530 lines
14 KiB
C
530 lines
14 KiB
C
/**********
|
|
Copyright 2008 Holger Vogt. All rights reserved.
|
|
Author: 2008 Holger Vogt
|
|
**********/
|
|
|
|
/*
|
|
* Code to do fast fourier transform on data.
|
|
*/
|
|
|
|
#define GREEN /* select fast Green's fft */
|
|
|
|
#include "ngspice/ngspice.h"
|
|
#include "ngspice/ftedefs.h"
|
|
#include "ngspice/dvec.h"
|
|
#include "ngspice/sim.h"
|
|
|
|
#include "com_fft.h"
|
|
#include "variable.h"
|
|
#include "parse.h"
|
|
#include "../misc/misc_time.h"
|
|
#include "ngspice/fftext.h"
|
|
|
|
|
|
#ifndef GREEN
|
|
static void fftext(double*, double*, long int, long int, int);
|
|
#endif
|
|
|
|
|
|
void
|
|
com_fft(wordlist *wl)
|
|
{
|
|
ngcomplex_t **fdvec = NULL;
|
|
double **tdvec = NULL;
|
|
double *freq, *win = NULL, *time;
|
|
double span;
|
|
int fpts, i, j, tlen, ngood;
|
|
struct dvec *f, *vlist, *lv = NULL, *vec;
|
|
struct pnode *pn, *names = NULL;
|
|
char window[BSIZE_SP];
|
|
double maxt;
|
|
|
|
#ifdef GREEN
|
|
int mm;
|
|
#else
|
|
int sign;
|
|
#endif
|
|
|
|
double *reald = NULL, *imagd = NULL;
|
|
int size, order;
|
|
double scale;
|
|
|
|
if (!plot_cur || !plot_cur->pl_scale) {
|
|
fprintf(cp_err, "Error: no vectors loaded.\n");
|
|
goto done;
|
|
}
|
|
if (!isreal(plot_cur->pl_scale) ||
|
|
((plot_cur->pl_scale)->v_type != SV_TIME)) {
|
|
fprintf(cp_err, "Error: fft needs real time scale\n");
|
|
goto done;
|
|
}
|
|
|
|
tlen = (plot_cur->pl_scale)->v_length;
|
|
time = (plot_cur->pl_scale)->v_realdata;
|
|
span = time[tlen-1] - time[0];
|
|
|
|
#ifdef GREEN
|
|
// size of input vector is power of two and larger than spice vector
|
|
size = 1;
|
|
mm = 0;
|
|
while (size < tlen) {
|
|
size <<= 1;
|
|
mm++;
|
|
}
|
|
#else
|
|
/* size of input vector is power of two and larger than spice vector */
|
|
size = 1;
|
|
while (size < tlen)
|
|
size *= 2;
|
|
#endif
|
|
/* output vector has length of size/2 */
|
|
fpts = size/2;
|
|
|
|
win = TMALLOC(double, tlen);
|
|
maxt = time[tlen-1];
|
|
if (!cp_getvar("specwindow", CP_STRING, window))
|
|
strcpy(window, "blackman");
|
|
if (!cp_getvar("specwindoworder", CP_NUM, &order))
|
|
order = 2;
|
|
if (order < 2)
|
|
order = 2;
|
|
|
|
if (fft_windows(window, win, time, tlen, maxt, span, order) == 0)
|
|
goto done;
|
|
|
|
names = ft_getpnames(wl, TRUE);
|
|
vlist = NULL;
|
|
ngood = 0;
|
|
for (pn = names; pn; pn = pn->pn_next) {
|
|
vec = ft_evaluate(pn);
|
|
for (; vec; vec = vec->v_link2) {
|
|
|
|
if (vec->v_length != tlen) {
|
|
fprintf(cp_err, "Error: lengths of %s vectors don't match: %d, %d\n",
|
|
vec->v_name, vec->v_length, tlen);
|
|
continue;
|
|
}
|
|
|
|
if (!isreal(vec)) {
|
|
fprintf(cp_err, "Error: %s isn't real!\n", vec->v_name);
|
|
continue;
|
|
}
|
|
|
|
if (vec->v_type == SV_TIME) {
|
|
continue;
|
|
}
|
|
|
|
if (!vlist)
|
|
vlist = vec;
|
|
else
|
|
lv->v_link2 = vec;
|
|
|
|
lv = vec;
|
|
ngood++;
|
|
}
|
|
}
|
|
|
|
if (!ngood)
|
|
goto done;
|
|
|
|
plot_cur = plot_alloc("spectrum");
|
|
plot_cur->pl_next = plot_list;
|
|
plot_list = plot_cur;
|
|
plot_cur->pl_title = copy((plot_cur->pl_next)->pl_title);
|
|
plot_cur->pl_name = copy("Spectrum");
|
|
plot_cur->pl_date = copy(datestring());
|
|
|
|
freq = TMALLOC(double, fpts);
|
|
f = alloc(struct dvec);
|
|
ZERO(f, struct dvec);
|
|
f->v_name = copy("frequency");
|
|
f->v_type = SV_FREQUENCY;
|
|
f->v_flags = (VF_REAL | VF_PERMANENT | VF_PRINT);
|
|
f->v_length = fpts;
|
|
f->v_realdata = freq;
|
|
vec_new(f);
|
|
|
|
for (i = 0; i<fpts; i++)
|
|
freq[i] = i*1.0/span*tlen/size;
|
|
|
|
tdvec = TMALLOC(double *, ngood);
|
|
fdvec = TMALLOC(ngcomplex_t *, ngood);
|
|
for (i = 0, vec = vlist; i<ngood; i++) {
|
|
tdvec[i] = vec->v_realdata; /* real input data */
|
|
fdvec[i] = TMALLOC(ngcomplex_t, fpts); /* complex output data */
|
|
f = alloc(struct dvec);
|
|
ZERO(f, struct dvec);
|
|
f->v_name = vec_basename(vec);
|
|
f->v_type = SV_NOTYPE;
|
|
f->v_flags = (VF_COMPLEX | VF_PERMANENT);
|
|
f->v_length = fpts;
|
|
f->v_compdata = fdvec[i];
|
|
vec_new(f);
|
|
vec = vec->v_link2;
|
|
}
|
|
|
|
printf("FFT: Time span: %g s, input length: %d, zero padding: %d\n", span, size, size-tlen);
|
|
printf("FFT: Freq. resolution: %g Hz, output length: %d\n", 1.0/span*tlen/size, fpts);
|
|
|
|
reald = TMALLOC(double, size);
|
|
imagd = TMALLOC(double, size);
|
|
for (i = 0; i<ngood; i++) {
|
|
for (j = 0; j < tlen; j++) {
|
|
reald[j] = tdvec[i][j]*win[j];
|
|
imagd[j] = 0.0;
|
|
}
|
|
for (j = tlen; j < size; j++) {
|
|
reald[j] = 0.0;
|
|
imagd[j] = 0.0;
|
|
}
|
|
#ifdef GREEN
|
|
// Green's FFT
|
|
fftInit(mm);
|
|
rffts(reald, mm, 1);
|
|
fftFree();
|
|
scale = size;
|
|
/* Re(x[0]), Re(x[N/2]), Re(x[1]), Im(x[1]), Re(x[2]), Im(x[2]), ... Re(x[N/2-1]), Im(x[N/2-1]). */
|
|
for (j = 0; j < fpts; j++) {
|
|
fdvec[i][j].cx_real = reald[2*j]/scale;
|
|
fdvec[i][j].cx_imag = reald[2*j+1]/scale;
|
|
}
|
|
fdvec[i][0].cx_imag = 0;
|
|
#else
|
|
sign = 1;
|
|
fftext(reald, imagd, size, tlen, sign);
|
|
scale = 0.66;
|
|
|
|
for (j = 0; j < fpts; j++) {
|
|
fdvec[i][j].cx_real = reald[j]/scale;
|
|
fdvec[i][j].cx_imag = imagd[j]/scale;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
done:
|
|
tfree(reald);
|
|
tfree(imagd);
|
|
|
|
tfree(tdvec);
|
|
tfree(fdvec);
|
|
tfree(win);
|
|
|
|
free_pnode(names);
|
|
}
|
|
|
|
|
|
void
|
|
com_psd(wordlist *wl)
|
|
{
|
|
ngcomplex_t **fdvec = NULL;
|
|
double **tdvec = NULL;
|
|
double *freq, *win = NULL, *time, *ave;
|
|
double span, noipower;
|
|
int mm;
|
|
int size, ngood, fpts, i, j, tlen, jj, smooth, hsmooth;
|
|
char *s;
|
|
struct dvec *f, *vlist, *lv = NULL, *vec;
|
|
struct pnode *pn, *names = NULL;
|
|
char window[BSIZE_SP];
|
|
double maxt;
|
|
|
|
double *reald = NULL, *imagd = NULL;
|
|
double scaling, sum;
|
|
int order;
|
|
|
|
if (!plot_cur || !plot_cur->pl_scale) {
|
|
fprintf(cp_err, "Error: no vectors loaded.\n");
|
|
goto done;
|
|
}
|
|
if (!isreal(plot_cur->pl_scale) ||
|
|
((plot_cur->pl_scale)->v_type != SV_TIME)) {
|
|
fprintf(cp_err, "Error: fft needs real time scale\n");
|
|
goto done;
|
|
}
|
|
|
|
tlen = (plot_cur->pl_scale)->v_length;
|
|
time = (plot_cur->pl_scale)->v_realdata;
|
|
span = time[tlen-1] - time[0];
|
|
|
|
// get filter length from parameter input
|
|
s = wl->wl_word;
|
|
ave = ft_numparse(&s, FALSE);
|
|
if (!ave || (*ave < 1.0)) {
|
|
fprintf(cp_out, "Number of averaged data points: %d\n", 1);
|
|
smooth = 1;
|
|
} else {
|
|
smooth = (int)(*ave);
|
|
}
|
|
|
|
wl = wl->wl_next;
|
|
|
|
// size of input vector is power of two and larger than spice vector
|
|
size = 1;
|
|
mm = 0;
|
|
while (size < tlen) {
|
|
size <<= 1;
|
|
mm++;
|
|
}
|
|
|
|
// output vector has length of size/2
|
|
fpts = size>>1;
|
|
|
|
win = TMALLOC(double, tlen);
|
|
maxt = time[tlen-1];
|
|
if (!cp_getvar("specwindow", CP_STRING, window))
|
|
strcpy(window, "blackman");
|
|
if (!cp_getvar("specwindoworder", CP_NUM, &order))
|
|
order = 2;
|
|
if (order < 2)
|
|
order = 2;
|
|
|
|
if (fft_windows(window, win, time, tlen, maxt, span, order) == 0)
|
|
goto done;
|
|
|
|
names = ft_getpnames(wl, TRUE);
|
|
vlist = NULL;
|
|
ngood = 0;
|
|
for (pn = names; pn; pn = pn->pn_next) {
|
|
vec = ft_evaluate(pn);
|
|
for (; vec; vec = vec->v_link2) {
|
|
|
|
if (vec->v_length != (int)tlen) {
|
|
fprintf(cp_err, "Error: lengths of %s vectors don't match: %d, %d\n",
|
|
vec->v_name, vec->v_length, tlen);
|
|
continue;
|
|
}
|
|
|
|
if (!isreal(vec)) {
|
|
fprintf(cp_err, "Error: %s isn't real!\n", vec->v_name);
|
|
continue;
|
|
}
|
|
|
|
if (vec->v_type == SV_TIME) {
|
|
continue;
|
|
}
|
|
|
|
if (!vlist)
|
|
vlist = vec;
|
|
else
|
|
lv->v_link2 = vec;
|
|
|
|
lv = vec;
|
|
ngood++;
|
|
}
|
|
}
|
|
|
|
if (!ngood)
|
|
goto done;
|
|
|
|
plot_cur = plot_alloc("spectrum");
|
|
plot_cur->pl_next = plot_list;
|
|
plot_list = plot_cur;
|
|
plot_cur->pl_title = copy((plot_cur->pl_next)->pl_title);
|
|
plot_cur->pl_name = copy("PSD");
|
|
plot_cur->pl_date = copy(datestring());
|
|
|
|
freq = TMALLOC(double, fpts + 1);
|
|
f = alloc(struct dvec);
|
|
ZERO(f, struct dvec);
|
|
f->v_name = copy("frequency");
|
|
f->v_type = SV_FREQUENCY;
|
|
f->v_flags = (VF_REAL | VF_PERMANENT | VF_PRINT);
|
|
f->v_length = fpts;
|
|
f->v_realdata = freq;
|
|
vec_new(f);
|
|
|
|
for (i = 0; i <= fpts; i++)
|
|
freq[i] = i*1./span*tlen/size;
|
|
|
|
tdvec = TMALLOC(double*, ngood);
|
|
fdvec = TMALLOC(ngcomplex_t*, ngood);
|
|
for (i = 0, vec = vlist; i<ngood; i++) {
|
|
tdvec[i] = vec->v_realdata; /* real input data */
|
|
fdvec[i] = TMALLOC(ngcomplex_t, fpts + 1); /* complex output data */
|
|
f = alloc(struct dvec);
|
|
ZERO(f, struct dvec);
|
|
f->v_name = vec_basename(vec);
|
|
f->v_type = SV_NOTYPE; //vec->v_type;
|
|
f->v_flags = (VF_COMPLEX | VF_PERMANENT);
|
|
f->v_length = fpts + 1;
|
|
f->v_compdata = fdvec[i];
|
|
vec_new(f);
|
|
vec = vec->v_link2;
|
|
}
|
|
|
|
printf("PSD: Time span: %g s, input length: %d, zero padding: %d\n", span, size, size-tlen);
|
|
printf("PSD: Freq. resolution: %g Hz, output length: %d\n", 1.0/span*tlen/size, fpts);
|
|
|
|
reald = TMALLOC(double, size);
|
|
imagd = TMALLOC(double, size);
|
|
|
|
// scale = 0.66;
|
|
|
|
for (i = 0; i<ngood; i++) {
|
|
double intres;
|
|
for (j = 0; j < tlen; j++) {
|
|
reald[j] = (tdvec[i][j]*win[j]);
|
|
imagd[j] = 0.;
|
|
}
|
|
for (j = tlen; j < size; j++) {
|
|
reald[j] = 0.;
|
|
imagd[j] = 0.;
|
|
}
|
|
|
|
// Green's FFT
|
|
fftInit(mm);
|
|
rffts(reald, mm, 1);
|
|
fftFree();
|
|
scaling = size;
|
|
|
|
/* Re(x[0]), Re(x[N/2]), Re(x[1]), Im(x[1]), Re(x[2]), Im(x[2]), ... Re(x[N/2-1]), Im(x[N/2-1]). */
|
|
intres = (double)size * (double)size;
|
|
noipower = fdvec[i][0].cx_real = reald[0]*reald[0]/intres;
|
|
fdvec[i][fpts].cx_real = reald[1]*reald[1]/intres;
|
|
noipower += fdvec[i][fpts-1].cx_real;
|
|
for (j = 1; j < fpts; j++) {
|
|
jj = j<<1;
|
|
fdvec[i][j].cx_real = 2.* (reald[jj]*reald[jj] + reald[jj + 1]*reald[jj + 1])/intres;
|
|
fdvec[i][j].cx_imag = 0;
|
|
noipower += fdvec[i][j].cx_real;
|
|
if (!finite(noipower))
|
|
break;
|
|
}
|
|
|
|
printf("Total noise power up to Nyquist frequency %5.3e Hz:\n%e V^2 (or A^2), \nnoise voltage or current %e V (or A)\n",
|
|
freq[fpts], noipower, sqrt(noipower));
|
|
|
|
/* smoothing with rectangular window of width "smooth",
|
|
plotting V/sqrt(Hz) or I/sqrt(Hz) */
|
|
if (smooth < 1)
|
|
continue;
|
|
|
|
hsmooth = smooth>>1;
|
|
for (j = 0; j < hsmooth; j++) {
|
|
sum = 0.;
|
|
for (jj = 0; jj < hsmooth + j; jj++)
|
|
sum += fdvec[i][jj].cx_real;
|
|
sum /= (hsmooth + j);
|
|
reald[j] = (sqrt(sum)/scaling);
|
|
}
|
|
for (j = hsmooth; j < fpts-hsmooth; j++) {
|
|
sum = 0.;
|
|
for (jj = 0; jj < smooth; jj++)
|
|
sum += fdvec[i][j-hsmooth+jj].cx_real;
|
|
sum /= smooth;
|
|
reald[j] = (sqrt(sum)/scaling);
|
|
}
|
|
for (j = fpts-hsmooth; j < fpts; j++) {
|
|
sum = 0.;
|
|
for (jj = 0; jj < smooth; jj++)
|
|
sum += fdvec[i][j-hsmooth+jj].cx_real;
|
|
sum /= (fpts - j + hsmooth - 1);
|
|
reald[j] = (sqrt(sum)/scaling);
|
|
}
|
|
for (j = 0; j < fpts; j++)
|
|
fdvec[i][j].cx_real = reald[j];
|
|
}
|
|
|
|
done:
|
|
free(reald);
|
|
free(imagd);
|
|
|
|
tfree(tdvec);
|
|
tfree(fdvec);
|
|
tfree(win);
|
|
|
|
free_pnode(names);
|
|
}
|
|
|
|
|
|
#ifndef GREEN
|
|
|
|
static void
|
|
fftext(double *x, double *y, long int n, long int nn, int dir)
|
|
{
|
|
/*
|
|
http://local.wasp.uwa.edu.au/~pbourke/other/dft/
|
|
download 22.05.08
|
|
Used with permission from the author Paul Bourke
|
|
*/
|
|
|
|
/*
|
|
This computes an in-place complex-to-complex FFT
|
|
x and y are the real and imaginary arrays
|
|
n is the number of points, has to be to the power of 2
|
|
nn is the number of points w/o zero padded values
|
|
dir = 1 gives forward transform
|
|
dir = -1 gives reverse transform
|
|
*/
|
|
|
|
long i, i1, j, k, i2, l, l1, l2;
|
|
double c1, c2, tx, ty, t1, t2, u1, u2, z;
|
|
int m = 0, mm = 1;
|
|
|
|
/* get the exponent to the base of 2 from the number of points */
|
|
while (mm < n) {
|
|
mm *= 2;
|
|
m++;
|
|
}
|
|
|
|
/* Do the bit reversal */
|
|
i2 = n >> 1;
|
|
j = 0;
|
|
for (i = 0; i < n-1; i++) {
|
|
if (i < j) {
|
|
tx = x[i];
|
|
ty = y[i];
|
|
x[i] = x[j];
|
|
y[i] = y[j];
|
|
x[j] = tx;
|
|
y[j] = ty;
|
|
}
|
|
k = i2;
|
|
while (k <= j) {
|
|
j -= k;
|
|
k >>= 1;
|
|
}
|
|
j += k;
|
|
}
|
|
|
|
/* Compute the FFT */
|
|
c1 = -1.0;
|
|
c2 = 0.0;
|
|
l2 = 1;
|
|
for (l = 0; l < m; l++) {
|
|
l1 = l2;
|
|
l2 <<= 1;
|
|
u1 = 1.0;
|
|
u2 = 0.0;
|
|
for (j = 0; j < l1; j++) {
|
|
for (i = j; i < n; i += l2) {
|
|
i1 = i + l1;
|
|
t1 = u1 * x[i1] - u2 * y[i1];
|
|
t2 = u1 * y[i1] + u2 * x[i1];
|
|
x[i1] = x[i] - t1;
|
|
y[i1] = y[i] - t2;
|
|
x[i] += t1;
|
|
y[i] += t2;
|
|
}
|
|
z = u1 * c1 - u2 * c2;
|
|
u2 = u1 * c2 + u2 * c1;
|
|
u1 = z;
|
|
}
|
|
c2 = sqrt((1.0 - c1) / 2.0);
|
|
if (dir == 1)
|
|
c2 = -c2;
|
|
c1 = sqrt((1.0 + c1) / 2.0);
|
|
}
|
|
|
|
/* Scaling for forward transform */
|
|
if (dir == 1) {
|
|
double scale = 1.0 / nn;
|
|
for (i = 0; i < n; i++) {
|
|
x[i] *= scale; /* don't consider zero padded values */
|
|
y[i] *= scale;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* GREEN */
|