ngspice/src/frontend/logicexp.c

2288 lines
62 KiB
C

/*
logicexp.c
Convert PSpice LOGICEXP logic expressions into XSPICE gates.
Extract typical timing delay estimates from PINDLY statements and
insert buffers and tristates with these delays.
Reference: PSpice A/D Reference Guide version 16.6
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "ngspice/memory.h"
#include "ngspice/macros.h"
#include "ngspice/bool.h"
#include "ngspice/ngspice.h"
#include "ngspice/stringskip.h"
#include "ngspice/stringutil.h"
#include "ngspice/dstring.h"
#include "ngspice/logicexp.h"
#include "ngspice/udevices.h"
/* Turn off/on debug tracing */
#define PRINT_ALL FALSE
//#define PRINT_ALL TRUE
/* Start of btree symbol table */
#define SYM_INPUT 1
#define SYM_OUTPUT 2
#define SYM_TMODEL 4
#define SYM_KEY_WORD 8
#define SYM_ID 16
#define SYM_GATE_OP 32
#define SYM_INVERTER 64
#define SYM_OTHER 128
typedef struct sym_entry *SYM_TAB;
struct sym_entry {
char *name;
char *alias;
int attribute;
int ref_count; // for inverters
SYM_TAB left;
SYM_TAB right;
};
static SYM_TAB new_sym_entry(char *name, int attr)
{
SYM_TAB newp;
newp = TMALLOC(struct sym_entry, 1);
newp->left = NULL;
newp->right = NULL;
newp->name = TMALLOC(char, strlen(name) + 1);
strcpy(newp->name, name);
newp->alias = NULL;
newp->attribute = attr;
newp->ref_count = 0;
return newp;
}
static SYM_TAB insert_sym_tab(char *name, SYM_TAB t, int attr)
{
int cmp;
if (t == NULL) {
t = new_sym_entry(name, attr);
return t;
}
cmp = strcmp(name, t->name);
if (cmp < 0) {
t->left = insert_sym_tab(name, t->left, attr);
} else if (cmp > 0) {
t->right = insert_sym_tab(name, t->right, attr);
} else {
printf("NOTE insert_sym_tab %s already there\n", name);
}
return t;
}
static SYM_TAB member_sym_tab(char *name, SYM_TAB t)
{
int cmp;
while (t != NULL) {
cmp = strcmp(name, t->name);
if (cmp == 0) {
return t;
} else if (cmp < 0) {
t = t->left;
} else {
t = t->right;
}
}
return NULL;
}
static SYM_TAB add_sym_tab_entry(char *name, int attr, SYM_TAB *stab)
{
SYM_TAB entry = NULL;
entry = member_sym_tab(name, *stab);
if (!entry) {
*stab = insert_sym_tab(name, *stab, attr);
entry = member_sym_tab(name, *stab);
}
return entry;
}
static void alias_sym_tab(char *alias, SYM_TAB t)
{
if (t == NULL) { return; }
if (t->alias)
tfree(t->alias);
t->alias = TMALLOC(char, strlen(alias) + 1);
strcpy(t->alias, alias);
}
static void delete_sym_tab(SYM_TAB t)
{
if (t == NULL) { return; }
delete_sym_tab(t->left);
delete_sym_tab(t->right);
if (t->name)
tfree(t->name);
if (t->alias)
tfree(t->alias);
tfree(t);
}
static void print_sym_tab(SYM_TAB t, BOOL with_addr)
{
if (t == NULL) { return; }
print_sym_tab(t->left, with_addr);
if (with_addr)
printf("%p --> \n", (void *)t);
printf("\"%s\" %d ref_count=%d", t->name, t->attribute, t->ref_count);
if (t->alias)
printf(" alias = \"%s\"", t->alias);
printf("\n");
print_sym_tab(t->right, with_addr);
}
/* End of btree symbol table */
/* Start of lexical scanner */
#define LEX_ID 256
#define LEX_OTHER 257
#define LEX_BUF_SZ 512
#define LEX_INIT_SZ 128
typedef struct lexer *LEXER;
struct lexer {
char *lexer_buf;
char *lexer_line;
int lexer_pos;
int lexer_back;
SYM_TAB lexer_sym_tab;
size_t lexer_blen;
};
static LEXER parse_lexer = NULL;
static LEXER new_lexer(char *line)
{
LEXER lx;
lx = TMALLOC(struct lexer, 1);
lx->lexer_line = TMALLOC(char, (strlen(line) + 1));
strcpy(lx->lexer_line, line);
lx->lexer_pos = lx->lexer_back = 0;
lx->lexer_blen = LEX_INIT_SZ;
lx->lexer_buf = TMALLOC(char, lx->lexer_blen);
(void) memset(lx->lexer_buf, 0, lx->lexer_blen);
lx->lexer_sym_tab = NULL;
return lx;
}
static void delete_lexer(LEXER lx)
{
if (!lx)
return;
if (lx->lexer_buf)
tfree(lx->lexer_buf);
if (lx->lexer_line)
tfree(lx->lexer_line);
if (lx->lexer_sym_tab)
delete_sym_tab(lx->lexer_sym_tab);
tfree(lx);
}
static void lex_init(char *line)
{
parse_lexer = new_lexer(line);
return;
}
static int lexer_set_start(char *s, LEXER lx)
{
char *pos;
if (!lx)
return -1;
pos = strstr(lx->lexer_line, s);
if (!pos)
return -1;
lx->lexer_pos = (int) (pos - &lx->lexer_line[0]);
lx->lexer_back = lx->lexer_pos;
return lx->lexer_pos;
}
static int lex_set_start(char *s)
{
return lexer_set_start(s, parse_lexer);
}
static int lexer_getchar(LEXER lx)
{
int item = 0;
item = lx->lexer_line[lx->lexer_pos];
lx->lexer_back = lx->lexer_pos;
if (item != 0)
lx->lexer_pos++;
return item;
}
static void lexer_putback(LEXER lx)
{
if (lx->lexer_back >= 0)
lx->lexer_pos = lx->lexer_back;
}
static int lex_punct(int c)
{
switch (c) {
case ',':
case '{':
case '}':
case '(':
case ')':
case ':':
case '.':
return c;
default:
break;
}
return 0;
}
static int lex_oper(int c)
{
switch (c) {
case '~':
case '&':
case '^':
case '|':
case '=':
return c;
default:
break;
}
return 0;
}
static char *lex_gate_name(int c, BOOL not)
{
/* returns an XSPICE gate model name */
static char buf[32];
switch (c) {
case '~':
if (not)
sprintf(buf, "d__inverter__1");
else
sprintf(buf, "d__buffer__1");
break;
case '&':
if (not)
sprintf(buf, "d__nand__1");
else
sprintf(buf, "d__and__1");
break;
case '^':
if (not)
sprintf(buf, "d__xnor__1");
else
sprintf(buf, "d__xor__1");
break;
case '|':
if (not)
sprintf(buf, "d__nor__1");
else
sprintf(buf, "d__or__1");
break;
default:
sprintf(buf, "UNKNOWN");
break;
}
return buf;
}
static char *tmodel_gate_name(int c, BOOL not)
{
/* Returns an XSPICE model name for the case where
logicexp does not have a corresponding pindly
but does have a UGATE timing model (not d0_gate).
*/
static char buf[32];
switch (c) {
case '&':
if (not)
sprintf(buf, "dxspice_dly_nand");
else
sprintf(buf, "dxspice_dly_and");
break;
case '|':
if (not)
sprintf(buf, "dxspice_dly_nor");
else
sprintf(buf, "dxspice_dly_or");
break;
case '^':
if (not)
sprintf(buf, "dxspice_dly_xnor");
else
sprintf(buf, "dxspice_dly_xor");
break;
default:
return NULL;
}
return buf;
}
static int lex_gate_op(int c)
{
switch (c) {
case '&':
case '^':
case '|':
return c;
default:
break;
}
return 0;
}
static int lex_ident(int c)
{
if (isalnum(c) || c == '_' || c == '/' || c == '-')
return c;
else
return 0;
}
static int lexer_scan(LEXER lx)
{
int c;
while (1) {
lx->lexer_buf[0] = '\0';
c = lexer_getchar(lx);
if (c == '\0')
return 0;
else if (isspace(c))
continue;
else if (lex_punct(c))
return c;
else if (lex_oper(c))
return c;
else if (lex_ident(c)) {
size_t i = 0;
while (lex_ident(c)) {
if (i >= lx->lexer_blen) {
lx->lexer_blen *= 2;
lx->lexer_buf =
TREALLOC(char, lx->lexer_buf, lx->lexer_blen);
}
lx->lexer_buf[i] = (char) c;
i++;
c = lexer_getchar(lx);
}
if (i >= lx->lexer_blen) {
lx->lexer_blen *= 2;
lx->lexer_buf =
TREALLOC(char, lx->lexer_buf, lx->lexer_blen);
}
lx->lexer_buf[i] = '\0';
if (c != '\0')
lexer_putback(lx);
return LEX_ID;
} else {
lx->lexer_buf[0] = (char) c;
lx->lexer_buf[1] = '\0';
return LEX_OTHER;
}
}
}
static int lex_scan(void)
{
return lexer_scan(parse_lexer);
}
static BOOL lex_all_digits(char *str)
{
size_t i, slen;
if (!str) { return FALSE; }
slen = strlen(str);
if (slen < 1) { return FALSE; }
for (i = 0; i < slen; i++) {
if (!isdigit(str[i])) { return FALSE; }
}
return TRUE;
}
/* End of lexical scanner */
/* Start parse table */
typedef struct table_line *TLINE;
struct table_line {
char *line;
TLINE next;
};
typedef struct parse_table *PTABLE;
struct parse_table {
TLINE first;
TLINE last;
unsigned int entry_count;
};
static PTABLE parse_tab = NULL;
static PTABLE gen_tab = NULL;
static PTABLE new_parse_table(void)
{
PTABLE pt;
pt = TMALLOC(struct parse_table, 1);
pt->first = pt->last = NULL;
pt->entry_count = 0;
return pt;
}
static void delete_parse_table(PTABLE pt)
{
TLINE t, next;
if (!pt)
return;
next = pt->first;
while (next) {
t = next;
tfree(t->line);
next = t->next;
tfree(t);
}
tfree(pt);
}
static void delete_parse_gen_tables(void)
{
delete_parse_table(parse_tab);
delete_parse_table(gen_tab);
parse_tab = gen_tab = NULL;
}
static void init_parse_tables(void)
{
parse_tab = new_parse_table();
gen_tab = new_parse_table();
}
static TLINE ptab_new_line(char *line)
{
TLINE t = NULL;
t = TMALLOC(struct table_line, 1);
t->next = NULL;
t->line = TMALLOC(char, (strlen(line) + 1));
strcpy(t->line, line);
return t;
}
static TLINE add_common(char *line, BOOL ignore_blank)
{
if (!line)
return NULL;
if (ignore_blank) {
if (line[0] == '\0') {
return NULL;
} else if (line[0] == '\n' && strlen(line) < 2) {
return NULL;
}
}
return ptab_new_line(line);
}
static TLINE add_to_parse_table(PTABLE pt, char *line, BOOL ignore_blank)
{
TLINE t;
if (!pt)
return NULL;
t = add_common(line, ignore_blank);
if (!t)
return NULL;
t->next = NULL;
if (!pt->first) {
pt->first = pt->last = t;
} else {
pt->last->next = t;
pt->last = t;
}
pt->entry_count++;
return t;
}
static TLINE ptab_add_line(char *line, BOOL ignore_blank)
{
TLINE t;
t = add_to_parse_table(parse_tab, line, ignore_blank);
return t;
}
static TLINE gen_tab_add_line(char *line, BOOL ignore_blank)
{
TLINE t;
t = add_to_parse_table(gen_tab, line, ignore_blank);
return t;
}
static char *get_temp_from_line(char *line, BOOL begin)
{
/* First occurrence of "tmp" on the line */
/* If begin is TRUE then "tmp" must be at the start of line */
static char lbuf[64];
char *p, *q;
int j = 0;
p = strstr(line, "tmp");
if (!p)
return NULL;
if (begin && p != line)
return NULL;
for (q = p, j = 0; isalnum(q[j]) || q[j] == '_'; j++) {
if (j >= 63)
return NULL;
lbuf[j] = q[j];
}
lbuf[j] = '\0';
return lbuf;
}
static char *find_temp_begin(char *line)
{
return get_temp_from_line(line, TRUE);
}
static char *find_temp_anywhere(char *line)
{
return get_temp_from_line(line, FALSE);
}
static int get_temp_depth(char *line)
{
char buf[64];
char *p, *endp;
int depth;
p = find_temp_anywhere(line);
if (p) {
strcpy(buf, p);
p = strstr(buf + strlen("tmp"), "__");
if (p) {
p = p + 2;
depth = (int) strtol(p, &endp, 10);
return depth;
}
}
return -1;
}
static TLINE tab_find(PTABLE pt, char *str, BOOL start_of_line)
{
TLINE t;
size_t len;
if (!pt)
return NULL;
t = pt->first;
len = strlen(str);
while (t) {
if (start_of_line) {
if (strncmp(t->line, str, len) == 0)
return t;
} else {
if (strstr(t->line, str))
return t;
}
t = t->next;
}
return NULL;
}
static void ptable_print(PTABLE pt)
{
TLINE t;
if (!pt)
return;
t = pt->first;
printf("entry_count %u\n", pt->entry_count);
while (t) {
printf("%s\n", t->line);
t = t->next;
}
}
/* End parse table */
/* Start of logicexp parser */
static char *get_inst_name(void);
static char *get_inverter_output_name(char *input);
static void aerror(char *s);
static BOOL amatch(int t);
static BOOL bexpr(void);
static BOOL bfactor(void);
static BOOL bparse(char *line, BOOL new_lexer);
static int lookahead = 0;
static int adepth = 0;
static int max_adepth = 0;
static DSTRING d_curr_line;
static int number_of_instances = 0;
static BOOL use_tmodel_delays = FALSE;
static void cleanup_parser(void)
{
delete_lexer(parse_lexer);
parse_lexer = NULL;
delete_parse_gen_tables();
}
static char *get_inst_name(void)
{
static char name[64];
static int number = 0;
number++;
(void) sprintf(name, "a_%d", number);
number_of_instances++;
return name;
}
static char *get_inverter_output_name(char *input)
{
static char buf[LEX_BUF_SZ];
LEXER lx = parse_lexer;
// FIX ME keep this name in the symbol table to ensure uniqueness
(void) sprintf(buf, "inv_out__%s", input);
if (member_sym_tab(buf, lx->lexer_sym_tab))
printf("ERROR %s is already in use\n", buf);
return buf;
}
static char *get_inv_tail(char *str)
{
static char lbuf[64];
char *p = NULL, *q = NULL;
int j = 0;
size_t slen = strlen("inv_out__");
p = strstr(str, "inv_out__");
if (!p)
return NULL;
for (q = p + slen, j = 0; q[j] != '\0' && !isspace(q[j]); j++) {
if (j >= 63)
return NULL;
lbuf[j] = q[j];
}
lbuf[j] = '\0';
return lbuf;
}
static void gen_models(void)
{
DS_CREATE(model, 64);
ds_clear(&model);
ds_cat_printf(&model,
".model d_inv_zero_delay d_inverter(rise_delay=1.0e-12 fall_delay=1.0e-12)");
u_add_instance(ds_get_buf(&model));
ds_clear(&model);
ds_cat_printf(&model,
".model d__inverter__1 d_inverter(rise_delay=1.0e-12 fall_delay=1.0e-12)");
u_add_instance(ds_get_buf(&model));
ds_clear(&model);
ds_cat_printf(&model,
".model d__buffer__1 d_buffer(rise_delay=1.0e-12 fall_delay=1.0e-12)");
u_add_instance(ds_get_buf(&model));
ds_clear(&model);
ds_cat_printf(&model,
".model d__nand__1 d_nand(rise_delay=1.0e-12 fall_delay=1.0e-12)");
u_add_instance(ds_get_buf(&model));
ds_clear(&model);
ds_cat_printf(&model,
".model d__and__1 d_and(rise_delay=1.0e-12 fall_delay=1.0e-12)");
u_add_instance(ds_get_buf(&model));
ds_clear(&model);
ds_cat_printf(&model,
".model d__xnor__1 d_xnor(rise_delay=1.0e-12 fall_delay=1.0e-12)");
u_add_instance(ds_get_buf(&model));
ds_clear(&model);
ds_cat_printf(&model,
".model d__xor__1 d_xor(rise_delay=1.0e-12 fall_delay=1.0e-12)");
u_add_instance(ds_get_buf(&model));
ds_clear(&model);
ds_cat_printf(&model,
".model d__nor__1 d_nor(rise_delay=1.0e-12 fall_delay=1.0e-12)");
u_add_instance(ds_get_buf(&model));
ds_clear(&model);
ds_cat_printf(&model,
".model d__or__1 d_or(rise_delay=1.0e-12 fall_delay=1.0e-12)");
u_add_instance(ds_get_buf(&model));
ds_free(&model);
}
static void aerror(char *s)
{
LEXER lx = parse_lexer;
printf("%s [%s]\n", s, lx->lexer_line + lx->lexer_pos);
fflush(stdout);
cleanup_parser();
}
char *get_temp_name(void)
{
static char name[64];
static int number = 0;
number++;
(void) sprintf(name, "tmp%d", number);
return name;
}
static BOOL amatch(int t)
{
if (lookahead == t) {
lookahead = lex_scan();
} else {
printf("expect = %d lookahead = %d lexer_buf \"%s\"\n",
t, lookahead, parse_lexer->lexer_buf);
aerror("amatch: syntax error");
return FALSE;
}
return TRUE;
}
#define AMATCH_BFACTOR(n) \
{ \
if (!amatch((n))) { \
return FALSE; \
} \
}
static BOOL bfactor(void)
{
/* factor is : ['~'] rest
where rest is: input_name_id | '(' expr ')' | error
[] means optional
*/
BOOL is_not = FALSE;
SYM_TAB entry = NULL;
LEXER lx = parse_lexer;
adepth++;
if (lookahead == '~') {
is_not = TRUE;
lookahead = lex_scan();
}
if (lookahead == LEX_ID) {
entry = add_sym_tab_entry(lx->lexer_buf, SYM_ID, &lx->lexer_sym_tab);
if (is_not) {
ds_cat_printf(&d_curr_line, "%s ",
get_inverter_output_name(lx->lexer_buf));
entry->attribute |= SYM_INVERTER;
entry->ref_count++;
} else {
ds_cat_printf(&d_curr_line, "%s ", lx->lexer_buf);
}
lookahead = lex_scan();
} else if (lookahead == '(') {
DS_CREATE(tmpnam, 64);
ds_clear(&tmpnam);
if (adepth > max_adepth)
max_adepth = adepth;
ds_cat_str(&tmpnam, get_temp_name());
(void) ptab_add_line(ds_get_buf(&d_curr_line), TRUE);
ds_clear(&d_curr_line);
ds_cat_printf(&d_curr_line, "%s__%d <- ", ds_get_buf(&tmpnam), adepth);
if (is_not) {
ds_cat_printf(&d_curr_line, "~ %c", lookahead);
} else {
ds_cat_printf(&d_curr_line, "%c", lookahead);
}
(void) ptab_add_line(ds_get_buf(&d_curr_line), TRUE);
ds_clear(&d_curr_line);
lookahead = lex_scan();
if (!bexpr()) {
cleanup_parser();
return FALSE;
}
(void) ptab_add_line(ds_get_buf(&d_curr_line), TRUE);
ds_clear(&d_curr_line);
ds_cat_printf(&d_curr_line, "%c -> %s__%d", lookahead,
ds_get_buf(&tmpnam), adepth);
(void) ptab_add_line(ds_get_buf(&d_curr_line), TRUE);
ds_clear(&d_curr_line);
ds_free(&tmpnam);
AMATCH_BFACTOR(')');
} else {
aerror("bfactor: syntax error");
return FALSE;
}
adepth--;
return TRUE;
}
static BOOL bexpr(void)
{
/* expr is: factor { gate_op factor }+
where {}+ means 0 or more times.
*/
if (!bfactor()) {
cleanup_parser();
return FALSE;
}
while (lex_gate_op(lookahead)) {
ds_cat_printf(&d_curr_line, "%c ", lookahead);
lookahead = lex_scan();
if (!bfactor()) {
cleanup_parser();
return FALSE;
}
}
return TRUE;
}
#define AMATCH_BSTMT(n) \
{ \
if (!amatch((n))) { \
ds_free(&tname); ds_free(&assign); \
return FALSE; \
} \
}
static BOOL bstmt(void)
{
/* A stmt is: output_name_id = '{' expr '}' */
BOOL verbose = PRINT_ALL;
int end_pos = 0, start_pos = 0;
SYM_TAB entry = NULL;
DS_CREATE(tname, 64);
DS_CREATE(assign, LEX_BUF_SZ);
if (lookahead == LEX_ID) {
entry = add_sym_tab_entry(parse_lexer->lexer_buf, SYM_ID,
&parse_lexer->lexer_sym_tab);
} else {
aerror("bstmt: syntax error");
return FALSE;
}
adepth++;
if (adepth > max_adepth)
max_adepth = adepth;
if (verbose) {
start_pos = parse_lexer->lexer_pos;
printf("* %s", parse_lexer->lexer_buf);
}
AMATCH_BSTMT(LEX_ID);
AMATCH_BSTMT('=');
ds_clear(&assign);
ds_cat_printf(&assign, "%s =", entry->name);
(void) ptab_add_line(ds_get_buf(&assign), TRUE);
AMATCH_BSTMT('{');
ds_clear(&tname);
ds_cat_str(&tname, get_temp_name());
ds_cat_printf(&d_curr_line, "%s__%d <- (", ds_get_buf(&tname), adepth);
(void) ptab_add_line(ds_get_buf(&d_curr_line), TRUE);
ds_clear(&d_curr_line);
if (!bexpr()) {
cleanup_parser();
ds_free(&assign);
ds_free(&tname);
return FALSE;
}
if (ds_get_length(&d_curr_line) > 0) {
(void) ptab_add_line(ds_get_buf(&d_curr_line), TRUE);
}
ds_clear(&d_curr_line);
ds_cat_printf(&d_curr_line, ") -> %s__%d", ds_get_buf(&tname), adepth);
(void) ptab_add_line(ds_get_buf(&d_curr_line), TRUE);
ds_clear(&d_curr_line);
if (verbose) {
DS_CREATE(stmt_str, 128);
end_pos = parse_lexer->lexer_pos;
ds_cat_mem(&stmt_str, &parse_lexer->lexer_line[start_pos],
(size_t) (end_pos - start_pos));
printf("%s\n", ds_get_buf(&stmt_str));
ds_free(&stmt_str);
}
AMATCH_BSTMT('}');
ds_free(&assign);
ds_free(&tname);
adepth--;
return TRUE;
}
static PTABLE optimize_gen_tab(PTABLE pt)
{
/* This function compacts the gen_tab, returning a new PTABLE.
Aliases are transformed and removed as described below.
Usually, optimize_gen_tab is called a second time on the
PTABLE created by the first call. The algorithm here will
only transform one level of aliases.
*/
TLINE t = NULL;
LEXER lxr = NULL;
int val, idnum = 0, tok_count = 0;
SYM_TAB entry = NULL, alias_tab = NULL;
BOOL found_tilde = FALSE, starts_with_temp = FALSE;
BOOL prit = PRINT_ALL;
PTABLE new_gen = NULL;
DS_CREATE(scratch, LEX_BUF_SZ);
DS_CREATE(alias, 64);
DS_CREATE(non_tmp_name, 64);
DS_CREATE(tmp_name, 64);
if (!pt || !pt->first) {
ds_free(&scratch);
ds_free(&alias);
ds_free(&non_tmp_name);
ds_free(&tmp_name);
return NULL;
}
t = pt->first;
lxr = new_lexer(t->line);
/* Look for tmp... = another_name
t1 = name1 (alias for t1)
t2 = name2 (alias for t2)
t3 = t1 op t2
during second pass transform
ignore t1, t2
t3 = name1 op name2
*/
while (t) {
idnum = 0;
val = lexer_scan(lxr);
ds_clear(&alias);
entry = NULL;
found_tilde = FALSE;
if (find_temp_begin(t->line))
starts_with_temp = TRUE;
else
starts_with_temp = FALSE;
tok_count = 0;
while (val != '\0') {
tok_count++;
if (val == LEX_ID) {
idnum++;
if (idnum == 1) {
entry = add_sym_tab_entry(lxr->lexer_buf, SYM_ID,
&alias_tab);
} else if (idnum == 2) {
ds_cat_str(&alias, lxr->lexer_buf);
}
} else if (val == '~') {
found_tilde = TRUE;
if (tok_count != 3) {
goto quick_return;
}
} else if (val == '=') {
if (tok_count != 2) {
goto quick_return;
}
}
val = lexer_scan(lxr);
}
if (starts_with_temp && !found_tilde && idnum == 2)
alias_sym_tab(ds_get_buf(&alias), entry);
t = t->next;
if (t) {
delete_lexer(lxr);
lxr = new_lexer(t->line);
}
}
if (prit) {
printf("alias_tab:\n");
print_sym_tab(alias_tab, FALSE);
}
delete_lexer(lxr);
/* Second pass, replace names by their aliases.
Perform transformation as mentioned above.
Transform:
t1 = t2 op t3 {op t4 ...} (t* can also be name*, not just tmps)
lhs = t1 (lhs of original x = { expr } statement)
into:
ignore lhs = t1
lhs = t2 op t3 {op t4...}
NOTE that lhs_= t1 should be the last entry in gen_tab.
lhs = t1 (from stmt lhs = { expr }) is the top-most level
in the parse tree, and is encountered last in the evaluation order.
*/
new_gen = new_parse_table();
ds_clear(&scratch);
t = pt->first;
lxr = new_lexer(t->line);
while (t) { // while (t) second pass
BOOL skip = FALSE;
val = lexer_scan(lxr);
idnum = 0;
entry = NULL;
if (find_temp_begin(t->line))
starts_with_temp = TRUE;
else
starts_with_temp = FALSE;
tok_count = 0;
ds_clear(&scratch);
ds_clear(&non_tmp_name);
ds_clear(&tmp_name);
while (val != '\0' && !skip) {
tok_count++;
if (val == LEX_ID) {
idnum++;
entry = member_sym_tab(lxr->lexer_buf, alias_tab);
if (entry && entry->alias) {
if (idnum > 1) {
ds_cat_printf(&scratch, "%s ", entry->alias);
} else if (idnum == 1) {
if (starts_with_temp) {
skip = TRUE;
}
}
} else {
ds_cat_printf(&scratch, "%s ", lxr->lexer_buf);
if (tok_count == 1) {
ds_clear(&non_tmp_name);
if (!find_temp_begin(lxr->lexer_buf))
ds_cat_str(&non_tmp_name, lxr->lexer_buf);
} else if (tok_count == 3) {
if (ds_get_length(&non_tmp_name) > 0) {
char *str1 = NULL;
str1 = find_temp_begin(lxr->lexer_buf);
if (str1) {
ds_clear(&tmp_name);
ds_cat_str(&tmp_name, lxr->lexer_buf);
}
}
}
}
if (idnum > 2) {
ds_clear(&non_tmp_name);
ds_clear(&tmp_name);
}
} else {
if (val == LEX_OTHER) {
delete_parse_table(new_gen);
new_gen = NULL;
goto quick_return;
}
ds_cat_printf(&scratch, "%c ", val);
}
val = lexer_scan(lxr);
}
t = t->next;
if (t) {
delete_lexer(lxr);
lxr = new_lexer(t->line);
}
if (!skip) {
TLINE tnamel = NULL;
char *p = NULL;
DS_CREATE(d_buf, 128);
BOOL ignore_lhs = FALSE;
ds_clear(&d_buf);
if (ds_get_length(&tmp_name) > 0)
tnamel = tab_find(new_gen, ds_get_buf(&tmp_name), TRUE);
if (ds_get_length(&non_tmp_name) > 0 && tnamel) {
ignore_lhs = TRUE;
ds_clear(&d_buf);
p = strstr(tnamel->line, " = ");
if (p) {
ds_cat_str(&d_buf, ds_get_buf(&non_tmp_name));
ds_cat_str(&d_buf, p);
tfree(tnamel->line);
tnamel->line = TMALLOC(char, ds_get_length(&d_buf) + 1);
strcpy(tnamel->line, ds_get_buf(&d_buf));
}
}
if (!ignore_lhs) {
(void) add_to_parse_table(new_gen,
ds_get_buf(&scratch), TRUE);
}
ds_free(&d_buf);
}
} // end of while (t) second pass
quick_return:
if (new_gen && new_gen->entry_count == 0) {
delete_parse_table(new_gen);
new_gen = NULL;
}
ds_free(&alias);
ds_free(&scratch);
ds_free(&non_tmp_name);
ds_free(&tmp_name);
delete_lexer(lxr);
delete_sym_tab(alias_tab);
return new_gen;
}
static BOOL gen_gates(PTABLE gate_tab, SYM_TAB parser_symbols)
{
/* gen_gates is called with PTABLE gate_tab being the final
PTABLE produced by optimize_gen_tab(,..) calls.
If gate tab is the orignal uncompacted gen_tab, then extra
redundant intermediate gates will be created.
*/
TLINE t;
LEXER lxr = NULL;
int val, tok_count = 0, gate_op = 0, idnum = 0, in_count = 0;
BOOL found_tilde = FALSE;
BOOL prit = PRINT_ALL;
DS_CREATE(out_name, 64);
DS_CREATE(in_names, 64);
DS_CREATE(gate_name, 64);
DS_CREATE(instance, 128);
if (!gate_tab || !gate_tab->first) {
ds_free(&out_name);
ds_free(&in_names);
ds_free(&gate_name);
ds_free(&instance);
return FALSE;
}
t = gate_tab->first;
lxr = new_lexer(t->line);
while (t) { // while t loop
ds_clear(&out_name);
ds_clear(&in_names);
ds_clear(&gate_name);
ds_clear(&instance);
idnum = 0;
val = lexer_scan(lxr);
found_tilde = FALSE;
tok_count = 0;
gate_op = 0;
in_count = 0;
while (val != '\0') { // while val loop
tok_count++;
if (val == LEX_ID) {
idnum++;
if (idnum == 1) { //output name
ds_cat_str(&out_name, lxr->lexer_buf);
} else { // input name
char *tail = NULL;
in_count++;
tail = get_inv_tail(lxr->lexer_buf);
if (tail && strlen(tail) > 0) {
ds_cat_printf(&in_names, " ~%s", tail);
if (prit) {
printf(
"change input name \"%s\" tail \"~%s\"\n",
lxr->lexer_buf, tail);
}
} else {
ds_cat_printf(&in_names, " %s", lxr->lexer_buf);
}
}
} else if (val == '~') {
found_tilde = TRUE;
if (tok_count != 3) goto gen_error;
} else if (val == '=') {
if (tok_count != 2) goto gen_error;
} else if (lex_gate_op(val)) {
if (gate_op != 0) {
if (val != gate_op) goto gen_error;
}
gate_op = val;
} else {
goto gen_error;
}
val = lexer_scan(lxr);
} // end while val loop
if (in_count == 1) { // buffer or inverter
if (gate_op != 0) goto gen_error;
ds_cat_str(&gate_name, lex_gate_name('~', found_tilde));
} else if (in_count >= 2) { // AND, OR. XOR and inverses
if (gate_op == 0) goto gen_error;
if (use_tmodel_delays) {
/* This is the case when logicexp has a UGATE
timing model (not d0_gate) and no pindly.
*/
SYM_TAB entry = NULL;
char *nm1 = 0;
entry = member_sym_tab(ds_get_buf(&out_name), parser_symbols);
if (entry && (entry->attribute & SYM_OUTPUT)) {
nm1 = tmodel_gate_name(gate_op, found_tilde);
if (nm1) {
ds_cat_str(&gate_name, nm1);
}
}
if (!nm1) {
nm1 = lex_gate_name(gate_op, found_tilde);
ds_cat_str(&gate_name, nm1);
}
} else {
ds_cat_str(&gate_name, lex_gate_name(gate_op, found_tilde));
}
} else {
goto gen_error;
}
ds_cat_printf(&instance, "%s ", get_inst_name());
if (in_count == 1) {
/* If the input name is inv_out_<tail> use the <tail>
and instantiate an inverter to avoid an extra buffer.
*/
char *tail = NULL;
SYM_TAB ent;
tail = get_inv_tail(ds_get_buf(&in_names));
if (tail && strlen(tail) > 0) {
ds_clear(&gate_name);
ds_cat_str(&gate_name, lex_gate_name('~', TRUE));
ds_cat_printf(&instance, "%s %s ", tail,
ds_get_buf(&out_name));
ent = member_sym_tab(tail, parser_symbols);
if (!ent) {
goto gen_error;
}
if ((ent->attribute & SYM_INVERTER) == 0) {
goto gen_error;
}
ent->ref_count--;
} else {
ds_cat_printf(&instance, "%s %s ", ds_get_buf(&in_names),
ds_get_buf(&out_name));
}
} else {
ds_cat_printf(&instance, "[%s ] %s ", ds_get_buf(&in_names),
ds_get_buf(&out_name));
}
ds_cat_printf(&instance, "%s", ds_get_buf(&gate_name));
t = t->next;
if (t) {
delete_lexer(lxr);
lxr = new_lexer(t->line);
}
if (ds_get_length(&instance) > 0) {
u_add_instance(ds_get_buf(&instance));
}
} // end while t loop
delete_lexer(lxr);
ds_free(&out_name);
ds_free(&in_names);
ds_free(&gate_name);
ds_free(&instance);
return TRUE;
gen_error:
delete_lexer(lxr);
ds_free(&out_name);
ds_free(&in_names);
ds_free(&gate_name);
ds_free(&instance);
return FALSE;
}
/*
gen_tab lines format:
name1 = [~] name2 [op name3 {op namei}+]
[] means optional, {}+ means zero or more times.
op is gate type (&, |, ^), ~ means invert output.
name1 is the gate output, and name2,... are inputs.
& is AND, | is OR, ^ is XOR.
~ & is NAND, ~ | is NOR, ~ ^ is XNOR.
In any given line, all the op values are the same, and don't change.
AND and OR can have >= 2 inputs, XOR can have only 2 inputs.
If there is only a single input, then the gate is BUF or INV(~).
*/
static void bevaluate(TLINE t, int deep)
{
/* TLINE t is the entry in the parse_tab and deep is the call depth
where the parse_tab is transformed into the gen_tab. The deeper
calls are evaluated first, bottom-up, as determined by beval_order.
The tokens in the parse_tab are reassembled into gen_tab lines
as described above.
*/
char *s;
int down = 0;
DS_CREATE(this, 64);
DS_CREATE(other, 64);
DS_CREATE(new_line, LEX_BUF_SZ);
s = find_temp_begin(t->line);
if (!s)
return;
ds_clear(&other);
ds_clear(&new_line);
ds_clear(&this);
ds_cat_str(&this, s);
if (strstr(t->line + ds_get_length(&this), " ~ ")) {
ds_cat_printf(&new_line, "%s = ~ ", ds_get_buf(&this));
} else {
if (deep == 1) {
ds_cat_printf(&new_line, "%s ", parse_tab->first->line);
} else {
ds_cat_printf(&new_line, "%s = ", ds_get_buf(&this));
}
}
t = t->next;
while (t) {
s = find_temp_anywhere(t->line);
if (s) {
if (eq(ds_get_buf(&this), s)) {
break;
} else {
if (down == 0) {
s = find_temp_begin(t->line);
ds_clear(&other);
ds_cat_str(&other, s);
down = 1;
ds_cat_printf(&new_line, " %s", ds_get_buf(&other));
} else if (down == 1) {
s = find_temp_anywhere(t->line);
if (eq(ds_get_buf(&other), s)) {
down = 0;
ds_clear(&other);
}
}
}
} else if (down == 0) {
s = find_temp_anywhere(t->line);
if (!s) {
ds_cat_printf(&new_line, " %s", t->line);
}
}
t = t->next;
}
(void) gen_tab_add_line(ds_get_buf(&new_line), TRUE);
ds_free(&this);
ds_free(&other);
ds_free(&new_line);
return;
}
static void beval_order(void)
{
/* The parser is top-down recursive descent. The depth is used
so that the parsed data is evaluated bottom-up. Then the
tmp.. regions can be evaluated before they are referenced.
*/
int i, depth;
TLINE t;
size_t slen;
if (!parse_tab || !parse_tab->first)
return;
slen = strlen("tmp");
for (i = max_adepth; i > 0; i--) {
t = parse_tab->first;
while (t) {
char *q;
int cmp = 0;
cmp = strncmp(t->line, "tmp", slen);
if (cmp == 0 && ((q = strstr(t->line, " <- ")) != NULL)) {
depth = get_temp_depth(t->line);
if (depth >= 0) {
if (i == depth) {
bevaluate(t, i);
}
}
}
t = t->next;
}
}
return;
}
static BOOL bparse(char *line, BOOL new_lexer)
{
int stmt_num = 0;
BOOL ret_val = TRUE, prit = PRINT_ALL;
PTABLE opt_tab1 = NULL, opt_tab2 = NULL;
DS_CREATE(stmt, LEX_BUF_SZ);
char *seed_buf;
seed_buf = TMALLOC(char, LEX_BUF_SZ);
(void) memcpy(seed_buf, "seed", strlen("seed"));
ds_init(&d_curr_line, seed_buf, strlen("seed"),
LEX_BUF_SZ, ds_buf_type_heap);
ds_clear(&d_curr_line);
if (new_lexer)
lex_init(line);
if (!parse_lexer) return FALSE;
lookahead = lex_set_start("logic:");
lookahead = lex_scan(); // "logic"
lookahead = lex_scan(); // ':'
lookahead = lex_scan();
while (lookahead != '\0') { // while lookahead loop
unsigned int last_count = 0, curr_count = 0;
init_parse_tables();
adepth = max_adepth = 0;
stmt_num++;
ds_clear(&stmt);
ds_cat_str(&stmt, parse_lexer->lexer_buf);
if (!bstmt()) {
cleanup_parser();
ret_val= FALSE;
break;
}
if (prit) {
printf("START parse_tab\n");
ptable_print(parse_tab);
printf("END parse_tab\n");
}
beval_order();
/* generate gates only when optimizations are successful */
if (prit) {
printf("gen_tab ");
ptable_print(gen_tab);
}
last_count = gen_tab->entry_count;
if (last_count == 1) {
ret_val = gen_gates(gen_tab, parse_lexer->lexer_sym_tab);
if (!ret_val) {
printf("ERROR generating gates for logicexp\n");
}
} else if (last_count > 1) {
opt_tab1 = optimize_gen_tab(gen_tab);
if (prit) {
printf("opt_tab1 ");
ptable_print(opt_tab1);
}
if (opt_tab1) {
curr_count = opt_tab1->entry_count;
opt_tab2 = opt_tab1;
while (curr_count > 1 && curr_count < last_count) {
last_count = curr_count;
opt_tab2 = optimize_gen_tab(opt_tab1);
if (prit) {
printf("opt_tab2 ");
ptable_print(opt_tab2);
}
delete_parse_table(opt_tab1);
if (!opt_tab2) {
ret_val = FALSE;
break;
}
opt_tab1 = opt_tab2;
curr_count = opt_tab2->entry_count;
}
if (opt_tab2) {
ret_val = gen_gates(opt_tab2, parse_lexer->lexer_sym_tab);
if (!ret_val) {
printf(
"ERROR generating gates for logicexp\n");
}
delete_parse_table(opt_tab2);
}
} else {
ret_val = FALSE;
}
} else {
ret_val = FALSE;
}
delete_parse_gen_tables();
if (!ret_val) {
break;
}
} // end while lookahead loop
ds_free(&d_curr_line);
if (ret_val)
gen_models();
ds_free(&stmt);
cleanup_parser();
return ret_val;
}
/* End of logicexp parser */
/* Start of f_logicexp which is called from udevices.c
See the PSpice reference which describes the LOGICEXP statement syntax.
NOTE: Combinational gates are generated and usually have zero delays.
In XSPICE, the shortest delays are 1.0e-12 secs, not actually zero.
Timing delays for LOGICEXP come from an associated PINDLY instance
when the timing model is d0_gate. Otherwise the timing model is used
for the delay estimates (see f_logicexp).
The PINDLY statements generate buffers and tristate buffers
which drive the primary outputs from the LOGICEXP outputs.
These buffers and tristates have estimated typical delays.
*/
static LEXER current_lexer = NULL;
static BOOL expect_token(
int tok, int expected_tok, char *expected_str, BOOL msg, int loc)
{
if (tok != expected_tok) {
if (msg) {
printf(
"ERROR expect_token failed tok %d expected_tok %d loc %d\n",
tok, expected_tok, loc);
}
return FALSE;
}
if (tok == LEX_ID) {
if (expected_str) {
LEXER lx = current_lexer;
if (eq(expected_str, lx->lexer_buf))
return TRUE;
else {
if (msg) {
printf(
"ERROR expect_token failed lexer_buf %s expected_str %s loc %d\n",
lx->lexer_buf, expected_str, loc);
}
return FALSE;
}
} else { // Any LEX_ID string matches
return TRUE;
}
}
return TRUE;
}
BOOL f_logicexp(char *line)
{
int t, num_ins = 0, num_outs = 0, i;
char *endp;
BOOL ret_val = TRUE;
lex_init(line);
current_lexer = parse_lexer;
(void) add_sym_tab_entry("logic", SYM_KEY_WORD,
&parse_lexer->lexer_sym_tab);
t = lex_scan(); // U*
if (!expect_token(t, LEX_ID, NULL, TRUE, 1)) goto error_return;
/* logicexp ( int , int ) */
t = lex_scan();
if (!expect_token(t, LEX_ID, "logicexp", TRUE, 2)) goto error_return;
t = lex_scan();
if (!expect_token(t, '(', NULL, TRUE, 3)) goto error_return;
t = lex_scan();
if (!expect_token(t, LEX_ID, NULL, TRUE, 4)) goto error_return;
if (lex_all_digits(parse_lexer->lexer_buf)) {
num_ins = (int) strtol(parse_lexer->lexer_buf, &endp, 10);
} else {
printf("ERROR logicexp input count is not an integer\n");
goto error_return;
}
t = lex_scan();
if (!expect_token(t, ',', NULL, TRUE, 5)) goto error_return;
t = lex_scan();
if (!expect_token(t, LEX_ID, NULL, TRUE, 6)) goto error_return;
if (lex_all_digits(parse_lexer->lexer_buf)) {
num_outs = (int) strtol(parse_lexer->lexer_buf, &endp, 10);
} else {
printf("ERROR logicexp output count is not an integer\n");
goto error_return;
}
t = lex_scan();
if (!expect_token(t, ')', NULL, TRUE, 7)) goto error_return;
t = lex_scan(); // pwr
if (!expect_token(t, LEX_ID, NULL, TRUE, 8)) goto error_return;
t = lex_scan(); // gnd
if (!expect_token(t, LEX_ID, NULL, TRUE, 9)) goto error_return;
/* num_ins input ids */
for (i = 0; i < num_ins; i++) {
t = lex_scan();
if (!expect_token(t, LEX_ID, NULL, TRUE, 10)) goto error_return;
(void) add_sym_tab_entry(parse_lexer->lexer_buf,
SYM_INPUT, &parse_lexer->lexer_sym_tab);
}
/* num_outs output ids */
for (i = 0; i < num_outs; i++) {
t = lex_scan();
if (!expect_token(t, LEX_ID, NULL, TRUE, 11)) goto error_return;
(void) add_sym_tab_entry(parse_lexer->lexer_buf,
SYM_OUTPUT, &parse_lexer->lexer_sym_tab);
}
/* timing model */
t = lex_scan();
if (!expect_token(t, LEX_ID, NULL, TRUE, 12)) goto error_return;
if (!eq(parse_lexer->lexer_buf, "d0_gate")) {
u_add_logicexp_model(parse_lexer->lexer_buf,
"d_and", "dxspice_dly_and");
u_add_logicexp_model(parse_lexer->lexer_buf,
"d_nand", "dxspice_dly_nand");
u_add_logicexp_model(parse_lexer->lexer_buf,
"d_or", "dxspice_dly_or");
u_add_logicexp_model(parse_lexer->lexer_buf,
"d_nor", "dxspice_dly_nor");
u_add_logicexp_model(parse_lexer->lexer_buf,
"d_xor", "dxspice_dly_xor");
u_add_logicexp_model(parse_lexer->lexer_buf,
"d_xnor", "dxspice_dly_xnor");
use_tmodel_delays = TRUE;
} else {
use_tmodel_delays = FALSE;
}
(void) add_sym_tab_entry(parse_lexer->lexer_buf,
SYM_TMODEL, &parse_lexer->lexer_sym_tab);
ret_val = bparse(line, FALSE);
current_lexer = NULL;
if (!ret_val) {
printf("ERROR parsing logicexp\n");
printf("ERROR in \"%s\"\n", line);
cleanup_parser();
}
return ret_val;
error_return:
delete_lexer(parse_lexer);
current_lexer = NULL;
return FALSE;
}
/* Start of f_pindly which is called from udevices.c
See the PSpice reference which describes the PINDLY statement syntax.
NOTE that only two sections, PINDLY: and TRISTATE:, are considered.
Typical delays are estimated from the DELAY(...) functions.
XSPICE does not have the variety of delays that PSpice supports.
Output buffers and tristate buffers are generated.
*/
/* C++ with templates would generalize the different TABLEs */
typedef struct pindly_line *PLINE;
struct pindly_line {
char *in_name;
char *out_name;
char *ena_name;
char *delays;
PLINE next;
};
typedef struct pindly_table *PINTABLE;
struct pindly_table {
PLINE first;
PLINE last;
int num_entries;
};
static PINTABLE new_pindly_table(void)
{
PINTABLE pint;
pint = TMALLOC(struct pindly_table, 1);
pint->first = pint->last = NULL;
pint->num_entries = 0;
return pint;
}
static int num_pindly_entries(PINTABLE pint)
{
if (!pint)
return 0;
else
return pint->num_entries;
}
static PLINE new_pindly_line(void)
{
PLINE p = NULL;
p = TMALLOC(struct pindly_line, 1);
p->in_name = p->out_name = p->ena_name = p->delays = NULL;
return p;
}
static PLINE add_new_pindly_line(PINTABLE pint)
{
PLINE p;
p = new_pindly_line();
p->next = NULL;
if (!pint->first) {
pint->first = pint->last = p;
} else {
pint->last->next = p;
pint->last = p;
}
pint->num_entries++;
return p;
}
static PLINE set_in_name(char *s, PLINE p)
{
if (p->in_name) tfree(p->in_name);
p->in_name = TMALLOC(char, (strlen(s) + 1));
strcpy(p->in_name, s);
return p;
}
static PLINE set_out_name(char *s, PLINE p)
{
if (p->out_name) tfree(p->out_name);
p->out_name = TMALLOC(char, (strlen(s) + 1));
strcpy(p->out_name, s);
return p;
}
static PLINE set_ena_name(char *s, PLINE p)
{
if (p->ena_name) tfree(p->ena_name);
p->ena_name = TMALLOC(char, (strlen(s) + 1));
strcpy(p->ena_name, s);
return p;
}
static PLINE set_delays(char *s, PLINE p)
{
if (p->delays) tfree(p->delays);
p->delays = TMALLOC(char, (strlen(s) + 1));
strcpy(p->delays, s);
return p;
}
static void delete_pindly_table(PINTABLE pint)
{
PLINE p, next;
if (!pint)
return;
next = pint->first;
while (next) {
p = next;
if (p->in_name) tfree(p->in_name);
if (p->out_name) tfree(p->out_name);
if (p->ena_name) tfree(p->ena_name);
if (p->delays) tfree(p->delays);
next = p->next;
tfree(p);
}
tfree(pint);
}
static void print_pindly_table(PINTABLE pint)
{
PLINE p, next;
if (!pint)
return;
printf("num_entries %d\n", pint->num_entries);
next = pint->first;
while (next) {
p = next;
printf("in_name \"%s\"", p->in_name);
printf(" out_name \"%s\"", p->out_name);
printf(" ena_name \"%s\"", p->ena_name);
printf(" delays \"%s\"\n", p->delays);
next = p->next;
}
}
static PLINE nth_pindly_entry(PINTABLE pint, int n)
{
/* Entries are from 0 to num_entries - 1 */
PLINE p, next;
int count = 0;
if (n < 0) return NULL;
if (n > pint->num_entries - 1) return NULL;
next = pint->first;
while (next) {
p = next;
if (count == n) return p;
count++;
next = p->next;
}
return NULL;
}
static PLINE find_pindly_out_name(PINTABLE pint, char *name)
{
PLINE p, next;
if (!pint) return NULL;
next = pint->first;
while (next) {
p = next;
if (eq(p->out_name, name)) return p;
next = p->next;
}
return NULL;
}
static PINTABLE pindly_tab = NULL;
static void init_pindly_tab(void)
{
pindly_tab = new_pindly_table();
}
static void cleanup_pindly_tab(void)
{
delete_pindly_table(pindly_tab);
pindly_tab = NULL;
}
static void gen_pindly_buffers(void)
{
DS_CREATE(dbuf, 128);
PLINE pline = NULL;
BOOL prit = PRINT_ALL;
if (prit) { print_pindly_table(pindly_tab); }
pline = pindly_tab->first;
while (pline) {
char *iname = NULL;
ds_clear(&dbuf);
iname = get_inst_name();
if (pline->ena_name && strlen(pline->ena_name) > 0) {
ds_cat_printf(&dbuf, "%s %s %s %s d_tristate_buf_%s", iname,
pline->in_name, pline->ena_name, pline->out_name, iname);
} else {
ds_cat_printf(&dbuf, "%s %s %s d_pindly_buf_%s", iname,
pline->in_name, pline->out_name, iname);
}
u_add_instance(ds_get_buf(&dbuf));
ds_clear(&dbuf);
if (pline->ena_name && strlen(pline->ena_name) > 0) {
ds_cat_printf(&dbuf, ".model d_tristate_buf_%s d_tristate%s",
iname, pline->delays);
} else {
ds_cat_printf(&dbuf, ".model d_pindly_buf_%s d_buffer%s",
iname, pline->delays);
}
u_add_instance(ds_get_buf(&dbuf));
pline = pline->next;
}
ds_free(&dbuf);
}
static char *get_typ_estimate(char *min, char *typ, char *max)
{
char *tmpmax = NULL, *tmpmin = NULL;
float valmin, valmax, average;
char *units1, *units2;
static char tbuf[128];
if (typ && strlen(typ) > 0 && typ[0] != '-') {
strcpy(tbuf, typ);
return tbuf;
}
if (max && strlen(max) > 0 && max[0] != '-') {
tmpmax = max;
}
if (min && strlen(min) > 0 && min[0] != '-') {
tmpmin = min;
}
if (tmpmin && tmpmax) {
if (strlen(tmpmin) > 0 && strlen(tmpmax) > 0) {
valmin = strtof(tmpmin, &units1);
valmax = strtof(tmpmax, &units2);
average = (valmin + valmax) / (float)2.0;
sprintf(tbuf, "%.2f%s", average, units2);
if (!eq(units1, units2)) {
printf("WARNING units do not match\n");
}
return tbuf;
}
} else if (tmpmax && strlen(tmpmax) > 0) {
strcpy(tbuf, tmpmax);
return tbuf;
} else if (tmpmin && strlen(tmpmin) > 0) {
strcpy(tbuf, tmpmin);
return tbuf;
} else {
return NULL;
}
return NULL;
}
static char *typical_estimate(char *delay_str)
{
/* Input string (t1,t2,t2) */
int which = 0;
size_t i, slen;
char *s;
DS_CREATE(dmin, 32);
DS_CREATE(dtyp, 32);
DS_CREATE(dmax, 32);
ds_clear(&dmin);
ds_clear(&dtyp);
ds_clear(&dmax);
slen = strlen(delay_str) - 1;
for (i = 1; i < slen; i++) {
if (delay_str[i] == ',') {
which++;
continue;
}
switch (which) {
case 0:
ds_cat_char(&dmin, delay_str[i]);
break;
case 1:
ds_cat_char(&dtyp, delay_str[i]);
break;
case 2:
ds_cat_char(&dmax, delay_str[i]);
break;
default:
break;
}
}
s = get_typ_estimate(ds_get_buf(&dmin), ds_get_buf(&dtyp),
ds_get_buf(&dmax));
ds_free(&dmin);
ds_free(&dtyp);
ds_free(&dmax);
return s;
}
static BOOL extract_delay(
LEXER lx, int val, PLINE *pline_arr, int idx, BOOL tri)
{
/* NOTE: The delays are specified in a DELAY(t1,t2,t3) function.
Beware if the format of t1, t2, t3 changes!
Expect t1, t2, t3:
-1 or x.y[time_unit] or w[time_unit]
where the time_unit is ns, ps, etc. and the same for t1, t2, t3;
x.y represents a decimal number; w is an integer.
Either numbers can have more that one digit.
*/
BOOL in_delay = FALSE, ret_val = TRUE;
int i;
BOOL prit = PRINT_ALL;
float typ_max_val = 0.0, typ_val = 0.0;
char *units;
DS_CREATE(dly, 64);
DS_CREATE(dtyp_max_str, 16);
if (val != '=') {
ds_free(&dly);
ds_free(&dtyp_max_str);
return FALSE;
}
val = lexer_scan(lx);
if (val != '{') {
ds_free(&dly);
ds_free(&dtyp_max_str);
return FALSE;
}
val = lexer_scan(lx);
while (val != '}') {
if (val == LEX_ID) {
if (eq(lx->lexer_buf, "delay")) {
in_delay = TRUE;
ds_clear(&dly);
} else {
if (in_delay) {
ds_cat_printf(&dly, "%s", lx->lexer_buf);
}
}
} else {
if (in_delay) {
DS_CREATE(delay_string, 64);
ds_cat_printf(&dly, "%c", val);
if (val == ')') {
char *tmps;
in_delay = FALSE;
tmps = typical_estimate(ds_get_buf(&dly));
if (!tmps) {
ret_val = FALSE;
break;
}
if (prit) {
printf("%s\n", ds_get_buf(&dly));
printf("estimate \"%s\"\n", tmps);
}
typ_val = strtof(tmps, &units);
if (typ_val > typ_max_val) {
ds_clear(&delay_string);
ds_clear(&dtyp_max_str);
ds_cat_str(&dtyp_max_str, tmps);
typ_max_val = typ_val;
if (ds_get_length(&dtyp_max_str) > 0) {
if (tri) {
ds_cat_printf(&delay_string,
"(delay=%s)",
ds_get_buf(&dtyp_max_str));
} else {
ds_cat_printf(&delay_string,
"(rise_delay=%s fall_delay=%s)",
ds_get_buf(&dtyp_max_str),
ds_get_buf(&dtyp_max_str));
}
} else {
printf("WARNING pindly DELAY not found\n");
if (tri) {
ds_cat_printf(&delay_string,
"(delay=10ns)");
} else {
ds_cat_printf(&delay_string,
"(rise_delay=10ns fall_delay=10ns)");
}
}
for (i = 0; i < idx; i++) {
(void) set_delays(
ds_get_buf(&delay_string),
pline_arr[i]);
}
}
}
ds_free(&delay_string);
} // end if in_delay
}
val = lexer_scan(lx);
} // end while != '}'
ds_free(&dly);
ds_free(&dtyp_max_str);
return ret_val;
}
static BOOL new_gen_output_models(LEXER lx)
{
int val, arrlen = 0, idx = 0, i;
BOOL in_pindly = FALSE, in_tristate = FALSE;
BOOL prit = PRINT_ALL;
DS_CREATE(enable_name, 64);
DS_CREATE(last_enable, 64);
PLINE pline = NULL;
PLINE *pline_arr = NULL;
arrlen = num_pindly_entries(pindly_tab);
if (arrlen <= 0) {
ds_free(&enable_name);
ds_free(&last_enable);
return FALSE;
}
pline_arr = TMALLOC(PLINE, arrlen);
ds_clear(&last_enable);
val = lexer_scan(lx);
while (val != 0) { // Outer while loop
if (val == LEX_ID) {
if (eq(lx->lexer_buf, "pindly")) {
in_pindly = TRUE;
in_tristate = FALSE;
val = lexer_scan(lx);
if (val != ':') {
goto err_return;
}
} else if (eq(lx->lexer_buf, "tristate")) {
in_pindly = FALSE;
in_tristate = TRUE;
val = lexer_scan(lx);
if (val != ':') {
goto err_return;
}
} else if (eq(lx->lexer_buf, "setup_hold")
|| eq(lx->lexer_buf, "width")
|| eq(lx->lexer_buf, "freq")
|| eq(lx->lexer_buf, "general")) {
in_pindly = FALSE;
in_tristate = FALSE;
}
}
if (in_pindly && val == LEX_ID) { // start in_pindly and LEX_ID
while (val == LEX_ID) {
if (prit) { printf("pindly out \"%s\"\n", lx->lexer_buf); }
pline = find_pindly_out_name(pindly_tab, lx->lexer_buf);
if (pline) {
pline_arr[idx++] = pline;
} else {
goto err_return;
}
val = lexer_scan(lx);
}
if (!extract_delay(lx, val, pline_arr, idx, FALSE)) goto err_return;
for (i = 0; i < arrlen; i++) {
pline_arr[i] = NULL;
}
idx = 0; // end in_pindly and LEX_ID
} else if (in_tristate && val == LEX_ID) {
// start in_tristate and LEX_ID
if (eq(lx->lexer_buf, "enable")) {
val = lexer_scan(lx);
if (val == LEX_ID && (eq(lx->lexer_buf, "hi")
|| eq(lx->lexer_buf, "lo"))) {
BOOL invert = FALSE;
if (eq(lx->lexer_buf, "lo"))
invert = TRUE;
if (prit) { printf("tristate enable %s ", lx->lexer_buf); }
val = lexer_scan(lx);
if (val != '=') {
goto err_return;
}
val = lexer_scan(lx);
if (val != LEX_ID) {
goto err_return;
}
if (prit) { printf("ena \"%s\"\n", lx->lexer_buf); }
ds_clear(&enable_name);
if (invert)
ds_cat_char(&enable_name, '~');
ds_cat_str(&enable_name, lx->lexer_buf);
} else {
goto err_return;
}
ds_clear(&last_enable);
ds_cat_ds(&last_enable, &enable_name);
val = lexer_scan(lx);
if (val != LEX_ID) {
goto err_return;
}
} else if (ds_get_length(&last_enable) > 0) {
ds_clear(&enable_name);
ds_cat_ds(&enable_name, &last_enable);
} else {
goto err_return;
}
while (val == LEX_ID) {
if (prit) { printf("tristate out \"%s\"\n", lx->lexer_buf); }
pline = find_pindly_out_name(pindly_tab, lx->lexer_buf);
if (pline) {
pline_arr[idx++] = pline;
(void) set_ena_name(ds_get_buf(&enable_name), pline);
} else {
goto err_return;
}
val = lexer_scan(lx);
}
if (!extract_delay(lx, val, pline_arr, idx, TRUE)) goto err_return;
for (i = 0; i < arrlen; i++) {
pline_arr[i] = NULL;
}
idx = 0; // end of in_tristate and LEX_ID
}
val = lexer_scan(lx);
} // end of outer while loop
ds_free(&enable_name);
ds_free(&last_enable);
tfree(pline_arr);
return TRUE;
err_return:
ds_free(&enable_name);
ds_free(&last_enable);
tfree(pline_arr);
return FALSE;
}
BOOL f_pindly(char *line)
{
int t, num_ios = 0, num_ena = 0, num_refs = 0, i;
char *endp;
LEXER lxr;
PLINE pline = NULL;
init_pindly_tab();
lxr = new_lexer(line);
current_lexer = lxr;
t = lexer_scan(lxr); // U*
if (!expect_token(t, LEX_ID, NULL, TRUE, 50)) goto error_return;
/* pindly ( int , int, int ) */
t = lexer_scan(lxr);
if (!expect_token(t, LEX_ID, "pindly", TRUE, 51)) goto error_return;
t = lexer_scan(lxr);
if (!expect_token(t, '(', NULL, TRUE, 52)) goto error_return;
t = lexer_scan(lxr);
if (!expect_token(t, LEX_ID, NULL, TRUE, 53)) goto error_return;
if (lex_all_digits(lxr->lexer_buf)) {
num_ios = (int) strtol(lxr->lexer_buf, &endp, 10);
} else {
printf("ERROR pindly io count is not an integer\n");
goto error_return;
}
t = lexer_scan(lxr);
if (!expect_token(t, ',', NULL, TRUE, 54)) goto error_return;
t = lexer_scan(lxr);
if (!expect_token(t, LEX_ID, NULL, TRUE, 55)) goto error_return;
if (lex_all_digits(lxr->lexer_buf)) {
num_ena = (int) strtol(lxr->lexer_buf, &endp, 10);
} else {
printf("ERROR pindly enable count is not an integer\n");
goto error_return;
}
t = lexer_scan(lxr);
if (!expect_token(t, ',', NULL, TRUE, 56)) goto error_return;
t = lexer_scan(lxr);
if (!expect_token(t, LEX_ID, NULL, TRUE, 57)) goto error_return;
if (lex_all_digits(lxr->lexer_buf)) {
num_refs = (int) strtol(lxr->lexer_buf, &endp, 10);
} else {
printf("ERROR pindly refs count is not an integer\n");
goto error_return;
}
t = lexer_scan(lxr);
if (!expect_token(t, ')', NULL, TRUE, 58)) goto error_return;
t = lexer_scan(lxr); // pwr
if (!expect_token(t, LEX_ID, NULL, TRUE, 59)) goto error_return;
t = lexer_scan(lxr); // gnd
if (!expect_token(t, LEX_ID, NULL, TRUE, 60)) goto error_return;
/* num_ios input ids */
for (i = 0; i < num_ios; i++) {
t = lexer_scan(lxr);
if (!expect_token(t, LEX_ID, NULL, TRUE, 61)) goto error_return;
pline = add_new_pindly_line(pindly_tab);
(void) set_in_name(lxr->lexer_buf, pline);
}
/* num_ena enable nodes which are ignored */
/* num_refs reference nodes which are ignored */
for (i = 0; i < num_ena + num_refs; i++) {
t = lexer_scan(lxr);
if (!expect_token(t, LEX_ID, NULL, TRUE, 62)) goto error_return;
}
/* num_ios output ids */
pline = NULL;
for (i = 0; i < num_ios; i++) {
t = lexer_scan(lxr);
if (!expect_token(t, LEX_ID, NULL, TRUE, 63)) goto error_return;
if (i == 0)
pline = nth_pindly_entry(pindly_tab, i);
else
pline = pline->next;
(void) set_out_name(lxr->lexer_buf, pline);
}
if (!new_gen_output_models(lxr)) {
printf("ERROR generating models for pindly\n");
printf("ERROR in \"%s\"\n", line);
goto error_return;;
}
gen_pindly_buffers();
delete_lexer(lxr);
cleanup_pindly_tab();
current_lexer = NULL;
return TRUE;
error_return:
delete_lexer(lxr);
cleanup_pindly_tab();
current_lexer = NULL;
return FALSE;
}