ngspice/src/maths/KLU/klu.c

774 lines
24 KiB
C

/* ========================================================================== */
/* === klu ================================================================== */
/* ========================================================================== */
/* KLU: factorizes P*A into L*U, using the Gilbert-Peierls algorithm [1], with
* optional symmetric pruning by Eisenstat and Liu [2]. The code is by Tim
* Davis. This algorithm is what appears as the default sparse LU routine in
* MATLAB version 6.0, and still appears in MATLAB 6.5 as [L,U,P] = lu (A).
* Note that no column ordering is provided (see COLAMD or AMD for suitable
* orderings). SuperLU is based on this algorithm, except that it adds the
* use of dense matrix operations on "supernodes" (adjacent columns with
* identical). This code doesn't use supernodes, thus its name ("Kent" LU,
* as in "Clark Kent", in contrast with Super-LU...). This algorithm is slower
* than SuperLU and UMFPACK for large matrices with lots of nonzeros in their
* factors (such as for most finite-element problems). However, for matrices
* with very sparse LU factors, this algorithm is typically faster than both
* SuperLU and UMFPACK, since in this case there is little chance to exploit
* dense matrix kernels (the BLAS).
*
* Only one block of A is factorized, in the BTF form. The input n is the
* size of the block; k1 is the first row and column in the block.
*
* NOTE: no error checking is done on the inputs. This version is not meant to
* be called directly by the user. Use klu_factor instead.
*
* No fill-reducing ordering is provided. The ordering quality of
* klu_kernel_factor is the responsibility of the caller. The input A must
* pre-permuted to reduce fill-in, or fill-reducing input permutation Q must
* be provided.
*
* The input matrix A must be in compressed-column form, with either sorted
* or unsorted row indices. Row indices for column j of A is in
* Ai [Ap [j] ... Ap [j+1]-1] and the same range of indices in Ax holds the
* numerical values. No duplicate entries are allowed.
*
* Copyright 2004-2009, Tim Davis. All rights reserved. See the README
* file for details on permitted use. Note that no code from The MathWorks,
* Inc, or from SuperLU, or from any other source appears here. The code is
* written from scratch, from the algorithmic description in Gilbert & Peierls'
* and Eisenstat & Liu's journal papers [1,2].
*
* If an input permutation Q is provided, the factorization L*U = A (P,Q)
* is computed, where P is determined by partial pivoting, and Q is the input
* ordering. If the pivot tolerance is less than 1, the "diagonal" entry that
* KLU attempts to choose is the diagonal of A (Q,Q). In other words, the
* input permutation is applied symmetrically to the input matrix. The output
* permutation P includes both the partial pivoting ordering and the input
* permutation. If Q is NULL, then it is assumed to be the identity
* permutation. Q is not modified.
*
* [1] Gilbert, J. R. and Peierls, T., "Sparse Partial Pivoting in Time
* Proportional to Arithmetic Operations," SIAM J. Sci. Stat. Comp.,
* vol 9, pp. 862-874, 1988.
* [2] Eisenstat, S. C. and Liu, J. W. H., "Exploiting Structural Symmetry in
* Unsymmetric Sparse Symbolic Factorization," SIAM J. Matrix Analysis &
* Applic., vol 13, pp. 202-211, 1992.
*/
/* ========================================================================== */
#include "klu_internal.h"
size_t KLU_kernel_factor /* 0 if failure, size of LU if OK */
(
/* inputs, not modified */
Int n, /* A is n-by-n. n must be > 0. */
Int Ap [ ], /* size n+1, column pointers for A */
Int Ai [ ], /* size nz = Ap [n], row indices for A */
Entry Ax [ ], /* size nz, values of A */
Int Q [ ], /* size n, optional column permutation */
double Lsize, /* estimate of number of nonzeros in L */
/* outputs, not defined on input */
Unit **p_LU, /* row indices and values of L and U */
Entry Udiag [ ], /* size n, diagonal of U */
Int Llen [ ], /* size n, column length of L */
Int Ulen [ ], /* size n, column length of U */
Int Lip [ ], /* size n, column pointers for L */
Int Uip [ ], /* size n, column pointers for U */
Int P [ ], /* row permutation, size n */
Int *lnz, /* size of L */
Int *unz, /* size of U */
/* workspace, undefined on input */
Entry *X, /* size n double's, zero on output */
Int *Work, /* size 5n Int's */
/* inputs, not modified on output */
Int k1, /* the block of A is from k1 to k2-1 */
Int PSinv [ ], /* inverse of P from symbolic factorization */
double Rs [ ], /* scale factors for A */
/* inputs, modified on output */
Int Offp [ ], /* off-diagonal matrix (modified by this routine) */
Int Offi [ ],
Entry Offx [ ],
/* --------------- */
KLU_common *Common
)
{
double maxlnz, dunits ;
Unit *LU ;
Int *Pinv, *Lpend, *Stack, *Flag, *Ap_pos, *W ;
Int lsize, usize, anz, ok ;
size_t lusize ;
ASSERT (Common != NULL) ;
/* ---------------------------------------------------------------------- */
/* get control parameters, or use defaults */
/* ---------------------------------------------------------------------- */
n = MAX (1, n) ;
anz = Ap [n+k1] - Ap [k1] ;
if (Lsize <= 0)
{
Lsize = -Lsize ;
Lsize = MAX (Lsize, 1.0) ;
lsize = Lsize * anz + n ;
}
else
{
lsize = Lsize ;
}
usize = lsize ;
lsize = MAX (n+1, lsize) ;
usize = MAX (n+1, usize) ;
maxlnz = (((double) n) * ((double) n) + ((double) n)) / 2. ;
maxlnz = MIN (maxlnz, ((double) INT_MAX)) ;
lsize = MIN (maxlnz, lsize) ;
usize = MIN (maxlnz, usize) ;
PRINTF (("Welcome to klu: n %d anz %d k1 %d lsize %d usize %d maxlnz %g\n",
n, anz, k1, lsize, usize, maxlnz)) ;
/* ---------------------------------------------------------------------- */
/* allocate workspace and outputs */
/* ---------------------------------------------------------------------- */
/* return arguments are not yet assigned */
*p_LU = (Unit *) NULL ;
/* these computations are safe from size_t overflow */
W = Work ;
Pinv = (Int *) W ; W += n ;
Stack = (Int *) W ; W += n ;
Flag = (Int *) W ; W += n ;
Lpend = (Int *) W ; W += n ;
Ap_pos = (Int *) W ; W += n ;
dunits = DUNITS (Int, lsize) + DUNITS (Entry, lsize) +
DUNITS (Int, usize) + DUNITS (Entry, usize) ;
lusize = (size_t) dunits ;
ok = !INT_OVERFLOW (dunits) ;
LU = ok ? KLU_malloc (lusize, sizeof (Unit), Common) : NULL ;
if (LU == NULL)
{
/* out of memory, or problem too large */
Common->status = KLU_OUT_OF_MEMORY ;
lusize = 0 ;
return (lusize) ;
}
/* ---------------------------------------------------------------------- */
/* factorize */
/* ---------------------------------------------------------------------- */
/* with pruning, and non-recursive depth-first-search */
lusize = KLU_kernel (n, Ap, Ai, Ax, Q, lusize,
Pinv, P, &LU, Udiag, Llen, Ulen, Lip, Uip, lnz, unz,
X, Stack, Flag, Ap_pos, Lpend,
k1, PSinv, Rs, Offp, Offi, Offx, Common) ;
/* ---------------------------------------------------------------------- */
/* return LU factors, or return nothing if an error occurred */
/* ---------------------------------------------------------------------- */
if (Common->status < KLU_OK)
{
LU = KLU_free (LU, lusize, sizeof (Unit), Common) ;
lusize = 0 ;
}
*p_LU = LU ;
PRINTF ((" in klu noffdiag %d\n", Common->noffdiag)) ;
return (lusize) ;
}
/* ========================================================================== */
/* === KLU_lsolve =========================================================== */
/* ========================================================================== */
/* Solve Lx=b. Assumes L is unit lower triangular and where the unit diagonal
* entry is NOT stored. Overwrites B with the solution X. B is n-by-nrhs
* and is stored in ROW form with row dimension nrhs. nrhs must be in the
* range 1 to 4. */
void KLU_lsolve
(
/* inputs, not modified: */
Int n,
Int Lip [ ],
Int Llen [ ],
Unit LU [ ],
Int nrhs,
/* right-hand-side on input, solution to Lx=b on output */
Entry X [ ]
)
{
Entry x [4], lik ;
Int *Li ;
Entry *Lx ;
Int k, p, len, i ;
switch (nrhs)
{
case 1:
for (k = 0 ; k < n ; k++)
{
x [0] = X [k] ;
GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
/* unit diagonal of L is not stored*/
for (p = 0 ; p < len ; p++)
{
/* X [Li [p]] -= Lx [p] * x [0] ; */
MULT_SUB (X [Li [p]], Lx [p], x [0]) ;
}
}
break ;
case 2:
for (k = 0 ; k < n ; k++)
{
x [0] = X [2*k ] ;
x [1] = X [2*k + 1] ;
GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
for (p = 0 ; p < len ; p++)
{
i = Li [p] ;
lik = Lx [p] ;
MULT_SUB (X [2*i], lik, x [0]) ;
MULT_SUB (X [2*i + 1], lik, x [1]) ;
}
}
break ;
case 3:
for (k = 0 ; k < n ; k++)
{
x [0] = X [3*k ] ;
x [1] = X [3*k + 1] ;
x [2] = X [3*k + 2] ;
GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
for (p = 0 ; p < len ; p++)
{
i = Li [p] ;
lik = Lx [p] ;
MULT_SUB (X [3*i], lik, x [0]) ;
MULT_SUB (X [3*i + 1], lik, x [1]) ;
MULT_SUB (X [3*i + 2], lik, x [2]) ;
}
}
break ;
case 4:
for (k = 0 ; k < n ; k++)
{
x [0] = X [4*k ] ;
x [1] = X [4*k + 1] ;
x [2] = X [4*k + 2] ;
x [3] = X [4*k + 3] ;
GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
for (p = 0 ; p < len ; p++)
{
i = Li [p] ;
lik = Lx [p] ;
MULT_SUB (X [4*i], lik, x [0]) ;
MULT_SUB (X [4*i + 1], lik, x [1]) ;
MULT_SUB (X [4*i + 2], lik, x [2]) ;
MULT_SUB (X [4*i + 3], lik, x [3]) ;
}
}
break ;
}
}
/* ========================================================================== */
/* === KLU_usolve =========================================================== */
/* ========================================================================== */
/* Solve Ux=b. Assumes U is non-unit upper triangular and where the diagonal
* entry is NOT stored. Overwrites B with the solution X. B is n-by-nrhs
* and is stored in ROW form with row dimension nrhs. nrhs must be in the
* range 1 to 4. */
void KLU_usolve
(
/* inputs, not modified: */
Int n,
Int Uip [ ],
Int Ulen [ ],
Unit LU [ ],
Entry Udiag [ ],
Int nrhs,
/* right-hand-side on input, solution to Ux=b on output */
Entry X [ ]
)
{
Entry x [4], uik, ukk ;
Int *Ui ;
Entry *Ux ;
Int k, p, len, i ;
switch (nrhs)
{
case 1:
for (k = n-1 ; k >= 0 ; k--)
{
GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
/* x [0] = X [k] / Udiag [k] ; */
DIV (x [0], X [k], Udiag [k]) ;
X [k] = x [0] ;
for (p = 0 ; p < len ; p++)
{
/* X [Ui [p]] -= Ux [p] * x [0] ; */
MULT_SUB (X [Ui [p]], Ux [p], x [0]) ;
}
}
break ;
case 2:
for (k = n-1 ; k >= 0 ; k--)
{
GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
ukk = Udiag [k] ;
/* x [0] = X [2*k ] / ukk ;
x [1] = X [2*k + 1] / ukk ; */
DIV (x [0], X [2*k], ukk) ;
DIV (x [1], X [2*k + 1], ukk) ;
X [2*k ] = x [0] ;
X [2*k + 1] = x [1] ;
for (p = 0 ; p < len ; p++)
{
i = Ui [p] ;
uik = Ux [p] ;
/* X [2*i ] -= uik * x [0] ;
X [2*i + 1] -= uik * x [1] ; */
MULT_SUB (X [2*i], uik, x [0]) ;
MULT_SUB (X [2*i + 1], uik, x [1]) ;
}
}
break ;
case 3:
for (k = n-1 ; k >= 0 ; k--)
{
GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
ukk = Udiag [k] ;
DIV (x [0], X [3*k], ukk) ;
DIV (x [1], X [3*k + 1], ukk) ;
DIV (x [2], X [3*k + 2], ukk) ;
X [3*k ] = x [0] ;
X [3*k + 1] = x [1] ;
X [3*k + 2] = x [2] ;
for (p = 0 ; p < len ; p++)
{
i = Ui [p] ;
uik = Ux [p] ;
MULT_SUB (X [3*i], uik, x [0]) ;
MULT_SUB (X [3*i + 1], uik, x [1]) ;
MULT_SUB (X [3*i + 2], uik, x [2]) ;
}
}
break ;
case 4:
for (k = n-1 ; k >= 0 ; k--)
{
GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
ukk = Udiag [k] ;
DIV (x [0], X [4*k], ukk) ;
DIV (x [1], X [4*k + 1], ukk) ;
DIV (x [2], X [4*k + 2], ukk) ;
DIV (x [3], X [4*k + 3], ukk) ;
X [4*k ] = x [0] ;
X [4*k + 1] = x [1] ;
X [4*k + 2] = x [2] ;
X [4*k + 3] = x [3] ;
for (p = 0 ; p < len ; p++)
{
i = Ui [p] ;
uik = Ux [p] ;
MULT_SUB (X [4*i], uik, x [0]) ;
MULT_SUB (X [4*i + 1], uik, x [1]) ;
MULT_SUB (X [4*i + 2], uik, x [2]) ;
MULT_SUB (X [4*i + 3], uik, x [3]) ;
}
}
break ;
}
}
/* ========================================================================== */
/* === KLU_ltsolve ========================================================== */
/* ========================================================================== */
/* Solve L'x=b. Assumes L is unit lower triangular and where the unit diagonal
* entry is NOT stored. Overwrites B with the solution X. B is n-by-nrhs
* and is stored in ROW form with row dimension nrhs. nrhs must in the
* range 1 to 4. */
void KLU_ltsolve
(
/* inputs, not modified: */
Int n,
Int Lip [ ],
Int Llen [ ],
Unit LU [ ],
Int nrhs,
#ifdef COMPLEX
Int conj_solve,
#endif
/* right-hand-side on input, solution to L'x=b on output */
Entry X [ ]
)
{
Entry x [4], lik ;
Int *Li ;
Entry *Lx ;
Int k, p, len, i ;
switch (nrhs)
{
case 1:
for (k = n-1 ; k >= 0 ; k--)
{
GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
x [0] = X [k] ;
for (p = 0 ; p < len ; p++)
{
#ifdef COMPLEX
if (conj_solve)
{
/* x [0] -= CONJ (Lx [p]) * X [Li [p]] ; */
MULT_SUB_CONJ (x [0], X [Li [p]], Lx [p]) ;
}
else
#endif
{
/*x [0] -= Lx [p] * X [Li [p]] ;*/
MULT_SUB (x [0], Lx [p], X [Li [p]]) ;
}
}
X [k] = x [0] ;
}
break ;
case 2:
for (k = n-1 ; k >= 0 ; k--)
{
x [0] = X [2*k ] ;
x [1] = X [2*k + 1] ;
GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
for (p = 0 ; p < len ; p++)
{
i = Li [p] ;
#ifdef COMPLEX
if (conj_solve)
{
CONJ (lik, Lx [p]) ;
}
else
#endif
{
lik = Lx [p] ;
}
MULT_SUB (x [0], lik, X [2*i]) ;
MULT_SUB (x [1], lik, X [2*i + 1]) ;
}
X [2*k ] = x [0] ;
X [2*k + 1] = x [1] ;
}
break ;
case 3:
for (k = n-1 ; k >= 0 ; k--)
{
x [0] = X [3*k ] ;
x [1] = X [3*k + 1] ;
x [2] = X [3*k + 2] ;
GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
for (p = 0 ; p < len ; p++)
{
i = Li [p] ;
#ifdef COMPLEX
if (conj_solve)
{
CONJ (lik, Lx [p]) ;
}
else
#endif
{
lik = Lx [p] ;
}
MULT_SUB (x [0], lik, X [3*i]) ;
MULT_SUB (x [1], lik, X [3*i + 1]) ;
MULT_SUB (x [2], lik, X [3*i + 2]) ;
}
X [3*k ] = x [0] ;
X [3*k + 1] = x [1] ;
X [3*k + 2] = x [2] ;
}
break ;
case 4:
for (k = n-1 ; k >= 0 ; k--)
{
x [0] = X [4*k ] ;
x [1] = X [4*k + 1] ;
x [2] = X [4*k + 2] ;
x [3] = X [4*k + 3] ;
GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
for (p = 0 ; p < len ; p++)
{
i = Li [p] ;
#ifdef COMPLEX
if (conj_solve)
{
CONJ (lik, Lx [p]) ;
}
else
#endif
{
lik = Lx [p] ;
}
MULT_SUB (x [0], lik, X [4*i]) ;
MULT_SUB (x [1], lik, X [4*i + 1]) ;
MULT_SUB (x [2], lik, X [4*i + 2]) ;
MULT_SUB (x [3], lik, X [4*i + 3]) ;
}
X [4*k ] = x [0] ;
X [4*k + 1] = x [1] ;
X [4*k + 2] = x [2] ;
X [4*k + 3] = x [3] ;
}
break ;
}
}
/* ========================================================================== */
/* === KLU_utsolve ========================================================== */
/* ========================================================================== */
/* Solve U'x=b. Assumes U is non-unit upper triangular and where the diagonal
* entry is stored (and appears last in each column of U). Overwrites B
* with the solution X. B is n-by-nrhs and is stored in ROW form with row
* dimension nrhs. nrhs must be in the range 1 to 4. */
void KLU_utsolve
(
/* inputs, not modified: */
Int n,
Int Uip [ ],
Int Ulen [ ],
Unit LU [ ],
Entry Udiag [ ],
Int nrhs,
#ifdef COMPLEX
Int conj_solve,
#endif
/* right-hand-side on input, solution to Ux=b on output */
Entry X [ ]
)
{
Entry x [4], uik, ukk ;
Int k, p, len, i ;
Int *Ui ;
Entry *Ux ;
switch (nrhs)
{
case 1:
for (k = 0 ; k < n ; k++)
{
GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
x [0] = X [k] ;
for (p = 0 ; p < len ; p++)
{
#ifdef COMPLEX
if (conj_solve)
{
/* x [0] -= CONJ (Ux [p]) * X [Ui [p]] ; */
MULT_SUB_CONJ (x [0], X [Ui [p]], Ux [p]) ;
}
else
#endif
{
/* x [0] -= Ux [p] * X [Ui [p]] ; */
MULT_SUB (x [0], Ux [p], X [Ui [p]]) ;
}
}
#ifdef COMPLEX
if (conj_solve)
{
CONJ (ukk, Udiag [k]) ;
}
else
#endif
{
ukk = Udiag [k] ;
}
DIV (X [k], x [0], ukk) ;
}
break ;
case 2:
for (k = 0 ; k < n ; k++)
{
GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
x [0] = X [2*k ] ;
x [1] = X [2*k + 1] ;
for (p = 0 ; p < len ; p++)
{
i = Ui [p] ;
#ifdef COMPLEX
if (conj_solve)
{
CONJ (uik, Ux [p]) ;
}
else
#endif
{
uik = Ux [p] ;
}
MULT_SUB (x [0], uik, X [2*i]) ;
MULT_SUB (x [1], uik, X [2*i + 1]) ;
}
#ifdef COMPLEX
if (conj_solve)
{
CONJ (ukk, Udiag [k]) ;
}
else
#endif
{
ukk = Udiag [k] ;
}
DIV (X [2*k], x [0], ukk) ;
DIV (X [2*k + 1], x [1], ukk) ;
}
break ;
case 3:
for (k = 0 ; k < n ; k++)
{
GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
x [0] = X [3*k ] ;
x [1] = X [3*k + 1] ;
x [2] = X [3*k + 2] ;
for (p = 0 ; p < len ; p++)
{
i = Ui [p] ;
#ifdef COMPLEX
if (conj_solve)
{
CONJ (uik, Ux [p]) ;
}
else
#endif
{
uik = Ux [p] ;
}
MULT_SUB (x [0], uik, X [3*i]) ;
MULT_SUB (x [1], uik, X [3*i + 1]) ;
MULT_SUB (x [2], uik, X [3*i + 2]) ;
}
#ifdef COMPLEX
if (conj_solve)
{
CONJ (ukk, Udiag [k]) ;
}
else
#endif
{
ukk = Udiag [k] ;
}
DIV (X [3*k], x [0], ukk) ;
DIV (X [3*k + 1], x [1], ukk) ;
DIV (X [3*k + 2], x [2], ukk) ;
}
break ;
case 4:
for (k = 0 ; k < n ; k++)
{
GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
x [0] = X [4*k ] ;
x [1] = X [4*k + 1] ;
x [2] = X [4*k + 2] ;
x [3] = X [4*k + 3] ;
for (p = 0 ; p < len ; p++)
{
i = Ui [p] ;
#ifdef COMPLEX
if (conj_solve)
{
CONJ (uik, Ux [p]) ;
}
else
#endif
{
uik = Ux [p] ;
}
MULT_SUB (x [0], uik, X [4*i]) ;
MULT_SUB (x [1], uik, X [4*i + 1]) ;
MULT_SUB (x [2], uik, X [4*i + 2]) ;
MULT_SUB (x [3], uik, X [4*i + 3]) ;
}
#ifdef COMPLEX
if (conj_solve)
{
CONJ (ukk, Udiag [k]) ;
}
else
#endif
{
ukk = Udiag [k] ;
}
DIV (X [4*k], x [0], ukk) ;
DIV (X [4*k + 1], x [1], ukk) ;
DIV (X [4*k + 2], x [2], ukk) ;
DIV (X [4*k + 3], x [3], ukk) ;
}
break ;
}
}