H RCOUT 13 0 1K
TEXT: H
TEXT: H *** (FOR THOSE WITH MONEY (AND MEMORY) TO BURN)
TEXT: H .TRAN 1NS 6400NS
TEXT: H .END
TEXT: H
TEXT: H
TEXT: H
SUBJECT: Circuit 5
TITLE: Circuit 5: Transmission-Line Inverter
TEXT: H
TEXT: H _A._5. _C_i_r_c_u_i_t _5: _T_r_a_n_s_m_i_s_s_i_o_n-_L_i_n_e _I_n_v_e_r_t_e_r
TEXT: H
TEXT: H
TEXT: H The following deck simulates a transmission-line in-
TEXT: H verter. Two transmission-line elements are required since
TEXT: H two propagation modes are excited. In the case of a coaxial
TEXT: H line, the first line (T1) models the inner conductor with
TEXT: H respect to the shield, and the second line (T2) models the
TEXT: H shield with respect to the outside world.
TEXT: H
TEXT: H
TEXT: H TRANSMISSION-LINE INVERTER
TEXT: H V1 1 0 PULSE(0 1 0 0.1N)
TEXT: H R1 1 2 50
TEXT: H X1 2 0 0 4 TLINE
TEXT: H R2 4 0 50
TEXT: H
TEXT: H .SUBCKT TLINE 1 2 3 4
TEXT: H T1 1 2 3 4 Z0=50 TD=1.5NS
TEXT: H T2 2 0 4 0 Z0=100 TD=1NS
TEXT: H .ENDS TLINE
TEXT: H
TEXT: H .TRAN 0.1NS 20NS
TEXT: H .END
TEXT: H
TEXT: H
SUBJECT: APPENDIX B
TITLE: APPENDIX B: MODEL AND DEVICE PARAMETERS
TEXT: H
TEXT: H _B. _A_P_P_E_N_D_I_X _B: _M_O_D_E_L _A_N_D _D_E_V_I_C_E _P_A_R_A_M_E_T_E_R_S
TEXT: H
TEXT: H The following tables summarize the parameters available
TEXT: H on each of the devices and models in (note that for some
TEXT: H systems with limited memory, output parameters are not
TEXT: H available). There are several tables for each type of dev-
TEXT: H ice supported by . Input parameters to instances and models
TEXT: H are parameters that can occur on an instance or model defin-
TEXT: H ition line in the form "keyword=value" where "keyword" is
TEXT: H the parameter name as given in the tables. Default input
TEXT: H parameters (such as the resistance of a resistor or the
TEXT: H capacitance of a capacitor) obviously do not need the key-
TEXT: H word specified.
TEXT: H
TEXT: H Output parameters are those additional parameters which
TEXT: H are available for many types of instances for the output of
TEXT: H operating point and debugging information. These parameters
TEXT: H are specified as "@device[keyword]" and are available for
TEXT: H the most recent point computed or, if specified in a ".save"
TEXT: H statement, for an entire simulation as a normal output vec-
TEXT: H tor. Thus, to monitor the gate-to-source capacitance of a
TEXT: H MOSFET, a command
TEXT: H
TEXT: H save @m1[cgs]
TEXT: H
TEXT: H given before a transient simulation causes the specified
TEXT: H capacitance value to be saved at each timepoint, and a sub-
TEXT: H sequent command such as
TEXT: H
TEXT: H plot @m1[cgs]
TEXT: H
TEXT: H produces the desired plot. (Note that the show command does
TEXT: H not use this format).
TEXT: H
TEXT: H Some variables are listed as both input and output, and
TEXT: H their output simply returns the previously input value, or
TEXT: H the default value after the simulation has been run. Some
TEXT: H parameter are input only because the output system can not
TEXT: H handle variables of the given type yet, or the need for them
TEXT: H as output variables has not been apparent. Many such input
TEXT: H variables are available as output variables in a different
TEXT: H format, such as the initial condition vectors that can be
TEXT: H retrieved as individual initial condition values. Finally,
TEXT: H internally derived values are output only and are provided
TEXT: H for debugging and operating point output purposes.
TEXT: H
TEXT: H Please note that these tables do not provide the
TEXT: H detailed information available about the parameters provided
TEXT: H in the section on each device and model, but are provided as
TEXT: H a quick reference guide.
SUBTOPIC: NGSPICE:URC
SUBTOPIC: NGSPICE:ASRC
SUBTOPIC: NGSPICE:BJT
SUBTOPIC: NGSPICE:BSIM1
SUBTOPIC: NGSPICE:BSIM2
SUBTOPIC: NGSPICE:Capacitor
SUBTOPIC: NGSPICE:CCCS
SUBTOPIC: NGSPICE:CCVS
SUBTOPIC: NGSPICE:CSwitch
SUBTOPIC: NGSPICE:Diode
SUBTOPIC: NGSPICE:Inductor
SUBTOPIC: NGSPICE:mutual
SUBTOPIC: NGSPICE:Isource
SUBTOPIC: NGSPICE:JFET
SUBTOPIC: NGSPICE:LTRA
SUBTOPIC: NGSPICE:MES
SUBTOPIC: NGSPICE:Mos1
SUBTOPIC: NGSPICE:Mos2
SUBTOPIC: NGSPICE:Mos3
SUBTOPIC: NGSPICE:Mos6
SUBTOPIC: NGSPICE:Resistor
SUBTOPIC: NGSPICE:Switch
SUBTOPIC: NGSPICE:Tranline
SUBTOPIC: NGSPICE:VCCS
SUBTOPIC: NGSPICE:VCVS
SUBTOPIC: NGSPICE:Vsource
SUBJECT: URC
TITLE: URC: Uniform R.C. line
TEXT: H
TEXT: H _B._1. _U_R_C: _U_n_i_f_o_r_m _R._C. _l_i_n_e
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| URC - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| l Length of transmission line |
TEXT: H| n Number of lumps |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| URC - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| pos_node Positive node of URC |
TEXT: H| neg_node Negative node of URC |
TEXT: H| gnd Ground node of URC |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| URC - model parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| urc Uniform R.C. line model |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| URC - model parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| k Propagation constant |
TEXT: H| fmax Maximum frequency of interest |
TEXT: H| rperl Resistance per unit length |
TEXT: H| cperl Capacitance per unit length |
TEXT: H| isperl Saturation current per length |
TEXT: H| rsperl Diode resistance per length |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: ASRC
TITLE: ASRC: Arbitrary Source
TEXT: H
TEXT: H _B._2. _A_S_R_C: _A_r_b_i_t_r_a_r_y _S_o_u_r_c_e
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| ASRC - instance parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| i Current source |
TEXT: H| v Voltage source |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| ASRC - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| i Current through source |
TEXT: H| v Voltage across source |
TEXT: H| pos_node Positive Node |
TEXT: H| neg_node Negative Node |
TEXT: H ------------------------------------------------------------
SUBJECT: BJT
TITLE: BJT: Bipolar Junction Transistor
TEXT: H
TEXT: H _B._3. _B_J_T: _B_i_p_o_l_a_r _J_u_n_c_t_i_o_n _T_r_a_n_s_i_s_t_o_r
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| BJT - instance parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| ic Initial condition vector |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| BJT - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| off Device initially off |
TEXT: H| icvbe Initial B-E voltage |
TEXT: H| icvce Initial C-E voltage |
TEXT: H| area Area factor |
TEXT: H| temp instance temperature |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| BJT - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| colnode Number of collector node |
TEXT: H| basenode Number of base node |
TEXT: H| emitnode Number of emitter node |
TEXT: H| substnode Number of substrate node |
TEXT: H ------------------------------------------------------------
TEXT: H| colprimenode Internal collector node |
TEXT: H| baseprimenode Internal base node |
TEXT: H| emitprimenode Internal emitter node |
TEXT: H| ic Current at collector node |
TEXT: H|-----------------------------------------------------------+
TEXT: H ib Current at base node
TEXT: H| ie Emitter current |
TEXT: H| is Substrate current |
TEXT: H| vbe B-E voltage |
TEXT: H ------------------------------------------------------------
TEXT: H| vbc B-C voltage |
TEXT: H| gm Small signal transconductance |
TEXT: H| gpi Small signal input conductance - pi |
TEXT: H| gmu Small signal conductance - mu |
TEXT: H|-----------------------------------------------------------+
TEXT: H| gx Conductance from base to internal base |
TEXT: H| go Small signal output conductance |
TEXT: H| geqcb d(Ibe)/d(Vbc) |
TEXT: H| gccs Internal C-S cap. equiv. cond. |
TEXT: H ------------------------------------------------------------
TEXT: H| geqbx Internal C-B-base cap. equiv. cond. |
TEXT: H| cpi Internal base to emitter capactance |
TEXT: H| cmu Internal base to collector capactiance |
TEXT: H| cbx Base to collector capacitance |
TEXT: H|-----------------------------------------------------------+
TEXT: H| ccs Collector to substrate capacitance |
TEXT: H| cqbe Cap. due to charge storage in B-E jct. |
TEXT: H| cqbc Cap. due to charge storage in B-C jct. |
TEXT: H| cqcs Cap. due to charge storage in C-S jct. |
TEXT: H| cqbx Cap. due to charge storage in B-X jct. |
TEXT: H| _c_o_n_t_i_n_u_e_d |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| BJT - instance output-only parameters - _c_o_n_t_i_n_u_e_d
TEXT: H|-----------------------------------------------------------+
TEXT: H| cexbc Total Capacitance in B-X junction |
TEXT: H| qbe Charge storage B-E junction |
TEXT: H| qbc Charge storage B-C junction |
TEXT: H| qcs Charge storage C-S junction |
TEXT: H| qbx Charge storage B-X junction |
TEXT: H| p Power dissipation |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| BJT - model parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| npn NPN type device |
TEXT: H| pnp PNP type device |
TEXT: H| is Saturation Current |
TEXT: H| bf Ideal forward beta |
TEXT: H ------------------------------------------------------------
TEXT: H| nf Forward emission coefficient |
TEXT: H| vaf Forward Early voltage |
TEXT: H| va (null) |
TEXT: H| ikf Forward beta roll-off corner current |
TEXT: H|-----------------------------------------------------------+
TEXT: H| ik (null) |
TEXT: H| ise B-E leakage saturation current |
TEXT: H| ne B-E leakage emission coefficient |
TEXT: H| br Ideal reverse beta |
TEXT: H ------------------------------------------------------------
TEXT: H| nr Reverse emission coefficient |
TEXT: H| var Reverse Early voltage |
TEXT: H| vb (null) |
TEXT: H| ikr reverse beta roll-off corner current |
TEXT: H|-----------------------------------------------------------+
TEXT: H| isc B-C leakage saturation current |
TEXT: H| nc B-C leakage emission coefficient |
TEXT: H| rb Zero bias base resistance |
TEXT: H| irb Current for base resistance=(rb+rbm)/2 |
TEXT: H ------------------------------------------------------------
TEXT: H| rbm Minimum base resistance |
TEXT: H| re Emitter resistance |
TEXT: H| rc Collector resistance |
TEXT: H| cje Zero bias B-E depletion capacitance |
TEXT: H|-----------------------------------------------------------+
TEXT: H| vje B-E built in potential |
TEXT: H| pe (null) |
TEXT: H| mje B-E junction grading coefficient |
TEXT: H| me (null) |
TEXT: H ------------------------------------------------------------
TEXT: H| tf Ideal forward transit time |
TEXT: H| xtf Coefficient for bias dependence of TF |
TEXT: H| vtf Voltage giving VBC dependence of TF |
TEXT: H| itf High current dependence of TF |
TEXT: H|-----------------------------------------------------------+
TEXT: H| ptf Excess phase |
TEXT: H| cjc Zero bias B-C depletion capacitance |
TEXT: H| vjc B-C built in potential |
TEXT: H| _c_o_n_t_i_n_u_e_d |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| BJT - model input-output parameters - _c_o_n_t_i_n_u_e_d
TEXT: H|-----------------------------------------------------------+
TEXT: H| pc (null) |
TEXT: H| mjc B-C junction grading coefficient |
TEXT: H| mc (null) |
TEXT: H| xcjc Fraction of B-C cap to internal base |
TEXT: H ------------------------------------------------------------
TEXT: H| tr Ideal reverse transit time |
TEXT: H| cjs Zero bias C-S capacitance |
TEXT: H| ccs Zero bias C-S capacitance |
TEXT: H| vjs Substrate junction built in potential |
TEXT: H|-----------------------------------------------------------+
TEXT: H| ps (null) |
TEXT: H| mjs Substrate junction grading coefficient |
TEXT: H| ms (null) |
TEXT: H| xtb Forward and reverse beta temp. exp. |
TEXT: H ------------------------------------------------------------
TEXT: H| eg Energy gap for IS temp. dependency |
TEXT: H| xti Temp. exponent for IS |
TEXT: H| fc Forward bias junction fit parameter |
TEXT: H| tnom Parameter measurement temperature |
TEXT: H| kf Flicker Noise Coefficient |
TEXT: H| af Flicker Noise Exponent |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| BJT - model parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| type NPN or PNP |
TEXT: H| invearlyvoltf Inverse early voltage:forward |
TEXT: H| invearlyvoltr Inverse early voltage:reverse |
TEXT: H| invrollofff Inverse roll off - forward |
TEXT: H ------------------------------------------------------------
TEXT: H| invrolloffr Inverse roll off - reverse |
TEXT: H| collectorconduct Collector conductance |
TEXT: H| emitterconduct Emitter conductance |
TEXT: H| transtimevbcfact Transit time VBC factor |
TEXT: H| excessphasefactor Excess phase fact. |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: BSIM1
TITLE: BSIM1: Berkeley Short Channel IGFET Model
TEXT: H
TEXT: H _B._4. _B_S_I_M_1: _B_e_r_k_e_l_e_y _S_h_o_r_t _C_h_a_n_n_e_l _I_G_F_E_T _M_o_d_e_l
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| BSIM1 - instance parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| ic Vector of DS,GS,BS initial voltages |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| BSIM1 - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| l Length |
TEXT: H| w Width |
TEXT: H| ad Drain area |
TEXT: H| as Source area |
TEXT: H ------------------------------------------------------------
TEXT: H| pd Drain perimeter |
TEXT: H| ps Source perimeter |
TEXT: H| nrd Number of squares in drain |
TEXT: H| nrs Number of squares in source |
TEXT: H|-----------------------------------------------------------+
TEXT: H| off Device is initially off |
TEXT: H| vds Initial D-S voltage |
TEXT: H| vgs Initial G-S voltage |
TEXT: H| vbs Initial B-S voltage |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| BSIM1 - model parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| nmos Flag to indicate NMOS |
TEXT: H| pmos Flag to indicate PMOS |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| BSIM1 - model parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| vfb Flat band voltage |
TEXT: H lvfb Length dependence of vfb
TEXT: H| wvfb Width dependence of vfb |
TEXT: H| phi Strong inversion surface potential |
TEXT: H ------------------------------------------------------------
TEXT: H| lphi Length dependence of phi |
TEXT: H| wphi Width dependence of phi |
TEXT: H| k1 Bulk effect coefficient 1 |
TEXT: H| lk1 Length dependence of k1 |
TEXT: H|-----------------------------------------------------------+
TEXT: H| wk1 Width dependence of k1 |
TEXT: H| k2 Bulk effect coefficient 2 |
TEXT: H| lk2 Length dependence of k2 |
TEXT: H| wk2 Width dependence of k2 |
TEXT: H ------------------------------------------------------------
TEXT: H| eta VDS dependence of threshold voltage |
TEXT: H| leta Length dependence of eta |
TEXT: H| weta Width dependence of eta |
TEXT: H| x2e VBS dependence of eta |
TEXT: H| lx2e Length dependence of x2e |
TEXT: H| _c_o_n_t_i_n_u_e_d |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ---------------------------------------------------------------------
TEXT: H| BSIM1 - model input-output parameters - _c_o_n_t_i_n_u_e_d|
TEXT: H|--------------------------------------------------------------------+
TEXT: H|wx2e Width dependence of x2e |
TEXT: H|x3e VDS dependence of eta |
TEXT: H|lx3e Length dependence of x3e |
TEXT: H|wx3e Width dependence of x3e |
TEXT: H ---------------------------------------------------------------------
TEXT: H|dl Channel length reduction in um |
TEXT: H|dw Channel width reduction in um |
TEXT: H|muz Zero field mobility at VDS=0 VGS=VTH |
TEXT: H|x2mz VBS dependence of muz |
TEXT: H|--------------------------------------------------------------------+
TEXT: H|lx2mz Length dependence of x2mz |
TEXT: H|wx2mz Width dependence of x2mz |
TEXT: H mus Mobility at VDS=VDD VGS=VTH, channel length modulation
TEXT: H|lmus Length dependence of mus |
TEXT: H ---------------------------------------------------------------------
TEXT: H|wmus Width dependence of mus |
TEXT: H|x2ms VBS dependence of mus |
TEXT: H|lx2ms Length dependence of x2ms |
TEXT: H|wx2ms Width dependence of x2ms |
TEXT: H|--------------------------------------------------------------------+
TEXT: H|x3ms VDS dependence of mus |
TEXT: H|lx3ms Length dependence of x3ms |
TEXT: H|wx3ms Width dependence of x3ms |
TEXT: H|u0 VGS dependence of mobility |
TEXT: H ---------------------------------------------------------------------
TEXT: H|lu0 Length dependence of u0 |
TEXT: H|wu0 Width dependence of u0 |
TEXT: H|x2u0 VBS dependence of u0 |
TEXT: H|lx2u0 Length dependence of x2u0 |
TEXT: H|--------------------------------------------------------------------+
TEXT: H|wx2u0 Width dependence of x2u0 |
TEXT: H|u1 VDS depence of mobility, velocity saturation |
TEXT: H|lu1 Length dependence of u1 |
TEXT: H|wu1 Width dependence of u1 |
TEXT: H ---------------------------------------------------------------------
TEXT: H|x2u1 VBS depence of u1 |
TEXT: H|lx2u1 Length depence of x2u1 |
TEXT: H|wx2u1 Width depence of x2u1 |
TEXT: H|x3u1 VDS depence of u1 |
TEXT: H|--------------------------------------------------------------------+
TEXT: H|lx3u1 Length dependence of x3u1 |
TEXT: H|wx3u1 Width depence of x3u1 |
TEXT: H|n0 Subthreshold slope |
TEXT: H ln0 Length dependence of n0
TEXT: H ---------------------------------------------------------------------
TEXT: H|wn0 Width dependence of n0 |
TEXT: H|nb VBS dependence of subthreshold slope |
TEXT: H|lnb Length dependence of nb |
TEXT: H|wnb Width dependence of nb |
TEXT: H|--------------------------------------------------------------------+
TEXT: H|nd VDS dependence of subthreshold slope |
TEXT: H|lnd Length dependence of nd |
TEXT: H|wnd Width dependence of nd |
TEXT: H| _c_o_n_t_i_n_u_e_d |
TEXT: H ---------------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ---------------------------------------------------------------------------
TEXT: H| BSIM1 - model input-output parameters - _c_o_n_t_i_n_u_e_d |
TEXT: H|--------------------------------------------------------------------------+
TEXT: H|tox Gate oxide thickness in um |
TEXT: H|temp Temperature in degree Celcius |
TEXT: H|vdd Supply voltage to specify mus |
TEXT: H|cgso Gate source overlap capacitance per unit channel width(m) |
TEXT: H ---------------------------------------------------------------------------
TEXT: H|cgdo Gate drain overlap capacitance per unit channel width(m) |
TEXT: H|cgbo Gate bulk overlap capacitance per unit channel length(m) |
TEXT: H|xpart Flag for channel charge partitioning |
TEXT: H|rsh Source drain diffusion sheet resistance in ohm per square |
TEXT: H|--------------------------------------------------------------------------+
TEXT: H|js Source drain junction saturation current per unit area |
TEXT: H|pb Source drain junction built in potential |
TEXT: H mj Source drain bottom junction capacitance grading coefficient
TEXT: H|pbsw Source drain side junction capacitance built in potential |
TEXT: H ---------------------------------------------------------------------------
TEXT: H|mjsw Source drain side junction capacitance grading coefficient |
TEXT: H|cj Source drain bottom junction capacitance per unit area |
TEXT: H|cjsw Source drain side junction capacitance per unit area |
TEXT: H|wdf Default width of source drain diffusion in um |
TEXT: H|dell Length reduction of source drain diffusion |
TEXT: H ---------------------------------------------------------------------------
TEXT: H
SUBJECT: BSIM2
TITLE: BSIM2: Berkeley Short Channel IGFET Model
TEXT: H
TEXT: H _B._5. _B_S_I_M_2: _B_e_r_k_e_l_e_y _S_h_o_r_t _C_h_a_n_n_e_l _I_G_F_E_T _M_o_d_e_l
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| BSIM2 - instance parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| ic Vector of DS,GS,BS initial voltages |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| BSIM2 - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| l Length |
TEXT: H| w Width |
TEXT: H| ad Drain area |
TEXT: H| as Source area |
TEXT: H ------------------------------------------------------------
TEXT: H| pd Drain perimeter |
TEXT: H| ps Source perimeter |
TEXT: H| nrd Number of squares in drain |
TEXT: H| nrs Number of squares in source |
TEXT: H|-----------------------------------------------------------+
TEXT: H| off Device is initially off |
TEXT: H| vds Initial D-S voltage |
TEXT: H| vgs Initial G-S voltage |
TEXT: H| vbs Initial B-S voltage |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| BSIM2 - model parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| nmos Flag to indicate NMOS |
TEXT: H| pmos Flag to indicate PMOS |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| BSIM2 - model parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H|vfb Flat band voltage |
TEXT: H|lvfb Length dependence of vfb |
TEXT: H|wvfb Width dependence of vfb |
TEXT: H|phi Strong inversion surface potential |
TEXT: H ------------------------------------------------------------
TEXT: H|lphi Length dependence of phi |
TEXT: H|wphi Width dependence of phi |
TEXT: H|k1 Bulk effect coefficient 1 |
TEXT: H|lk1 Length dependence of k1 |
TEXT: H|-----------------------------------------------------------+
TEXT: H|wk1 Width dependence of k1 |
TEXT: H|k2 Bulk effect coefficient 2 |
TEXT: H|lk2 Length dependence of k2 |
TEXT: H|wk2 Width dependence of k2 |
TEXT: H ------------------------------------------------------------
TEXT: H|eta0 VDS dependence of threshold voltage at VDD=0
TEXT: H|leta0 Length dependence of eta0 |
TEXT: H|weta0 Width dependence of eta0 |
TEXT: H|etab VBS dependence of eta |
TEXT: H|-----------------------------------------------------------+
TEXT: H|letab Length dependence of etab |
TEXT: H|wetab Width dependence of etab |
TEXT: H|dl Channel length reduction in um |
TEXT: H|dw Channel width reduction in um |
TEXT: H ------------------------------------------------------------
TEXT: H|mu0 Low-field mobility, at VDS=0 VGS=VTH |
TEXT: H|mu0b VBS dependence of low-field mobility |
TEXT: H|lmu0b Length dependence of mu0b |
TEXT: H|wmu0b Width dependence of mu0b |
TEXT: H|-----------------------------------------------------------+
TEXT: H|mus0 Mobility at VDS=VDD VGS=VTH |
TEXT: H|lmus0 Length dependence of mus0 |
TEXT: H|wmus0 Width dependence of mus |
TEXT: H|musb VBS dependence of mus |
TEXT: H ------------------------------------------------------------
TEXT: H|lmusb Length dependence of musb |
TEXT: H|wmusb Width dependence of musb |
TEXT: H|mu20 VDS dependence of mu in tanh term |
TEXT: H|lmu20 Length dependence of mu20 |
TEXT: H|-----------------------------------------------------------+
TEXT: H|wmu20 Width dependence of mu20 |
TEXT: H|mu2b VBS dependence of mu2 |
TEXT: H|lmu2b Length dependence of mu2b |
TEXT: H|wmu2b Width dependence of mu2b |
TEXT: H ------------------------------------------------------------
TEXT: H|mu2g VGS dependence of mu2 |
TEXT: H| _c_o_n_t_i_n_u_e_d |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| BSIM2 - model input-output parameters - _c_o_n_t_i_n_u_e_d
TEXT: H|-----------------------------------------------------------+
TEXT: H| lmu2g Length dependence of mu2g |
TEXT: H| wmu2g Width dependence of mu2g |
TEXT: H| mu30 VDS dependence of mu in linear term |
TEXT: H| lmu30 Length dependence of mu30 |
TEXT: H ------------------------------------------------------------
TEXT: H| wmu30 Width dependence of mu30 |
TEXT: H| mu3b VBS dependence of mu3 |
TEXT: H| lmu3b Length dependence of mu3b |
TEXT: H| wmu3b Width dependence of mu3b |
TEXT: H|-----------------------------------------------------------+
TEXT: H| mu3g VGS dependence of mu3 |
TEXT: H| lmu3g Length dependence of mu3g |
TEXT: H| wmu3g Width dependence of mu3g |
TEXT: H| mu40 VDS dependence of mu in linear term |
TEXT: H ------------------------------------------------------------
TEXT: H| lmu40 Length dependence of mu40 |
TEXT: H| wmu40 Width dependence of mu40 |
TEXT: H| mu4b VBS dependence of mu4 |
TEXT: H| lmu4b Length dependence of mu4b |
TEXT: H|-----------------------------------------------------------+
TEXT: H| wmu4b Width dependence of mu4b |
TEXT: H| mu4g VGS dependence of mu4 |
TEXT: H| lmu4g Length dependence of mu4g |
TEXT: H| wmu4g Width dependence of mu4g |
TEXT: H ------------------------------------------------------------
TEXT: H| ua0 Linear VGS dependence of mobility |
TEXT: H| lua0 Length dependence of ua0 |
TEXT: H| wua0 Width dependence of ua0 |
TEXT: H| uab VBS dependence of ua |
TEXT: H|-----------------------------------------------------------+
TEXT: H| luab Length dependence of uab |
TEXT: H| wuab Width dependence of uab |
TEXT: H| ub0 Quadratic VGS dependence of mobility |
TEXT: H| lub0 Length dependence of ub0 |
TEXT: H ------------------------------------------------------------
TEXT: H| wub0 Width dependence of ub0 |
TEXT: H| ubb VBS dependence of ub |
TEXT: H| lubb Length dependence of ubb |
TEXT: H| wubb Width dependence of ubb |
TEXT: H|-----------------------------------------------------------+
TEXT: H| u10 VDS depence of mobility |
TEXT: H| lu10 Length dependence of u10 |
TEXT: H wu10 Width dependence of u10
TEXT: H| u1b VBS depence of u1 |
TEXT: H ------------------------------------------------------------
TEXT: H| lu1b Length depence of u1b |
TEXT: H| wu1b Width depence of u1b |
TEXT: H| u1d VDS depence of u1 |
TEXT: H| lu1d Length depence of u1d |
TEXT: H|-----------------------------------------------------------+
TEXT: H| wu1d Width depence of u1d |
TEXT: H| n0 Subthreshold slope at VDS=0 VBS=0 |
TEXT: H| ln0 Length dependence of n0 |
TEXT: H| _c_o_n_t_i_n_u_e_d |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------------------
TEXT: H| BSIM2 - model input-output parameters - _c_o_n_t_i_n_u_e_d |
TEXT: H|-----------------------------------------------------------------------+
TEXT: H|wn0 Width dependence of n0 |
TEXT: H|nb VBS dependence of n |
TEXT: H|lnb Length dependence of nb |
TEXT: H|wnb Width dependence of nb |
TEXT: H ------------------------------------------------------------------------
TEXT: H|nd VDS dependence of n |
TEXT: H|lnd Length dependence of nd |
TEXT: H|wnd Width dependence of nd |
TEXT: H|vof0 Threshold voltage offset AT VDS=0 VBS=0 |
TEXT: H|-----------------------------------------------------------------------+
TEXT: H|lvof0 Length dependence of vof0 |
TEXT: H|wvof0 Width dependence of vof0 |
TEXT: H|vofb VBS dependence of vof |
TEXT: H|lvofb Length dependence of vofb |
TEXT: H ------------------------------------------------------------------------
TEXT: H|wvofb Width dependence of vofb |
TEXT: H|vofd VDS dependence of vof |
TEXT: H|lvofd Length dependence of vofd |
TEXT: H|wvofd Width dependence of vofd |
TEXT: H|-----------------------------------------------------------------------+
TEXT: H|ai0 Pre-factor of hot-electron effect. |
TEXT: H|lai0 Length dependence of ai0 |
TEXT: H|wai0 Width dependence of ai0 |
TEXT: H|aib VBS dependence of ai |
TEXT: H ------------------------------------------------------------------------
TEXT: H|laib Length dependence of aib |
TEXT: H|waib Width dependence of aib |
TEXT: H|bi0 Exponential factor of hot-electron effect. |
TEXT: H|lbi0 Length dependence of bi0 |
TEXT: H|-----------------------------------------------------------------------+
TEXT: H|wbi0 Width dependence of bi0 |
TEXT: H|bib VBS dependence of bi |
TEXT: H|lbib Length dependence of bib |
TEXT: H|wbib Width dependence of bib |
TEXT: H ------------------------------------------------------------------------
TEXT: H|vghigh Upper bound of the cubic spline function. |
TEXT: H|lvghigh Length dependence of vghigh |
TEXT: H|wvghigh Width dependence of vghigh |
TEXT: H|vglow Lower bound of the cubic spline function. |
TEXT: H|-----------------------------------------------------------------------+
TEXT: H|lvglow Length dependence of vglow |
TEXT: H|wvglow Width dependence of vglow |
TEXT: H|tox Gate oxide thickness in um |
TEXT: H|temp Temperature in degree Celcius |
TEXT: H ------------------------------------------------------------------------
TEXT: H|vdd Maximum Vds |
TEXT: H|vgg Maximum Vgs |
TEXT: H|vbb Maximum Vbs |
TEXT: H|cgso Gate source overlap capacitance per unit channel width(m)
TEXT: H|-----------------------------------------------------------------------+
TEXT: H|cgdo Gate drain overlap capacitance per unit channel width(m)|
TEXT: H|cgbo Gate bulk overlap capacitance per unit channel length(m)|
TEXT: H|xpart Flag for channel charge partitioning |
TEXT: H| _c_o_n_t_i_n_u_e_d |
TEXT: H ------------------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ---------------------------------------------------------------------------
TEXT: H| BSIM2 - model input-output parameters - _c_o_n_t_i_n_u_e_d |
TEXT: H|--------------------------------------------------------------------------+
TEXT: H|rsh Source drain diffusion sheet resistance in ohm per square |
TEXT: H|js Source drain junction saturation current per unit area |
TEXT: H|pb Source drain junction built in potential |
TEXT: H mj Source drain bottom junction capacitance grading coefficient
TEXT: H| |
TEXT: H ---------------------------------------------------------------------------
TEXT: H|pbsw Source drain side junction capacitance built in potential |
TEXT: H|mjsw Source drain side junction capacitance grading coefficient |
TEXT: H|cj Source drain bottom junction capacitance per unit area |
TEXT: H|cjsw Source drain side junction capacitance per unit area |
TEXT: H|wdf Default width of source drain diffusion in um |
TEXT: H|dell Length reduction of source drain diffusion |
TEXT: H ---------------------------------------------------------------------------
TEXT: H
SUBJECT: Capacitor
TITLE: Capacitor: Fixed capacitor
TEXT: H
TEXT: H _B._6. _C_a_p_a_c_i_t_o_r: _F_i_x_e_d _c_a_p_a_c_i_t_o_r
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Capacitor - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| capacitance Device capacitance |
TEXT: H| ic Initial capacitor voltage |
TEXT: H| w Device width |
TEXT: H| l Device length |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Capacitor - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| i Device current |
TEXT: H| p Instantaneous device power |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Capacitor - model parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| c Capacitor model |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Capacitor - model parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| cj Bottom Capacitance per area |
TEXT: H| cjsw Sidewall capacitance per meter |
TEXT: H| defw Default width |
TEXT: H| narrow width correction factor |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: CCCS
TITLE: CCCS: Current controlled current source
TEXT: H
TEXT: H _B._7. _C_C_C_S: _C_u_r_r_e_n_t _c_o_n_t_r_o_l_l_e_d _c_u_r_r_e_n_t _s_o_u_r_c_e
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| CCCS - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| gain Gain of source |
TEXT: H| control Name of controlling source |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| CCCS - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| neg_node Negative node of source |
TEXT: H| pos_node Positive node of source |
TEXT: H| i CCCS output current |
TEXT: H| v CCCS voltage at output |
TEXT: H| p CCCS power |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: CCVS
TITLE: CCVS: Linear current controlled current source
TEXT: H
TEXT: H _B._8. _C_C_V_S: _L_i_n_e_a_r _c_u_r_r_e_n_t _c_o_n_t_r_o_l_l_e_d _c_u_r_r_e_n_t _s_o_u_r_c_e
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| CCVS - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| gain Transresistance (gain) |
TEXT: H| control Controlling voltage source |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| CCVS - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| pos_node Positive node of source |
TEXT: H| neg_node Negative node of source |
TEXT: H| i CCVS output current |
TEXT: H| v CCVS output voltage |
TEXT: H| p CCVS power |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: CSwitch
TITLE: CSwitch: Current controlled ideal switch
TEXT: H
TEXT: H _B._9. _C_S_w_i_t_c_h: _C_u_r_r_e_n_t _c_o_n_t_r_o_l_l_e_d _i_d_e_a_l _s_w_i_t_c_h
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| CSwitch - instance parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| on Initially closed |
TEXT: H| off Initially open |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| CSwitch - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| control Name of controlling source |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| CSwitch - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| pos_node Positive node of switch |
TEXT: H| neg_node Negative node of switch |
TEXT: H| i Switch current |
TEXT: H| p Instantaneous power |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| CSwitch - model parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| csw Current controlled switch model |
TEXT: H| it Threshold current |
TEXT: H| ih Hysterisis current |
TEXT: H| ron Closed resistance |
TEXT: H| roff Open resistance |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| CSwitch - model parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| gon Closed conductance |
TEXT: H| goff Open conductance |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: Diode
TITLE: Diode: Junction Diode model
TEXT: H
TEXT: H _B._1_0. _D_i_o_d_e: _J_u_n_c_t_i_o_n _D_i_o_d_e _m_o_d_e_l
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Diode - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| off Initially off |
TEXT: H| temp Instance temperature |
TEXT: H| ic Initial device voltage |
TEXT: H| area Area factor |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Diode - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| vd Diode voltage |
TEXT: H| id Diode current |
TEXT: H| c Diode current |
TEXT: H| gd Diode conductance |
TEXT: H ------------------------------------------------------------
TEXT: H| cd Diode capacitance |
TEXT: H| charge Diode capacitor charge |
TEXT: H| capcur Diode capacitor current |
TEXT: H| p Diode power |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Diode - model parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| d Diode model |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Diode - model parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| is Saturation current |
TEXT: H| tnom Parameter measurement temperature |
TEXT: H| rs Ohmic resistance |
TEXT: H| n Emission Coefficient |
TEXT: H ------------------------------------------------------------
TEXT: H| tt Transit Time |
TEXT: H| cjo Junction capacitance |
TEXT: H| cj0 (null) |
TEXT: H| vj Junction potential |
TEXT: H|-----------------------------------------------------------+
TEXT: H| m Grading coefficient |
TEXT: H| eg Activation energy |
TEXT: H| xti Saturation current temperature exp. |
TEXT: H| kf flicker noise coefficient |
TEXT: H ------------------------------------------------------------
TEXT: H| af flicker noise exponent |
TEXT: H| fc Forward bias junction fit parameter |
TEXT: H| bv Reverse breakdown voltage |
TEXT: H| ibv Current at reverse breakdown voltage |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Diode - model parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| cond Ohmic conductance |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: Inductor
TITLE: Inductor: Inductors
TEXT: H
TEXT: H _B._1_1. _I_n_d_u_c_t_o_r: _I_n_d_u_c_t_o_r_s
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Inductor - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| inductance Inductance of inductor |
TEXT: H| ic Initial current through inductor |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H -------------------------------------------------------------
TEXT: H| Inductor - instance parameters (output-only) |
TEXT: H|------------------------------------------------------------+
TEXT: H|flux Flux through inductor |
TEXT: H|v Terminal voltage of inductor |
TEXT: H|volt |
TEXT: H|i Current through the inductor |
TEXT: H|current |
TEXT: H p instantaneous power dissipated by the inductor
TEXT: H| |
TEXT: H -------------------------------------------------------------
TEXT: H
SUBJECT: mutual
TITLE: mutual: Mutual inductors
TEXT: H
TEXT: H _B._1_2. _m_u_t_u_a_l: _M_u_t_u_a_l _i_n_d_u_c_t_o_r_s
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| mutual - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| k Mutual inductance |
TEXT: H| coefficient (null) |
TEXT: H| inductor1 First coupled inductor |
TEXT: H| inductor2 Second coupled inductor |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: Isource
TITLE: Isource: Independent current source
TEXT: H
TEXT: H _B._1_3. _I_s_o_u_r_c_e: _I_n_d_e_p_e_n_d_e_n_t _c_u_r_r_e_n_t _s_o_u_r_c_e
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Isource - instance parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| pulse Pulse description |
TEXT: H| sine Sinusoidal source description |
TEXT: H| sin Sinusoidal source description |
TEXT: H| exp Exponential source description |
TEXT: H ------------------------------------------------------------
TEXT: H| pwl Piecewise linear description |
TEXT: H| sffm single freq. FM description |
TEXT: H| ac AC magnitude,phase vector |
TEXT: H| c Current through current source |
TEXT: H| distof1 f1 input for distortion |
TEXT: H| distof2 f2 input for distortion |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Isource - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| dc DC value of source |
TEXT: H| acmag AC magnitude |
TEXT: H| acphase AC phase |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Isource - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| neg_node Negative node of source |
TEXT: H| pos_node Positive node of source |
TEXT: H acreal AC real part
TEXT: H| acimag AC imaginary part |
TEXT: H ------------------------------------------------------------
TEXT: H| function Function of the source |
TEXT: H| order Order of the source function |
TEXT: H| coeffs Coefficients of the source |
TEXT: H| v Voltage across the supply |
TEXT: H| p Power supplied by the source |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: JFET
TITLE: JFET: Junction Field effect transistor
TEXT: H
TEXT: H _B._1_4. _J_F_E_T: _J_u_n_c_t_i_o_n _F_i_e_l_d _e_f_f_e_c_t _t_r_a_n_s_i_s_t_o_r
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| JFET - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| off Device initially off |
TEXT: H| ic Initial VDS,VGS vector |
TEXT: H| area Area factor |
TEXT: H| ic-vds Initial D-S voltage |
TEXT: H| ic-vgs Initial G-S volrage |
TEXT: H| temp Instance temperature |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ---------------------------------------------------------------
TEXT: H| JFET - instance parameters (output-only) |
TEXT: H|--------------------------------------------------------------+
TEXT: H|drain-node Number of drain node |
TEXT: H|gate-node Number of gate node |
TEXT: H|source-node Number of source node |
TEXT: H|drain-prime-node Internal drain node |
TEXT: H ---------------------------------------------------------------
TEXT: H|source-prime-nodeInternal source node |
TEXT: H|vgs Voltage G-S |
TEXT: H|vgd Voltage G-D |
TEXT: H|ig Current at gate node |
TEXT: H|--------------------------------------------------------------+
TEXT: H|id Current at drain node |
TEXT: H|is Source current |
TEXT: H|igd Current G-D |
TEXT: H|gm Transconductance |
TEXT: H ---------------------------------------------------------------
TEXT: H|gds Conductance D-S |
TEXT: H|ggs Conductance G-S |
TEXT: H|ggd Conductance G-D |
TEXT: H|qgs Charge storage G-S junction |
TEXT: H|--------------------------------------------------------------+
TEXT: H|qgd Charge storage G-D junction |
TEXT: H cqgs Capacitance due to charge storage G-S junction
TEXT: H| |
TEXT: H cqgd Capacitance due to charge storage G-D junction
TEXT: H|p Power dissipated by the JFET |
TEXT: H ---------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| JFET - model parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| njf N type JFET model |
TEXT: H| pjf P type JFET model |
TEXT: H| vt0 Threshold voltage |
TEXT: H| vto (null) |
TEXT: H ------------------------------------------------------------
TEXT: H| beta Transconductance parameter |
TEXT: H| lambda Channel length modulation param. |
TEXT: H| rd Drain ohmic resistance |
TEXT: H| rs Source ohmic resistance |
TEXT: H| cgs G-S junction capactance |
TEXT: H| _c_o_n_t_i_n_u_e_d |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| JFET - model input-output parameters - _c_o_n_t_i_n_u_e_d
TEXT: H|-----------------------------------------------------------+
TEXT: H| cgd G-D junction cap |
TEXT: H| pb Gate junction potential |
TEXT: H| is Gate junction saturation current |
TEXT: H| fc Forward bias junction fit parm. |
TEXT: H ------------------------------------------------------------
TEXT: H| b Doping tail parameter |
TEXT: H| tnom parameter measurement temperature |
TEXT: H| kf Flicker Noise Coefficient |
TEXT: H| af Flicker Noise Exponent |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| JFET - model parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| type N-type or P-type JFET model |
TEXT: H| gd Drain conductance |
TEXT: H| gs Source conductance |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: LTRA
TITLE: LTRA: Lossy transmission line
TEXT: H
TEXT: H _B._1_5. _L_T_R_A: _L_o_s_s_y _t_r_a_n_s_m_i_s_s_i_o_n _l_i_n_e
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| LTRA - instance parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| ic Initial condition vector:v1,i1,v2,i2 |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| LTRA - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| v1 Initial voltage at end 1 |
TEXT: H| v2 Initial voltage at end 2 |
TEXT: H| i1 Initial current at end 1 |
TEXT: H| i2 Initial current at end 2 |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| LTRA - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| pos_node1 Positive node of end 1 of t-line |
TEXT: H| neg_node1 Negative node of end 1 of t.line |
TEXT: H| pos_node2 Positive node of end 2 of t-line |
TEXT: H| neg_node2 Negative node of end 2 of t-line |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| LTRA - model parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H|ltra LTRA model |
TEXT: H|r Resistance per metre |
TEXT: H|l Inductance per metre |
TEXT: H|g (null) |
TEXT: H ------------------------------------------------------------
TEXT: H|c Capacitance per metre |
TEXT: H|len length of line |
TEXT: H|nocontrol No timestep control |
TEXT: H|steplimit always limit timestep to 0.8*(delay of line)
TEXT: H| _c_o_n_t_i_n_u_e_d |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H -----------------------------------------------------------------------------------
TEXT: H| LTRA - model input-output parameters - _c_o_n_t_i_n_u_e_d |
TEXT: H|----------------------------------------------------------------------------------+
TEXT: H|nosteplimit don't always limit timestep to 0.8*(delay of line) |
TEXT: H|lininterp use linear interpolation |
TEXT: H|quadinterp use quadratic interpolation |
TEXT: H|mixedinterp use linear interpolation if quadratic results look unacceptable |
TEXT: H -----------------------------------------------------------------------------------
TEXT: H|truncnr use N-R iterations for step calculation in LTRAtrunc |
TEXT: H|truncdontcut don't limit timestep to keep impulse response calculation errors low
TEXT: H|compactrel special reltol for straight line checking |
TEXT: H|compactabs special abstol for straight line checking |
TEXT: H -----------------------------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| LTRA - model parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| rel Rel. rate of change of deriv. for bkpt |
TEXT: H| abs Abs. rate of change of deriv. for bkpt |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: MES
TITLE: MES: GaAs MESFET model
TEXT: H
TEXT: H _B._1_6. _M_E_S: _G_a_A_s _M_E_S_F_E_T _m_o_d_e_l
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| MES - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| area Area factor |
TEXT: H| icvds Initial D-S voltage |
TEXT: H| icvgs Initial G-S voltage |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| MES - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H|off Device initially off |
TEXT: H|dnode Number of drain node |
TEXT: H|gnode Number of gate node |
TEXT: H|snode Number of source node |
TEXT: H ------------------------------------------------------------
TEXT: H|dprimenode Number of internal drain node |
TEXT: H|sprimenode Number of internal source node |
TEXT: H|vgs Gate-Source voltage |
TEXT: H|vgd Gate-Drain voltage |
TEXT: H|-----------------------------------------------------------+
TEXT: H|cg Gate capacitance |
TEXT: H|cd Drain capacitance |
TEXT: H|cgd Gate-Drain capacitance |
TEXT: H|gm Transconductance |
TEXT: H ------------------------------------------------------------
TEXT: H|gds Drain-Source conductance |
TEXT: H|ggs Gate-Source conductance |
TEXT: H|ggd Gate-Drain conductance |
TEXT: H|cqgs Capacitance due to gate-source charge storage
TEXT: H|-----------------------------------------------------------+
TEXT: H|cqgd Capacitance due to gate-drain charge storage|
TEXT: H|qgs Gate-Source charge storage |
TEXT: H|qgd Gate-Drain charge storage |
TEXT: H|is Source current |
TEXT: H| _c_o_n_t_i_n_u_e_d |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| MES - instance output-only parameters - _c_o_n_t_i_n_u_e_d
TEXT: H|-----------------------------------------------------------+
TEXT: H| p Power dissipated by the mesfet |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| MES - model parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| nmf N type MESfet model |
TEXT: H| pmf P type MESfet model |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| MES - model parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| vt0 Pinch-off voltage |
TEXT: H| vto (null) |
TEXT: H| alpha Saturation voltage parameter |
TEXT: H| beta Transconductance parameter |
TEXT: H ------------------------------------------------------------
TEXT: H| lambda Channel length modulation parm. |
TEXT: H| b Doping tail extending parameter |
TEXT: H| rd Drain ohmic resistance |
TEXT: H| rs Source ohmic resistance |
TEXT: H|-----------------------------------------------------------+
TEXT: H| cgs G-S junction capacitance |
TEXT: H| cgd G-D junction capacitance |
TEXT: H| pb Gate junction potential |
TEXT: H| is Junction saturation current |
TEXT: H ------------------------------------------------------------
TEXT: H| fc Forward bias junction fit parm. |
TEXT: H| kf Flicker noise coefficient |
TEXT: H| af Flicker noise exponent |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| MES - model parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| type N-type or P-type MESfet model |
TEXT: H| gd Drain conductance |
TEXT: H| gs Source conductance |
TEXT: H| depl_cap Depletion capacitance |
TEXT: H| vcrit Critical voltage |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: Mos1
TITLE: Mos1: Level 1 MOSfet model with Meyer capacitance model
TEXT: H
TEXT: H _B._1_7. _M_o_s_1: _L_e_v_e_l _1 _M_O_S_f_e_t _m_o_d_e_l _w_i_t_h _M_e_y_e_r _c_a_p_a_c_i_t_a_n_c_e
TEXT: H _m_o_d_e_l
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos1 - instance parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| off Device initially off |
TEXT: H| ic Vector of D-S, G-S, B-S voltages |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos1 - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| l Length |
TEXT: H| w Width |
TEXT: H| ad Drain area |
TEXT: H| as Source area |
TEXT: H ------------------------------------------------------------
TEXT: H| pd Drain perimeter |
TEXT: H| ps Source perimeter |
TEXT: H| nrd Drain squares |
TEXT: H| nrs Source squares |
TEXT: H|-----------------------------------------------------------+
TEXT: H| icvds Initial D-S voltage |
TEXT: H| icvgs Initial G-S voltage |
TEXT: H| icvbs Initial B-S voltage |
TEXT: H| temp Instance temperature |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos1 - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| id Drain current |
TEXT: H| is Source current |
TEXT: H| ig Gate current |
TEXT: H| ib Bulk current |
TEXT: H ------------------------------------------------------------
TEXT: H| ibd B-D junction current |
TEXT: H| ibs B-S junction current |
TEXT: H| vgs Gate-Source voltage |
TEXT: H| vds Drain-Source voltage |
TEXT: H|-----------------------------------------------------------+
TEXT: H| vbs Bulk-Source voltage |
TEXT: H| vbd Bulk-Drain voltage |
TEXT: H| dnode Number of the drain node |
TEXT: H| gnode Number of the gate node |
TEXT: H ------------------------------------------------------------
TEXT: H| snode Number of the source node |
TEXT: H| bnode Number of the node |
TEXT: H| dnodeprime Number of int. drain node |
TEXT: H| snodeprime Number of int. source node |
TEXT: H|-----------------------------------------------------------+
TEXT: H| von |
TEXT: H| vdsat Saturation drain voltage |
TEXT: H| sourcevcrit Critical source voltage |
TEXT: H| drainvcrit Critical drain voltage |
TEXT: H| rs Source resistance |
TEXT: H| _c_o_n_t_i_n_u_e_d |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H --------------------------------------------------------------
TEXT: H| Mos1 - instance output-only parameters - _c_o_n_t_i_n_u_e_d
TEXT: H|-------------------------------------------------------------+
TEXT: H|sourceconductanceConductance of source |
TEXT: H|rd Drain conductance |
TEXT: H|drainconductance Conductance of drain |
TEXT: H|gm Transconductance |
TEXT: H --------------------------------------------------------------
TEXT: H|gds Drain-Source conductance |
TEXT: H|gmb Bulk-Source transconductance |
TEXT: H|gmbs |
TEXT: H|gbd Bulk-Drain conductance |
TEXT: H|-------------------------------------------------------------+
TEXT: H|gbs Bulk-Source conductance |
TEXT: H|cbd Bulk-Drain capacitance |
TEXT: H|cbs Bulk-Source capacitance |
TEXT: H|cgs Gate-Source capacitance |
TEXT: H --------------------------------------------------------------
TEXT: H|cgd Gate-Drain capacitance |
TEXT: H|cgb Gate-Bulk capacitance |
TEXT: H|cqgs Capacitance due to gate-source charge storage
TEXT: H|cqgd Capacitance due to gate-drain charge storage|
TEXT: H|-------------------------------------------------------------+
TEXT: H|cqgb Capacitance due to gate-bulk charge storage |
TEXT: H|cqbd Capacitance due to bulk-drain charge storage|
TEXT: H cqbs Capacitance due to bulk-source charge storage
TEXT: H|cbd0 Zero-Bias B-D junction capacitance |
TEXT: H --------------------------------------------------------------
TEXT: H|cbdsw0 |
TEXT: H|cbs0 Zero-Bias B-S junction capacitance |
TEXT: H|cbssw0 |
TEXT: H|qgs Gate-Source charge storage |
TEXT: H|-------------------------------------------------------------+
TEXT: H|qgd Gate-Drain charge storage |
TEXT: H|qgb Gate-Bulk charge storage |
TEXT: H|qbd Bulk-Drain charge storage |
TEXT: H|qbs Bulk-Source charge storage |
TEXT: H|p Instaneous power |
TEXT: H --------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos1 - model parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| nmos N type MOSfet model |
TEXT: H| pmos P type MOSfet model |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos1 - model parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| vto Threshold voltage |
TEXT: H| vt0 (null) |
TEXT: H| kp Transconductance parameter |
TEXT: H| gamma Bulk threshold parameter |
TEXT: H ------------------------------------------------------------
TEXT: H| phi Surface potential |
TEXT: H| lambda Channel length modulation |
TEXT: H| rd Drain ohmic resistance |
TEXT: H| _c_o_n_t_i_n_u_e_d |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos1 - model input-output parameters - _c_o_n_t_i_n_u_e_d
TEXT: H|-----------------------------------------------------------+
TEXT: H| rs Source ohmic resistance |
TEXT: H| cbd B-D junction capacitance |
TEXT: H| cbs B-S junction capacitance |
TEXT: H| is Bulk junction sat. current |
TEXT: H ------------------------------------------------------------
TEXT: H| pb Bulk junction potential |
TEXT: H| cgso Gate-source overlap cap. |
TEXT: H| cgdo Gate-drain overlap cap. |
TEXT: H| cgbo Gate-bulk overlap cap. |
TEXT: H|-----------------------------------------------------------+
TEXT: H| rsh Sheet resistance |
TEXT: H| cj Bottom junction cap per area |
TEXT: H| mj Bottom grading coefficient |
TEXT: H| cjsw Side junction cap per area |
TEXT: H ------------------------------------------------------------
TEXT: H| mjsw Side grading coefficient |
TEXT: H| js Bulk jct. sat. current density |
TEXT: H| tox Oxide thickness |
TEXT: H| ld Lateral diffusion |
TEXT: H|-----------------------------------------------------------+
TEXT: H| u0 Surface mobility |
TEXT: H| uo (null) |
TEXT: H| fc Forward bias jct. fit parm. |
TEXT: H| nsub Substrate doping |
TEXT: H ------------------------------------------------------------
TEXT: H| tpg Gate type |
TEXT: H| nss Surface state density |
TEXT: H| tnom Parameter measurement temperature |
TEXT: H| kf Flicker noise coefficient |
TEXT: H| af Flicker noise exponent |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos1 - model parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| type N-channel or P-channel MOS |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: Mos2
TITLE: Mos2: Level 2 MOSfet model with Meyer capacitance model
TEXT: H
TEXT: H _B._1_8. _M_o_s_2: _L_e_v_e_l _2 _M_O_S_f_e_t _m_o_d_e_l _w_i_t_h _M_e_y_e_r _c_a_p_a_c_i_t_a_n_c_e
TEXT: H _m_o_d_e_l
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos2 - instance parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| off Device initially off |
TEXT: H| ic Vector of D-S, G-S, B-S voltages |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos2 - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| l Length |
TEXT: H| w Width |
TEXT: H| ad Drain area |
TEXT: H| as Source area |
TEXT: H ------------------------------------------------------------
TEXT: H| pd Drain perimeter |
TEXT: H| ps Source perimeter |
TEXT: H| nrd Drain squares |
TEXT: H| nrs Source squares |
TEXT: H|-----------------------------------------------------------+
TEXT: H| icvds Initial D-S voltage |
TEXT: H| icvgs Initial G-S voltage |
TEXT: H| icvbs Initial B-S voltage |
TEXT: H| temp Instance operating temperature |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos2 - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| id Drain current |
TEXT: H| cd |
TEXT: H| ibd B-D junction current |
TEXT: H| ibs B-S junction current |
TEXT: H ------------------------------------------------------------
TEXT: H| is Source current |
TEXT: H| ig Gate current |
TEXT: H| ib Bulk current |
TEXT: H| vgs Gate-Source voltage |
TEXT: H|-----------------------------------------------------------+
TEXT: H| vds Drain-Source voltage |
TEXT: H| vbs Bulk-Source voltage |
TEXT: H| vbd Bulk-Drain voltage |
TEXT: H| dnode Number of drain node |
TEXT: H ------------------------------------------------------------
TEXT: H| gnode Number of gate node |
TEXT: H| snode Number of source node |
TEXT: H| bnode Number of bulk node |
TEXT: H| dnodeprime Number of internal drain node |
TEXT: H|-----------------------------------------------------------+
TEXT: H| snodeprime Number of internal source node |
TEXT: H| von |
TEXT: H| vdsat Saturation drain voltage |
TEXT: H| sourcevcrit Critical source voltage |
TEXT: H| drainvcrit Critical drain voltage |
TEXT: H| _c_o_n_t_i_n_u_e_d |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H --------------------------------------------------------------
TEXT: H| Mos2 - instance output-only parameters - _c_o_n_t_i_n_u_e_d
TEXT: H|-------------------------------------------------------------+
TEXT: H|rs Source resistance |
TEXT: H|sourceconductanceSource conductance |
TEXT: H|rd Drain resistance |
TEXT: H|drainconductance Drain conductance |
TEXT: H --------------------------------------------------------------
TEXT: H|gm Transconductance |
TEXT: H|gds Drain-Source conductance |
TEXT: H|gmb Bulk-Source transconductance |
TEXT: H|gmbs |
TEXT: H|-------------------------------------------------------------+
TEXT: H|gbd Bulk-Drain conductance |
TEXT: H|gbs Bulk-Source conductance |
TEXT: H|cbd Bulk-Drain capacitance |
TEXT: H|cbs Bulk-Source capacitance |
TEXT: H --------------------------------------------------------------
TEXT: H|cgs Gate-Source capacitance |
TEXT: H|cgd Gate-Drain capacitance |
TEXT: H|cgb Gate-Bulk capacitance |
TEXT: H|cbd0 Zero-Bias B-D junction capacitance |
TEXT: H|-------------------------------------------------------------+
TEXT: H|cbdsw0 |
TEXT: H|cbs0 Zero-Bias B-S junction capacitance |
TEXT: H|cbssw0 |
TEXT: H cqgs Capacitance due to gate-source charge storage
TEXT: H| |
TEXT: H --------------------------------------------------------------
TEXT: H|cqgd Capacitance due to gate-drain charge storage|
TEXT: H|cqgb Capacitance due to gate-bulk charge storage |
TEXT: H|cqbd Capacitance due to bulk-drain charge storage|
TEXT: H|cqbs Capacitance due to bulk-source charge storage
TEXT: H|-------------------------------------------------------------+
TEXT: H|qgs Gate-Source charge storage |
TEXT: H|qgd Gate-Drain charge storage |
TEXT: H|qgb Gate-Bulk charge storage |
TEXT: H|qbd Bulk-Drain charge storage |
TEXT: H|qbs Bulk-Source charge storage |
TEXT: H|p Instantaneous power |
TEXT: H --------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos2 - model parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| nmos N type MOSfet model |
TEXT: H| pmos P type MOSfet model |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos2 - model parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| vto Threshold voltage |
TEXT: H| vt0 (null) |
TEXT: H| kp Transconductance parameter |
TEXT: H| gamma Bulk threshold parameter |
TEXT: H ------------------------------------------------------------
TEXT: H| phi Surface potential |
TEXT: H| lambda Channel length modulation |
TEXT: H| rd Drain ohmic resistance |
TEXT: H| rs Source ohmic resistance |
TEXT: H|-----------------------------------------------------------+
TEXT: H| cbd B-D junction capacitance |
TEXT: H| cbs B-S junction capacitance |
TEXT: H| is Bulk junction sat. current |
TEXT: H| pb Bulk junction potential |
TEXT: H ------------------------------------------------------------
TEXT: H| cgso Gate-source overlap cap. |
TEXT: H| cgdo Gate-drain overlap cap. |
TEXT: H| cgbo Gate-bulk overlap cap. |
TEXT: H| rsh Sheet resistance |
TEXT: H|-----------------------------------------------------------+
TEXT: H| cj Bottom junction cap per area |
TEXT: H| mj Bottom grading coefficient |
TEXT: H| cjsw Side junction cap per area |
TEXT: H| mjsw Side grading coefficient |
TEXT: H ------------------------------------------------------------
TEXT: H| js Bulk jct. sat. current density |
TEXT: H| tox Oxide thickness |
TEXT: H| ld Lateral diffusion |
TEXT: H| u0 Surface mobility |
TEXT: H|-----------------------------------------------------------+
TEXT: H| uo (null) |
TEXT: H| fc Forward bias jct. fit parm. |
TEXT: H| nsub Substrate doping |
TEXT: H| tpg Gate type |
TEXT: H ------------------------------------------------------------
TEXT: H| nss Surface state density |
TEXT: H| delta Width effect on threshold |
TEXT: H| uexp Crit. field exp for mob. deg. |
TEXT: H| ucrit Crit. field for mob. degradation |
TEXT: H|-----------------------------------------------------------+
TEXT: H| vmax Maximum carrier drift velocity |
TEXT: H| xj Junction depth |
TEXT: H| neff Total channel charge coeff. |
TEXT: H| nfs Fast surface state density |
TEXT: H ------------------------------------------------------------
TEXT: H| tnom Parameter measurement temperature |
TEXT: H| kf Flicker noise coefficient |
TEXT: H| af Flicker noise exponent |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos2 - model parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| type N-channel or P-channel MOS |
TEXT: H ------------------------------------------------------------
SUBJECT: Mos3
TITLE: Mos3: Level 3 MOSfet model with Meyer capacitance model
TEXT: H
TEXT: H _B._1_9. _M_o_s_3: _L_e_v_e_l _3 _M_O_S_f_e_t _m_o_d_e_l _w_i_t_h _M_e_y_e_r _c_a_p_a_c_i_t_a_n_c_e
TEXT: H _m_o_d_e_l
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos3 - instance parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| off Device initially off |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos3 - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| l Length |
TEXT: H| w Width |
TEXT: H| ad Drain area |
TEXT: H| as Source area |
TEXT: H ------------------------------------------------------------
TEXT: H| pd Drain perimeter |
TEXT: H| ps Source perimeter |
TEXT: H| nrd Drain squares |
TEXT: H| nrs Source squares |
TEXT: H|-----------------------------------------------------------+
TEXT: H| icvds Initial D-S voltage |
TEXT: H| icvgs Initial G-S voltage |
TEXT: H| icvbs Initial B-S voltage |
TEXT: H| ic Vector of D-S, G-S, B-S voltages |
TEXT: H| temp Instance operating temperature |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos3 - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| id Drain current |
TEXT: H| cd Drain current |
TEXT: H| ibd B-D junction current |
TEXT: H| ibs B-S junction current |
TEXT: H ------------------------------------------------------------
TEXT: H| is Source current |
TEXT: H| ig Gate current |
TEXT: H| ib Bulk current |
TEXT: H| vgs Gate-Source voltage |
TEXT: H|-----------------------------------------------------------+
TEXT: H| vds Drain-Source voltage |
TEXT: H| vbs Bulk-Source voltage |
TEXT: H| vbd Bulk-Drain voltage |
TEXT: H| dnode Number of drain node |
TEXT: H ------------------------------------------------------------
TEXT: H| gnode Number of gate node |
TEXT: H| snode Number of source node |
TEXT: H| bnode Number of bulk node |
TEXT: H| dnodeprime Number of internal drain node |
TEXT: H| snodeprime Number of internal source node |
TEXT: H| _c_o_n_t_i_n_u_e_d |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H --------------------------------------------------------------
TEXT: H| Mos3 - instance output-only parameters - _c_o_n_t_i_n_u_e_d
TEXT: H|-------------------------------------------------------------+
TEXT: H|von Turn-on voltage |
TEXT: H|vdsat Saturation drain voltage |
TEXT: H|sourcevcrit Critical source voltage |
TEXT: H|drainvcrit Critical drain voltage |
TEXT: H --------------------------------------------------------------
TEXT: H|rs Source resistance |
TEXT: H|sourceconductanceSource conductance |
TEXT: H|rd Drain resistance |
TEXT: H|drainconductance Drain conductance |
TEXT: H|-------------------------------------------------------------+
TEXT: H|gm Transconductance |
TEXT: H|gds Drain-Source conductance |
TEXT: H|gmb Bulk-Source transconductance |
TEXT: H|gmbs Bulk-Source transconductance |
TEXT: H --------------------------------------------------------------
TEXT: H|gbd Bulk-Drain conductance |
TEXT: H|gbs Bulk-Source conductance |
TEXT: H|cbd Bulk-Drain capacitance |
TEXT: H|cbs Bulk-Source capacitance |
TEXT: H|-------------------------------------------------------------+
TEXT: H|cgs Gate-Source capacitance |
TEXT: H|cgd Gate-Drain capacitance |
TEXT: H|cgb Gate-Bulk capacitance |
TEXT: H cqgs Capacitance due to gate-source charge storage
TEXT: H| |
TEXT: H --------------------------------------------------------------
TEXT: H|cqgd Capacitance due to gate-drain charge storage|
TEXT: H|cqgb Capacitance due to gate-bulk charge storage |
TEXT: H|cqbd Capacitance due to bulk-drain charge storage|
TEXT: H|cqbs Capacitance due to bulk-source charge storage
TEXT: H|-------------------------------------------------------------+
TEXT: H|cbd0 Zero-Bias B-D junction capacitance |
TEXT: H|cbdsw0 Zero-Bias B-D sidewall capacitance |
TEXT: H|cbs0 Zero-Bias B-S junction capacitance |
TEXT: H|cbssw0 Zero-Bias B-S sidewall capacitance |
TEXT: H --------------------------------------------------------------
TEXT: H|qbs Bulk-Source charge storage |
TEXT: H|qgs Gate-Source charge storage |
TEXT: H|qgd Gate-Drain charge storage |
TEXT: H|qgb Gate-Bulk charge storage |
TEXT: H|qbd Bulk-Drain charge storage |
TEXT: H|p Instantaneous power |
TEXT: H --------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos3 - model parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| nmos N type MOSfet model |
TEXT: H| pmos P type MOSfet model |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos3 - model parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| vto Threshold voltage |
TEXT: H| vt0 (null) |
TEXT: H| kp Transconductance parameter |
TEXT: H| gamma Bulk threshold parameter |
TEXT: H ------------------------------------------------------------
TEXT: H| phi Surface potential |
TEXT: H| rd Drain ohmic resistance |
TEXT: H| rs Source ohmic resistance |
TEXT: H| cbd B-D junction capacitance |
TEXT: H|-----------------------------------------------------------+
TEXT: H| cbs B-S junction capacitance |
TEXT: H| is Bulk junction sat. current |
TEXT: H| pb Bulk junction potential |
TEXT: H| cgso Gate-source overlap cap. |
TEXT: H ------------------------------------------------------------
TEXT: H| cgdo Gate-drain overlap cap. |
TEXT: H| cgbo Gate-bulk overlap cap. |
TEXT: H| rsh Sheet resistance |
TEXT: H| cj Bottom junction cap per area |
TEXT: H|-----------------------------------------------------------+
TEXT: H| mj Bottom grading coefficient |
TEXT: H| cjsw Side junction cap per area |
TEXT: H| mjsw Side grading coefficient |
TEXT: H| js Bulk jct. sat. current density |
TEXT: H ------------------------------------------------------------
TEXT: H| tox Oxide thickness |
TEXT: H| ld Lateral diffusion |
TEXT: H| u0 Surface mobility |
TEXT: H| uo (null) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| fc Forward bias jct. fit parm. |
TEXT: H| nsub Substrate doping |
TEXT: H| tpg Gate type |
TEXT: H| nss Surface state density |
TEXT: H ------------------------------------------------------------
TEXT: H| vmax Maximum carrier drift velocity |
TEXT: H| xj Junction depth |
TEXT: H| nfs Fast surface state density |
TEXT: H| xd Depletion layer width |
TEXT: H|-----------------------------------------------------------+
TEXT: H| alpha Alpha |
TEXT: H| eta Vds dependence of threshold voltage |
TEXT: H| delta Width effect on threshold |
TEXT: H| input_delta (null) |
TEXT: H ------------------------------------------------------------
TEXT: H| theta Vgs dependence on mobility |
TEXT: H| kappa Kappa |
TEXT: H| tnom Parameter measurement temperature |
TEXT: H| kf Flicker noise coefficient |
TEXT: H| af Flicker noise exponent |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos3 - model parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| type N-channel or P-channel MOS |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: Mos6
TITLE: Mos6: Level 6 MOSfet model with Meyer capacitance model
TEXT: H
TEXT: H _B._2_0. _M_o_s_6: _L_e_v_e_l _6 _M_O_S_f_e_t _m_o_d_e_l _w_i_t_h _M_e_y_e_r _c_a_p_a_c_i_t_a_n_c_e
TEXT: H _m_o_d_e_l
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos6 - instance parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| off Device initially off |
TEXT: H| ic Vector of D-S, G-S, B-S voltages |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos6 - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| l Length |
TEXT: H| w Width |
TEXT: H| ad Drain area |
TEXT: H| as Source area |
TEXT: H ------------------------------------------------------------
TEXT: H| pd Drain perimeter |
TEXT: H| ps Source perimeter |
TEXT: H| nrd Drain squares |
TEXT: H| nrs Source squares |
TEXT: H|-----------------------------------------------------------+
TEXT: H| icvds Initial D-S voltage |
TEXT: H| icvgs Initial G-S voltage |
TEXT: H| icvbs Initial B-S voltage |
TEXT: H| temp Instance temperature |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos6 - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| id Drain current |
TEXT: H| cd Drain current |
TEXT: H| is Source current |
TEXT: H| ig Gate current |
TEXT: H ------------------------------------------------------------
TEXT: H| ib Bulk current |
TEXT: H| ibs B-S junction capacitance |
TEXT: H| ibd B-D junction capacitance |
TEXT: H| vgs Gate-Source voltage |
TEXT: H|-----------------------------------------------------------+
TEXT: H| vds Drain-Source voltage |
TEXT: H| vbs Bulk-Source voltage |
TEXT: H| vbd Bulk-Drain voltage |
TEXT: H| dnode Number of the drain node |
TEXT: H ------------------------------------------------------------
TEXT: H| gnode Number of the gate node |
TEXT: H| snode Number of the source node |
TEXT: H| bnode Number of the node |
TEXT: H| dnodeprime Number of int. drain node |
TEXT: H| snodeprime Number of int. source node |
TEXT: H| _c_o_n_t_i_n_u_e_d |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H --------------------------------------------------------------
TEXT: H| Mos6 - instance output-only parameters - _c_o_n_t_i_n_u_e_d
TEXT: H|-------------------------------------------------------------+
TEXT: H|rs Source resistance |
TEXT: H|sourceconductanceSource conductance |
TEXT: H|rd Drain resistance |
TEXT: H|drainconductance Drain conductance |
TEXT: H --------------------------------------------------------------
TEXT: H|von Turn-on voltage |
TEXT: H|vdsat Saturation drain voltage |
TEXT: H|sourcevcrit Critical source voltage |
TEXT: H|drainvcrit Critical drain voltage |
TEXT: H|-------------------------------------------------------------+
TEXT: H|gmbs Bulk-Source transconductance |
TEXT: H|gm Transconductance |
TEXT: H|gds Drain-Source conductance |
TEXT: H|gbd Bulk-Drain conductance |
TEXT: H --------------------------------------------------------------
TEXT: H|gbs Bulk-Source conductance |
TEXT: H|cgs Gate-Source capacitance |
TEXT: H|cgd Gate-Drain capacitance |
TEXT: H|cgb Gate-Bulk capacitance |
TEXT: H|-------------------------------------------------------------+
TEXT: H|cbd Bulk-Drain capacitance |
TEXT: H|cbs Bulk-Source capacitance |
TEXT: H|cbd0 Zero-Bias B-D junction capacitance |
TEXT: H|cbdsw0 |
TEXT: H --------------------------------------------------------------
TEXT: H|cbs0 Zero-Bias B-S junction capacitance |
TEXT: H|cbssw0 |
TEXT: H|cqgs Capacitance due to gate-source charge storage
TEXT: H|cqgd Capacitance due to gate-drain charge storage|
TEXT: H|-------------------------------------------------------------+
TEXT: H|cqgb Capacitance due to gate-bulk charge storage |
TEXT: H|cqbd Capacitance due to bulk-drain charge storage|
TEXT: H cqbs Capacitance due to bulk-source charge storage
TEXT: H|qgs Gate-Source charge storage |
TEXT: H --------------------------------------------------------------
TEXT: H|qgd Gate-Drain charge storage |
TEXT: H|qgb Gate-Bulk charge storage |
TEXT: H|qbd Bulk-Drain charge storage |
TEXT: H|qbs Bulk-Source charge storage |
TEXT: H|p Instaneous power |
TEXT: H --------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos6 - model parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| nmos N type MOSfet model |
TEXT: H| pmos P type MOSfet model |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos6 - model parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| vto Threshold voltage |
TEXT: H| vt0 (null) |
TEXT: H| kv Saturation voltage factor |
TEXT: H| nv Saturation voltage coeff. |
TEXT: H ------------------------------------------------------------
TEXT: H| kc Saturation current factor |
TEXT: H| nc Saturation current coeff. |
TEXT: H| nvth Threshold voltage coeff. |
TEXT: H| ps Sat. current modification par. |
TEXT: H|-----------------------------------------------------------+
TEXT: H| gamma Bulk threshold parameter |
TEXT: H| gamma1 Bulk threshold parameter 1 |
TEXT: H| sigma Static feedback effect par. |
TEXT: H| phi Surface potential |
TEXT: H ------------------------------------------------------------
TEXT: H| lambda Channel length modulation param. |
TEXT: H| lambda0 Channel length modulation param. 0 |
TEXT: H| lambda1 Channel length modulation param. 1 |
TEXT: H| rd Drain ohmic resistance |
TEXT: H|-----------------------------------------------------------+
TEXT: H| rs Source ohmic resistance |
TEXT: H| cbd B-D junction capacitance |
TEXT: H| cbs B-S junction capacitance |
TEXT: H| is Bulk junction sat. current |
TEXT: H ------------------------------------------------------------
TEXT: H| pb Bulk junction potential |
TEXT: H| cgso Gate-source overlap cap. |
TEXT: H| cgdo Gate-drain overlap cap. |
TEXT: H| cgbo Gate-bulk overlap cap. |
TEXT: H|-----------------------------------------------------------+
TEXT: H| rsh Sheet resistance |
TEXT: H| cj Bottom junction cap per area |
TEXT: H| mj Bottom grading coefficient |
TEXT: H| cjsw Side junction cap per area |
TEXT: H ------------------------------------------------------------
TEXT: H| mjsw Side grading coefficient |
TEXT: H| js Bulk jct. sat. current density |
TEXT: H| ld Lateral diffusion |
TEXT: H| tox Oxide thickness |
TEXT: H|-----------------------------------------------------------+
TEXT: H| u0 Surface mobility |
TEXT: H| uo (null) |
TEXT: H| fc Forward bias jct. fit parm. |
TEXT: H| tpg Gate type |
TEXT: H ------------------------------------------------------------
TEXT: H| nsub Substrate doping |
TEXT: H| nss Surface state density |
TEXT: H| tnom Parameter measurement temperature |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Mos6 - model parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| type N-channel or P-channel MOS |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: Resistor
TITLE: Resistor: Simple linear resistor
TEXT: H
TEXT: H _B._2_1. _R_e_s_i_s_t_o_r: _S_i_m_p_l_e _l_i_n_e_a_r _r_e_s_i_s_t_o_r
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Resistor - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| resistance Resistance |
TEXT: H| temp Instance operating temperature |
TEXT: H| l Length |
TEXT: H| w Width |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Resistor - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| i Current |
TEXT: H| p Power |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Resistor - model parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| r Device is a resistor model |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Resistor - model parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| rsh Sheet resistance |
TEXT: H| narrow Narrowing of resistor |
TEXT: H| tc1 First order temp. coefficient |
TEXT: H| tc2 Second order temp. coefficient |
TEXT: H| defw Default device width |
TEXT: H| tnom Parameter measurement temperature |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: Switch
TITLE: Switch: Ideal voltage controlled switch
TEXT: H
TEXT: H _B._2_2. _S_w_i_t_c_h: _I_d_e_a_l _v_o_l_t_a_g_e _c_o_n_t_r_o_l_l_e_d _s_w_i_t_c_h
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Switch - instance parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| on Switch initially closed |
TEXT: H| off Switch initially open |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Switch - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| pos_node Positive node of switch |
TEXT: H| neg_node Negative node of switch |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Switch - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| cont_p_node Positive contr. node of switch |
TEXT: H| cont_n_node Positive contr. node of switch |
TEXT: H| i Switch current |
TEXT: H| p Switch power |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Switch - model parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| sw Switch model |
TEXT: H| vt Threshold voltage |
TEXT: H| vh Hysteresis voltage |
TEXT: H| ron Resistance when closed |
TEXT: H| roff Resistance when open |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Switch - model parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| gon Conductance when closed |
TEXT: H| goff Conductance when open |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: Tranline
TITLE: Tranline: Lossless transmission line
TEXT: H
TEXT: H _B._2_3. _T_r_a_n_l_i_n_e: _L_o_s_s_l_e_s_s _t_r_a_n_s_m_i_s_s_i_o_n _l_i_n_e
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Tranline - instance parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| ic Initial condition vector:v1,i1,v2,i2 |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Tranline - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| z0 Characteristic impedance |
TEXT: H| zo (null) |
TEXT: H| f Frequency |
TEXT: H| td Transmission delay |
TEXT: H ------------------------------------------------------------
TEXT: H| nl Normalized length at frequency given |
TEXT: H| v1 Initial voltage at end 1 |
TEXT: H| v2 Initial voltage at end 2 |
TEXT: H| i1 Initial current at end 1 |
TEXT: H| i2 Initial current at end 2 |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Tranline - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| rel Rel. rate of change of deriv. for bkpt |
TEXT: H| abs Abs. rate of change of deriv. for bkpt |
TEXT: H| pos_node1 Positive node of end 1 of t. line |
TEXT: H| neg_node1 Negative node of end 1 of t. line |
TEXT: H ------------------------------------------------------------
TEXT: H| pos_node2 Positive node of end 2 of t. line |
TEXT: H| neg_node2 Negative node of end 2 of t. line |
TEXT: H| delays Delayed values of excitation |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: VCCS
TITLE: VCCS: Voltage controlled current source
TEXT: H
TEXT: H _B._2_4. _V_C_C_S: _V_o_l_t_a_g_e _c_o_n_t_r_o_l_l_e_d _c_u_r_r_e_n_t _s_o_u_r_c_e
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| VCCS - instance parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| ic Initial condition of controlling source |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| VCCS - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| gain Transconductance of source (gain) |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| VCCS - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| pos_node Positive node of source |
TEXT: H| neg_node Negative node of source |
TEXT: H| cont_p_node Positive node of contr. source |
TEXT: H| cont_n_node Negative node of contr. source |
TEXT: H ------------------------------------------------------------
TEXT: H| i Output current |
TEXT: H| v Voltage across output |
TEXT: H| p Power |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: VCVS
TITLE: VCVS: Voltage controlled voltage source
TEXT: H
TEXT: H _B._2_5. _V_C_V_S: _V_o_l_t_a_g_e _c_o_n_t_r_o_l_l_e_d _v_o_l_t_a_g_e _s_o_u_r_c_e
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| VCVS - instance parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| ic Initial condition of controlling source |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| VCVS - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| gain Voltage gain |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| VCVS - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| pos_node Positive node of source |
TEXT: H| neg_node Negative node of source |
TEXT: H| cont_p_node Positive node of contr. source |
TEXT: H cont_n_node Negative node of contr. source
TEXT: H ------------------------------------------------------------
TEXT: H| i Output current |
TEXT: H| v Output voltage |
TEXT: H| p Power |
TEXT: H ------------------------------------------------------------
TEXT: H
SUBJECT: Vsource
TITLE: Vsource: Independent voltage source
TEXT: H
TEXT: H _B._2_6. _V_s_o_u_r_c_e: _I_n_d_e_p_e_n_d_e_n_t _v_o_l_t_a_g_e _s_o_u_r_c_e
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Vsource - instance parameters (input-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| pulse Pulse description |
TEXT: H| sine Sinusoidal source description |
TEXT: H| sin Sinusoidal source description |
TEXT: H| exp Exponential source description |
TEXT: H ------------------------------------------------------------
TEXT: H| pwl Piecewise linear description |
TEXT: H| sffm Single freq. FM descripton |
TEXT: H| ac AC magnitude, phase vector |
TEXT: H| distof1 f1 input for distortion |
TEXT: H| distof2 f2 input for distortion |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Vsource - instance parameters (input-output) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| dc D.C. source value |
TEXT: H| acmag A.C. Magnitude |
TEXT: H| acphase A.C. Phase |
TEXT: H ------------------------------------------------------------
TEXT: H
TEXT: H
TEXT: H ------------------------------------------------------------
TEXT: H| Vsource - instance parameters (output-only) |
TEXT: H|-----------------------------------------------------------+
TEXT: H| pos_node Positive node of source |
TEXT: H| neg_node Negative node of source |
TEXT: H| function Function of the source |
TEXT: H| order Order of the source function |
TEXT: H ------------------------------------------------------------
TEXT: H| coeffs Coefficients for the function |
TEXT: H| acreal AC real part |
TEXT: H| acimag AC imaginary part |
TEXT: H| i Voltage source current |
TEXT: H| p Instantaneous power |
TEXT: H ------------------------------------------------------------