ngspice/examples/Monte_Carlo/mc_ring_lib_complete_actual...

213 lines
7.9 KiB
Plaintext

Perform Monte Carlo simulation in ngspice
* 25 stage Ring-Osc. BSIM3 or 4 with statistical variation of model parameters
* Model parameters are varied according to the PDK selection.
* Tested with 3 different commercial HSPICE libraries from 2 vendors.
* Add your library to mc_ring_circ.net and choose transistors accordingly.
* Add the library path to the .LIB statement.
* A simple BSIM3 inverter R.O. serves as an MC example.
.options noacct
vin in out dc 0.5 pulse 0.5 0 0.1n 5n 1 1 1
vdd dd 0 dc 3.3
vss ss 0 dc 0
ve sub 0 dc 0
vpe well 0 dc 3.3
* transistors to be selected according to the library (here: p33ll and n33ll or pch_5_mac and nch_5_mac
* or pe3 and ne3 or p1 and n1 (these models see below))
.subckt inv1 dd ss sub well in out
*XMP1 out in dd well p33ll w=5u l=800n m=3 nf=1 ad=1.35p as=1.35p pd=9.6u ps=9.6u mosmis_mod=1
*XMN1 out in ss sub n33ll w=5u l=800n m=1 nf=3 ad=0.9p as=0.9p pd=6.6u ps=6.6u mosmis_mod=1
*XMP1 out in dd well pch_5_mac w=5u l=800n m=3 nf=1 ad=1.35p as=1.35p pd=9.6u ps=9.6u mosmis_mod=1
*XMN1 out in ss sub nch_5_mac w=5u l=800n m=1 nf=3 ad=0.9p as=0.9p pd=6.6u ps=6.6u mosmis_mod=1
*XMP1 out in dd well pe3 w=5u l=800n m=3 nf=1 ad=1.35p as=1.35p pd=9.6u ps=9.6u mosmis_mod=1
*XMN1 out in ss sub ne3 w=5u l=800n m=1 nf=3 ad=0.9p as=0.9p pd=6.6u ps=6.6u mosmis_mod=1
MP1 out in dd well p1 w=5u l=800n m=3 ad=1.35p as=1.35p pd=9.6u ps=9.6u
MN1 out in ss sub n1 w=5u l=800n m=1 ad=0.9p as=0.9p pd=6.6u ps=6.6u
.ends inv1
.subckt inv5 dd ss sub well in out
xinv1 dd ss sub well in 1 inv1
xinv2 dd ss sub well 1 2 inv1
xinv3 dd ss sub well 2 3 inv1
xinv4 dd ss sub well 3 4 inv1
xinv5 dd ss sub well 4 out inv1
.ends inv5
xinv1 dd ss sub well in out5 inv5
xinv2 dd ss sub well out5 out10 inv5
xinv3 dd ss sub well out10 out15 inv5
xinv4 dd ss sub well out15 out20 inv5
xinv5 dd ss sub well out20 out inv5
xinv11 dd 0 sub well out buf inv1
cout buf ss 0.2pF
*** Model library files.
* Add your library here (full path required, or path relative to path
* of ngspice executable (interactive mode), or relative to path of
* input file (batch mode))
* Chose the transistors for XMP1 and XMN1 according to the library
*.lib "jc_usage.l" MC_LIB
*.lib "../../../various/lib-test/my_usage.l" MC_LIB
*.lib "D:\Spice_general\tests\lib-test\ts14\my_ts_usage.l" MC_LIB
*.lib "x_usage.l" MC_LIB
* or use the BSIM3 model with internal parameters except Vth0
* that varies the threshold voltage +-3 sigma around a mean of +-0.6V
.model p1 PMOS version=3.3.0 Level=8 Vth0=agauss(-0.6, 0.1, 3)
.model n1 NMOS version=3.3.0 Level=8 Vth0=agauss(0.6, 0.1, 3)
.control
let mc_runs = 10 $ number of runs for monte carlo
let run = 0 $ number of actual run
set curplot = new $ create a new plot
set curplottitle = "Transient outputs"
set plot_out = $curplot $ store its name to 'plot_out'
set curplot = new $ create a new plot
set curplottitle = "FFT outputs"
set plot_fft = $curplot $ store its name to 'plot_fft'
set curplot = new $ create a new plot
set curplottitle = "Oscillation frequency"
set max_fft = $curplot $ store its name to 'max_fft'
let mc_runsp = mc_runs + 1
let maxffts = unitvec(mc_runsp) $ vector for storing max measure results
let halfffts = unitvec(mc_runsp)$ vector for storing measure results at -40dB rising
unlet mc_runsp
set mc_runs = $&mc_runs $ create a variable from the vector
let seeds = mc_runs + 2
setseed $&seeds
unlet seeds
save buf $ we just need buf, save memory by more than 10x
* run the simulation loop
* We have to figure out what to do if a single simulation will not converge.
* There is now the variable sim_status, that is 0 if simulation ended regularly,
* and 1 if the simulation has been aborted with error message '...simulation(s) aborted'.
* Then we skip the rest of the run and continue with a new run.
dowhile run <= mc_runs
set run = $&run $ create a variable from the vector
* run=0 simulates with nominal parameters
if run > 0
echo
echo * * * * * *
echo Source the circuit again internally for run no. $run
echo * * * * * *
setseed $run
mc_source $ re-source the input file
else
echo run no. $run
end
echo simulation run no. $run of $mc_runs
tran 100p 1000n 0
echo Simulation status $sim_status
let simstat = $sim_status
if simstat = 1
if run = mc_runs
echo go to end
else
echo go to next run
end
destroy $curplot
goto next
end
* select stop and step so that number of data points after linearization is not too
* close to 8192, which would yield varying number of line length and thus scale for fft.
*
set dt0 = $curplot
* save the linearized data for having equal time scales for all runs
linearize buf $ linearize only buf, no other vectors needed
set dt1 = $curplot $ store the current plot to dt (tran i+1)
setplot $plot_out $ make 'plt_out' the active plot
* firstly save the time scale once to become the default scale
if run=0
let time={$dt1}.time
end
let vout{$run}={$dt1}.buf $ store the output vector to plot 'plot_out'
setplot $dt1 $ go back to the previous plot (tran i+1)
fft buf $ run fft on vector buf
let buf2=db(mag(buf))
* find the frequency where buf has its maximum of the fft signal
meas sp fft_max MAX_AT buf2 from=0.05G to=0.7G
* find the frequency where buf is -40dB at rising fft signal
meas sp fft_40 WHEN buf2=-40 RISE=1 from=0.05G to=0.7G
* store the fft vector
set dt2 = $curplot $ store the current plot to dt (spec i)
setplot $plot_fft $ make 'plot_fft' the active plot
if run=0
let frequency={$dt2}.frequency
end
let fft{$run}={$dt2}.buf $ store the output vector to plot 'plot_fft'
* store the measured value
setplot $max_fft $ make 'max_fft' the active plot
let maxffts[{$run}]={$dt2}.fft_max
let halfffts[{$run}]={$dt2}.fft_40
destroy $dt0 $dt1 $dt2 $ save memory, we don't need this plot (spec) any more
label next
remcirc
let run = run + 1
end
***** plotting **********************************************************
if $?batchmode
echo
echo Plotting not available in batch mode
echo Write linearized vout0 to vout{$mc_runs} to rawfile $rawfile
echo
write $rawfile {$plot_out}.allv
rusage
quit
else
plot {$plot_out}.vout0 $ just plot the tran output with run 0 parameters
setplot $plot_fft
plot db(mag(ally)) xlimit 0 1G ylimit -80 10
*
* create a histogram from vector maxffts
setplot $max_fft $ make 'max_fft' the active plot
set startfreq=50MEG
set bin_size=1MEG
set bin_count=100
compose osc_frequ start=$startfreq step=$bin_size lin=$bin_count $ requires variables as parameters
settype frequency osc_frequ
let bin_count=$bin_count $ create a vector from the variable
let yvec=unitvec(bin_count) $ requires vector as parameter
let startfreq=$startfreq
let bin_size=$bin_size
* put data into the correct bins
let run = 0
dowhile run < mc_runs
set run = $&run $ create a variable from the vector
let val = maxffts[{$run}]
let part = 0
* Check if val fits into a bin. If yes, raise bin by 1
dowhile part < bin_count
if ((val < (startfreq + (part+1)*bin_size)) & (val > (startfreq + part*bin_size)))
let yvec[part] = yvec[part] + 1
break
end
let part = part + 1
end
let run = run + 1
end
* plot the histogram
set plotstyle=combplot
let counts = yvec - 1 $ subtract 1 because we started with unitvec containing ones
plot counts vs osc_frequ
* calculate jitter
let diff40 = (vecmax(halfffts) - vecmin(halfffts))*1e-6
echo
echo Max. jitter is "$&diff40" MHz
end
rusage
* quit
.endc
.end