937 lines
26 KiB
C
937 lines
26 KiB
C
/**********
|
|
Copyright 1990 Regents of the University of California. All rights reserved.
|
|
Author: 1985 Wayne A. Christopher, U. C. Berkeley CAD Group
|
|
**********/
|
|
|
|
/*
|
|
* Routines to do complex mathematical functions. These routines require
|
|
* the -lm libraries. We sacrifice a lot of space to be able
|
|
* to avoid having to do a seperate call for every vector element,
|
|
* but it pays off in time savings. These routines should never
|
|
* allow FPE's to happen.
|
|
*
|
|
* Complex functions are called as follows:
|
|
* cx_something(data, type, length, &newlength, &newtype),
|
|
* and return a char * that is cast to complex or double.
|
|
*/
|
|
|
|
#include "ngspice/ngspice.h"
|
|
#include "ngspice/plot.h"
|
|
#include "ngspice/complex.h"
|
|
#include "ngspice/cpdefs.h"
|
|
|
|
#include <interpolate.h>
|
|
#include <polyfit.h>
|
|
#include <polyeval.h>
|
|
#include <polyderiv.h>
|
|
|
|
#include "cmath.h"
|
|
#include "cmath4.h"
|
|
|
|
#include "ngspice/sim.h" /* To get SV_TIME */
|
|
#include "ngspice/fftext.h"
|
|
|
|
extern bool cx_degrees;
|
|
extern void vec_new(struct dvec *d);
|
|
|
|
#ifdef HAVE_LIBFFTW3
|
|
#include "fftw3.h"
|
|
#endif
|
|
|
|
|
|
void *
|
|
cx_and(void *data1, void *data2, short int datatype1, short int datatype2, int length)
|
|
{
|
|
double *dd1 = (double *) data1;
|
|
double *dd2 = (double *) data2;
|
|
double *d;
|
|
ngcomplex_t *cc1 = (ngcomplex_t *) data1;
|
|
ngcomplex_t *cc2 = (ngcomplex_t *) data2;
|
|
ngcomplex_t c1, c2;
|
|
int i;
|
|
|
|
d = alloc_d(length);
|
|
if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) {
|
|
for (i = 0; i < length; i++)
|
|
d[i] = dd1[i] && dd2[i];
|
|
} else {
|
|
for (i = 0; i < length; i++) {
|
|
if (datatype1 == VF_REAL) {
|
|
realpart(c1) = dd1[i];
|
|
imagpart(c1) = 0.0;
|
|
} else {
|
|
realpart(c1) = realpart(cc1[i]);
|
|
imagpart(c1) = imagpart(cc1[i]);
|
|
}
|
|
if (datatype2 == VF_REAL) {
|
|
realpart(c2) = dd2[i];
|
|
imagpart(c2) = 0.0;
|
|
} else {
|
|
realpart(c2) = realpart(cc2[i]);
|
|
imagpart(c2) = imagpart(cc2[i]);
|
|
}
|
|
d[i] = ((realpart(c1) && realpart(c2)) &&
|
|
(imagpart(c1) && imagpart(c2)));
|
|
}
|
|
}
|
|
return ((void *) d);
|
|
}
|
|
|
|
|
|
void *
|
|
cx_or(void *data1, void *data2, short int datatype1, short int datatype2, int length)
|
|
{
|
|
double *dd1 = (double *) data1;
|
|
double *dd2 = (double *) data2;
|
|
double *d;
|
|
ngcomplex_t *cc1 = (ngcomplex_t *) data1;
|
|
ngcomplex_t *cc2 = (ngcomplex_t *) data2;
|
|
ngcomplex_t c1, c2;
|
|
int i;
|
|
|
|
d = alloc_d(length);
|
|
if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) {
|
|
for (i = 0; i < length; i++)
|
|
d[i] = dd1[i] || dd2[i];
|
|
} else {
|
|
for (i = 0; i < length; i++) {
|
|
if (datatype1 == VF_REAL) {
|
|
realpart(c1) = dd1[i];
|
|
imagpart(c1) = 0.0;
|
|
} else {
|
|
realpart(c1) = realpart(cc1[i]);
|
|
imagpart(c1) = imagpart(cc1[i]);
|
|
}
|
|
if (datatype2 == VF_REAL) {
|
|
realpart(c2) = dd2[i];
|
|
imagpart(c2) = 0.0;
|
|
} else {
|
|
realpart(c2) = realpart(cc2[i]);
|
|
imagpart(c2) = imagpart(cc2[i]);
|
|
}
|
|
d[i] = ((realpart(c1) || realpart(c2)) &&
|
|
(imagpart(c1) || imagpart(c2)));
|
|
}
|
|
}
|
|
return ((void *) d);
|
|
}
|
|
|
|
|
|
void *
|
|
cx_not(void *data, short int type, int length, int *newlength, short int *newtype)
|
|
{
|
|
double *d;
|
|
double *dd = (double *) data;
|
|
ngcomplex_t *cc = (ngcomplex_t *) data;
|
|
int i;
|
|
|
|
d = alloc_d(length);
|
|
*newtype = VF_REAL;
|
|
*newlength = length;
|
|
if (type == VF_COMPLEX) {
|
|
for (i = 0; i < length; i++) {
|
|
/* gcc doens't like !double */
|
|
d[i] = realpart(cc[i]) ? 0 : 1;
|
|
d[i] = imagpart(cc[i]) ? 0 : 1;
|
|
}
|
|
} else {
|
|
for (i = 0; i < length; i++)
|
|
d[i] = ! dd[i];
|
|
}
|
|
return ((void *) d);
|
|
}
|
|
|
|
|
|
/* This is a strange function. What we do is fit a polynomial to the
|
|
* curve, of degree $polydegree, and then evaluate it at the points
|
|
* in the time scale. What we do is this: for every set of points that
|
|
* we fit a polynomial to, fill in as much of the new vector as we can
|
|
* (i.e, between the last value of the old scale we went from to this
|
|
* one). At the ends we just use what we have... We have to detect
|
|
* badness here too...
|
|
*
|
|
* Note that we pass arguments differently for this one cx_ function...
|
|
*/
|
|
|
|
void *
|
|
cx_interpolate(void *data, short int type, int length, int *newlength, short int *newtype, struct plot *pl, struct plot *newpl, int grouping)
|
|
{
|
|
struct dvec *ns, *os;
|
|
double *d;
|
|
int degree;
|
|
register int i, oincreasing = 1, nincreasing = 1;
|
|
int base;
|
|
|
|
if (grouping == 0)
|
|
grouping = length;
|
|
|
|
/* First do some sanity checks. */
|
|
if (!pl || !pl->pl_scale || !newpl || !newpl->pl_scale) {
|
|
fprintf(cp_err, "Internal error: cx_interpolate: bad scale\n");
|
|
return (NULL);
|
|
}
|
|
ns = newpl->pl_scale;
|
|
os = pl->pl_scale;
|
|
if (iscomplex(ns)) {
|
|
fprintf(cp_err, "Error: new scale has complex data\n");
|
|
return (NULL);
|
|
}
|
|
if (iscomplex(os)) {
|
|
fprintf(cp_err, "Error: old scale has complex data\n");
|
|
return (NULL);
|
|
}
|
|
|
|
if (length != os->v_length) {
|
|
fprintf(cp_err, "Error: lengths don't match\n");
|
|
return (NULL);
|
|
}
|
|
if (type != VF_REAL) {
|
|
fprintf(cp_err, "Error: argument has complex data\n");
|
|
return (NULL);
|
|
}
|
|
|
|
/* Now make sure that either both scales are strictly increasing
|
|
* or both are strictly decreasing. */
|
|
if (os->v_realdata[0] < os->v_realdata[1])
|
|
oincreasing = TRUE;
|
|
else
|
|
oincreasing = FALSE;
|
|
for (i = 0; i < os->v_length - 1; i++)
|
|
if ((os->v_realdata[i] < os->v_realdata[i + 1])
|
|
!= oincreasing) {
|
|
fprintf(cp_err, "Error: old scale not monotonic\n");
|
|
return (NULL);
|
|
}
|
|
if (ns->v_realdata[0] < ns->v_realdata[1])
|
|
nincreasing = TRUE;
|
|
else
|
|
nincreasing = FALSE;
|
|
for (i = 0; i < ns->v_length - 1; i++)
|
|
if ((ns->v_realdata[i] < ns->v_realdata[i + 1])
|
|
!= nincreasing) {
|
|
fprintf(cp_err, "Error: new scale not monotonic\n");
|
|
return (NULL);
|
|
}
|
|
|
|
*newtype = VF_REAL;
|
|
*newlength = ns->v_length;
|
|
d = alloc_d(ns->v_length);
|
|
|
|
if (!cp_getvar("polydegree", CP_NUM, °ree))
|
|
degree = 1;
|
|
|
|
for (base = 0; base < length; base += grouping) {
|
|
if (!ft_interpolate((double *) data + base, d + base,
|
|
os->v_realdata + base, grouping,
|
|
ns->v_realdata + base, grouping, degree))
|
|
{
|
|
tfree(d);
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
return ((void *) d);
|
|
}
|
|
|
|
|
|
void *
|
|
cx_deriv(void *data, short int type, int length, int *newlength, short int *newtype, struct plot *pl, struct plot *newpl, int grouping)
|
|
{
|
|
double *scratch;
|
|
double *spare;
|
|
double x;
|
|
int i, j, k;
|
|
int degree;
|
|
int n, base;
|
|
|
|
if (grouping == 0)
|
|
grouping = length;
|
|
/* First do some sanity checks. */
|
|
if (!pl || !pl->pl_scale || !newpl || !newpl->pl_scale) {
|
|
fprintf(cp_err, "Internal error: cx_deriv: bad scale\n");
|
|
return (NULL);
|
|
}
|
|
|
|
if (!cp_getvar("dpolydegree", CP_NUM, °ree))
|
|
degree = 2; /* default quadratic */
|
|
|
|
n = degree + 1;
|
|
|
|
spare = alloc_d(n);
|
|
scratch = alloc_d(n * (n + 1));
|
|
|
|
*newlength = length;
|
|
*newtype = type;
|
|
|
|
if (type == VF_COMPLEX) {
|
|
ngcomplex_t *c_outdata, *c_indata;
|
|
double *r_coefs, *i_coefs;
|
|
double *scale;
|
|
|
|
r_coefs = alloc_d(n);
|
|
i_coefs = alloc_d(n);
|
|
c_indata = (ngcomplex_t *) data;
|
|
c_outdata = alloc_c(length);
|
|
scale = alloc_d(length); /* XXX */
|
|
if (pl->pl_scale->v_type == VF_COMPLEX)
|
|
/* Not ideal */
|
|
for (i = 0; i < length; i++)
|
|
scale[i] = realpart(pl->pl_scale->v_compdata[i]);
|
|
else
|
|
for (i = 0; i < length; i++)
|
|
scale[i] = pl->pl_scale->v_realdata[i];
|
|
|
|
for (base = 0; base < length; base += grouping)
|
|
{
|
|
k = 0;
|
|
for (i = degree; i < grouping; i += 1)
|
|
{
|
|
|
|
/* real */
|
|
for (j = 0; j < n; j++)
|
|
spare[j] = c_indata[j + i + base].cx_real;
|
|
if (!ft_polyfit(scale + i + base - degree,
|
|
spare, r_coefs, degree, scratch))
|
|
{
|
|
fprintf(stderr, "ft_polyfit @ %d failed\n", i);
|
|
}
|
|
ft_polyderiv(r_coefs, degree);
|
|
|
|
/* for loop gets the beginning part */
|
|
for (j = k; j <= i + degree / 2; j++)
|
|
{
|
|
x = scale[j + base];
|
|
c_outdata[j + base].cx_real =
|
|
ft_peval(x, r_coefs, degree - 1);
|
|
}
|
|
|
|
/* imag */
|
|
for (j = 0; j < n; j++)
|
|
spare[j] = c_indata[j + i + base].cx_imag;
|
|
if (!ft_polyfit(scale + i - degree + base,
|
|
spare, i_coefs, degree, scratch))
|
|
{
|
|
fprintf(stderr, "ft_polyfit @ %d failed\n", i);
|
|
}
|
|
ft_polyderiv(i_coefs, degree);
|
|
|
|
/* for loop gets the beginning part */
|
|
for (j = k; j <= i - degree / 2; j++)
|
|
{
|
|
x = scale[j + base];
|
|
c_outdata[j + base].cx_imag =
|
|
ft_peval(x, i_coefs, degree - 1);
|
|
}
|
|
k = j;
|
|
}
|
|
|
|
/* get the tail */
|
|
for (j = k; j < length; j++)
|
|
{
|
|
x = scale[j + base];
|
|
/* real */
|
|
c_outdata[j + base].cx_real = ft_peval(x, r_coefs, degree - 1);
|
|
/* imag */
|
|
c_outdata[j + base].cx_imag = ft_peval(x, i_coefs, degree - 1);
|
|
}
|
|
}
|
|
|
|
tfree(r_coefs);
|
|
tfree(i_coefs);
|
|
tfree(scale);
|
|
return (void *) c_outdata;
|
|
|
|
}
|
|
else
|
|
{
|
|
/* all-real case */
|
|
double *coefs;
|
|
|
|
double *outdata, *indata;
|
|
double *scale;
|
|
|
|
coefs = alloc_d(n);
|
|
indata = (double *) data;
|
|
outdata = alloc_d(length);
|
|
scale = alloc_d(length); /* XXX */
|
|
|
|
/* Here I encountered a problem because when we issue an instruction like this:
|
|
* plot -deriv(vp(3)) to calculate something similar to the group delay, the code
|
|
* detects that vector vp(3) is real and it is believed that the frequency is also
|
|
* real. The frequency is COMPLEX and the program aborts so I'm going to put the
|
|
* check that the frequency is complex vector not to abort.
|
|
*/
|
|
|
|
|
|
/* Original problematic code
|
|
* for (i = 0; i < length; i++)
|
|
* scale[i] = pl->pl_scale->v_realdata[i];
|
|
*/
|
|
|
|
/* Modified to deal with complex frequency vector */
|
|
if (pl->pl_scale->v_type == VF_COMPLEX)
|
|
for (i = 0; i < length; i++)
|
|
scale[i] = realpart(pl->pl_scale->v_compdata[i]);
|
|
else
|
|
for (i = 0; i < length; i++)
|
|
scale[i] = pl->pl_scale->v_realdata[i];
|
|
|
|
|
|
for (base = 0; base < length; base += grouping)
|
|
{
|
|
k = 0;
|
|
for (i = degree; i < grouping; i += 1)
|
|
{
|
|
if (!ft_polyfit(scale + i - degree + base,
|
|
indata + i - degree + base, coefs, degree, scratch))
|
|
{
|
|
fprintf(stderr, "ft_polyfit @ %d failed\n", i + base);
|
|
}
|
|
ft_polyderiv(coefs, degree);
|
|
|
|
/* for loop gets the beginning part */
|
|
for (j = k; j <= i - degree / 2; j++)
|
|
{
|
|
/* Seems the same problem because the frequency vector is complex
|
|
* and the real part of the complex should be accessed because if we
|
|
* run x = pl-> pl_scale-> v_realdata [base + j]; the execution will
|
|
* abort.
|
|
*/
|
|
|
|
if (pl->pl_scale->v_type == VF_COMPLEX)
|
|
x = realpart(pl->pl_scale->v_compdata[j+base]); /* For complex scale vector */
|
|
else
|
|
x = pl->pl_scale->v_realdata[j + base]; /* For real scale vector */
|
|
|
|
outdata[j + base] = ft_peval(x, coefs, degree - 1);
|
|
}
|
|
k = j;
|
|
}
|
|
|
|
for (j = k; j < length; j++)
|
|
{
|
|
/* Again the same error */
|
|
/* x = pl->pl_scale->v_realdata[j + base]; */
|
|
if (pl->pl_scale->v_type == VF_COMPLEX)
|
|
x = realpart(pl->pl_scale->v_compdata[j+base]); /* For complex scale vector */
|
|
else
|
|
x = pl->pl_scale->v_realdata[j + base]; /* For real scale vector */
|
|
|
|
outdata[j + base] = ft_peval(x, coefs, degree - 1);
|
|
}
|
|
}
|
|
|
|
|
|
tfree(coefs);
|
|
tfree(scale); /* XXX */
|
|
return (char *) outdata;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void *
|
|
cx_group_delay(void *data, short int type, int length, int *newlength, short int *newtype, struct plot *pl, struct plot *newpl, int grouping)
|
|
{
|
|
ngcomplex_t *cc = (ngcomplex_t *) data;
|
|
double *v_phase = alloc_d(length);
|
|
double *datos,adjust_final;
|
|
double *group_delay = alloc_d(length);
|
|
int i;
|
|
/* char *datos_aux; */
|
|
|
|
/* Check to see if we have the frequency vector for the derivative */
|
|
if (!eq(pl->pl_scale->v_name, "frequency"))
|
|
{
|
|
fprintf(cp_err, "Internal error: cx_group_delay: need frequency based complex vector.\n");
|
|
return (NULL);
|
|
}
|
|
|
|
|
|
if (type == VF_COMPLEX)
|
|
for (i = 0; i < length; i++)
|
|
{
|
|
v_phase[i] = radtodeg(cph(cc[i]));
|
|
}
|
|
else
|
|
{
|
|
fprintf(cp_err, "Signal must be complex to calculate group delay\n");
|
|
return (NULL);
|
|
}
|
|
|
|
|
|
type = VF_REAL;
|
|
|
|
/* datos_aux = (char *)cx_deriv((char *)v_phase, type, length, newlength, newtype, pl, newpl, grouping);
|
|
* datos = (double *) datos_aux;
|
|
*/
|
|
datos = (double *)cx_deriv((char *)v_phase, type, length, newlength, newtype, pl, newpl, grouping);
|
|
|
|
/* With this global variable I will change how to obtain the group delay because
|
|
* it is defined as:
|
|
*
|
|
* gd()=-dphase[rad]/dw[rad/s]
|
|
*
|
|
* if you have degrees in phase and frequency in Hz, must be taken into account
|
|
*
|
|
* gd()=-dphase[deg]/df[Hz]/360
|
|
* gd()=-dphase[rad]/df[Hz]/(2*pi)
|
|
*/
|
|
|
|
if(cx_degrees)
|
|
{
|
|
adjust_final=1.0/360;
|
|
}
|
|
else
|
|
{
|
|
adjust_final=1.0/(2*M_PI);
|
|
}
|
|
|
|
|
|
for (i = 0; i < length; i++)
|
|
{
|
|
group_delay[i] = -datos[i]*adjust_final;
|
|
}
|
|
|
|
/* Adjust to Real because the result is Real */
|
|
*newtype = VF_REAL;
|
|
|
|
|
|
/* Set the type of Vector to "Time" because the speed of group units' s'
|
|
* The different types of vectors are INCLUDE \ Fte_cons.h
|
|
*/
|
|
pl->pl_dvecs->v_type= SV_TIME;
|
|
|
|
return ((char *) group_delay);
|
|
}
|
|
|
|
|
|
void *
|
|
cx_fft(void *data, short int type, int length, int *newlength, short int *newtype, struct plot *pl, struct plot *newpl, int grouping)
|
|
{
|
|
int i, fpts, order;
|
|
double span, scale, maxt;
|
|
double *xscale;
|
|
double *time = NULL, *win = NULL;
|
|
ngcomplex_t *outdata = NULL;
|
|
struct dvec *sv;
|
|
char window[BSIZE_SP];
|
|
double *realdata;
|
|
|
|
#ifdef HAVE_LIBFFTW3
|
|
fftw_complex *inc;
|
|
double *ind;
|
|
fftw_complex *out = NULL;
|
|
fftw_plan plan_forward = NULL;
|
|
#else
|
|
int N, M;
|
|
double *datax = NULL;
|
|
#endif
|
|
|
|
if (grouping == 0)
|
|
grouping = length;
|
|
|
|
/* First do some sanity checks. */
|
|
if (!pl || !pl->pl_scale || !newpl || !newpl->pl_scale) {
|
|
fprintf(cp_err, "Internal error cx_fft: bad scale\n");
|
|
return (NULL);
|
|
}
|
|
if ((type != VF_REAL) && (type != VF_COMPLEX)) {
|
|
fprintf(cp_err, "Internal error cx_fft: argument has wrong data\n");
|
|
return (NULL);
|
|
}
|
|
|
|
#ifdef HAVE_LIBFFTW3
|
|
if (type == VF_COMPLEX)
|
|
fpts = length;
|
|
else
|
|
fpts = length/2 + 1;
|
|
#else
|
|
/* size of fft input vector is power of two and larger or equal than spice vector */
|
|
N = 1;
|
|
M = 0;
|
|
while (N < length) {
|
|
N <<= 1;
|
|
M++;
|
|
}
|
|
if (type == VF_COMPLEX)
|
|
fpts = N;
|
|
else
|
|
fpts = N/2 + 1;
|
|
#endif
|
|
|
|
*newtype = VF_COMPLEX;
|
|
|
|
time = alloc_d(length);
|
|
|
|
xscale = TMALLOC(double, length);
|
|
|
|
if (pl->pl_scale->v_type == SV_TIME) { /* calculate the frequency from time */
|
|
|
|
span = pl->pl_scale->v_realdata[length-1] - pl->pl_scale->v_realdata[0];
|
|
|
|
for (i = 0; i<length; i++)
|
|
#ifdef HAVE_LIBFFTW3
|
|
xscale[i] = i*1.0/span;
|
|
#else
|
|
xscale[i] = i*1.0/span*length/N;
|
|
#endif
|
|
for (i = 0; i<pl->pl_scale->v_length; i++)
|
|
time[i] = pl->pl_scale->v_realdata[i];
|
|
|
|
} else if (pl->pl_scale->v_type == SV_FREQUENCY) { /* take frequency from ac data and calculate time */
|
|
|
|
/* Deal with complex frequency vector */
|
|
if (pl->pl_scale->v_type == VF_COMPLEX) {
|
|
span = realpart(pl->pl_scale->v_compdata[pl->pl_scale->v_length-1]) - realpart(pl->pl_scale->v_compdata[0]);
|
|
for (i = 0; i<pl->pl_scale->v_length; i++)
|
|
xscale[i] = realpart(pl->pl_scale->v_compdata[i]);
|
|
} else {
|
|
span = pl->pl_scale->v_realdata[pl->pl_scale->v_length-1] - pl->pl_scale->v_realdata[0];
|
|
for (i = 0; i<pl->pl_scale->v_length; i++)
|
|
xscale[i] = pl->pl_scale->v_realdata[i];
|
|
}
|
|
|
|
for (i = 0; i < length; i++)
|
|
#ifdef HAVE_LIBFFTW3
|
|
time[i] = i*1.0/span;
|
|
#else
|
|
time[i] = i*1.0/span*length/N;
|
|
#endif
|
|
|
|
span = time[length-1] - time[0];
|
|
|
|
} else { /* there is no usable plot vector - using simple bins */
|
|
|
|
for (i = 0; i < fpts; i++)
|
|
xscale[i] = i;
|
|
|
|
for (i = 0; i < length; i++)
|
|
time[i] = i;
|
|
|
|
span = time[length-1] - time[0];
|
|
|
|
}
|
|
|
|
win = TMALLOC(double, length);
|
|
maxt = time[length-1];
|
|
if (!cp_getvar("specwindow", CP_STRING, window))
|
|
strcpy(window, "none");
|
|
if (!cp_getvar("specwindoworder", CP_NUM, &order))
|
|
order = 2;
|
|
if (order < 2)
|
|
order = 2;
|
|
|
|
if (fft_windows(window, win, time, length, maxt, span, order) == 0)
|
|
goto done;
|
|
|
|
/* create a new scale vector */
|
|
sv = alloc(struct dvec);
|
|
ZERO(sv, struct dvec);
|
|
sv->v_name = copy("fft_scale");
|
|
sv->v_type = SV_FREQUENCY;
|
|
sv->v_flags = (VF_REAL | VF_PERMANENT | VF_PRINT);
|
|
sv->v_length = fpts;
|
|
sv->v_realdata = xscale;
|
|
vec_new(sv);
|
|
|
|
if (type == VF_COMPLEX) { /* input vector is complex */
|
|
|
|
ngcomplex_t *indata = (ngcomplex_t *) data;
|
|
|
|
#ifdef HAVE_LIBFFTW3
|
|
|
|
printf("FFT: Time span: %g s, input length: %d\n", span, length);
|
|
printf("FFT: Frequency resolution: %g Hz, output length: %d\n", 1.0/span, fpts);
|
|
|
|
inc = fftw_malloc(sizeof(fftw_complex) * (unsigned int) length);
|
|
out = fftw_malloc(sizeof(fftw_complex) * (unsigned int) fpts);
|
|
|
|
for (i = 0; i < length; i++) {
|
|
inc[i][0] = indata[i].cx_real * win[i];
|
|
inc[i][1] = indata[i].cx_imag * win[i];
|
|
}
|
|
|
|
plan_forward = fftw_plan_dft_1d(fpts, inc, out, FFTW_FORWARD, FFTW_ESTIMATE);
|
|
|
|
fftw_execute(plan_forward);
|
|
|
|
*newlength = fpts;
|
|
outdata = alloc_c(fpts);
|
|
|
|
scale = (double) fpts;
|
|
for (i = 0; i < fpts; i++) {
|
|
outdata[i].cx_real = out[i][0]/scale;
|
|
outdata[i].cx_imag = out[i][1]/scale;
|
|
}
|
|
|
|
fftw_free(inc);
|
|
|
|
#else /* Green's FFT */
|
|
|
|
printf("FFT: Time span: %g s, input length: %d, zero padding: %d\n", span, length, N-length);
|
|
printf("FFT: Frequency resolution: %g Hz, output length: %d\n", 1.0/span, N);
|
|
|
|
datax = TMALLOC(double, 2*N);
|
|
|
|
for (i = 0; i < length; i++) {
|
|
datax[2*i] = indata[i].cx_real * win[i];
|
|
datax[2*i+1] = indata[i].cx_imag * win[i];
|
|
}
|
|
for (i = length; i < N; i++) {
|
|
datax[2*i] = 0.0;
|
|
datax[2*i+1] = 0.0;
|
|
}
|
|
|
|
fftInit(M);
|
|
ffts(datax, M, 1);
|
|
fftFree();
|
|
|
|
*newlength = N;
|
|
outdata = alloc_c(N);
|
|
|
|
scale = (double) N;
|
|
for (i = 0; i < N; i++) {
|
|
outdata[i].cx_real = datax[2*i]/scale;
|
|
outdata[i].cx_imag = datax[2*i+1]/scale;
|
|
}
|
|
|
|
#endif
|
|
|
|
} else { /* input vector is real */
|
|
|
|
realdata = (double *) data;
|
|
*newlength = fpts;
|
|
outdata = alloc_c(fpts);
|
|
|
|
#ifdef HAVE_LIBFFTW3
|
|
|
|
printf("FFT: Time span: %g s, input length: %d\n", span, length);
|
|
printf("FFT: Frequency resolution: %g Hz, output length: %d\n", 1.0/span, fpts);
|
|
|
|
ind = fftw_malloc(sizeof(double) * (unsigned int) length);
|
|
out = fftw_malloc(sizeof(fftw_complex) * (unsigned int) fpts);
|
|
|
|
for (i = 0; i < length; i++)
|
|
ind[i] = realdata[i] * win[i];
|
|
|
|
plan_forward = fftw_plan_dft_r2c_1d(length, ind, out, FFTW_ESTIMATE);
|
|
|
|
fftw_execute(plan_forward);
|
|
|
|
scale = (double) length;
|
|
for (i = 0; i < fpts; i++) {
|
|
outdata[i].cx_real = out[i][0]/scale;
|
|
outdata[i].cx_imag = out[i][1]/scale;
|
|
}
|
|
|
|
fftw_free(ind);
|
|
|
|
#else /* Green's FFT */
|
|
|
|
printf("FFT: Time span: %g s, input length: %d, zero padding: %d\n", span, length, N-length);
|
|
printf("FFT: Frequency resolution: %g Hz, output length: %d\n", 1.0/span, fpts);
|
|
|
|
datax = TMALLOC(double, N);
|
|
|
|
for (i = 0; i < length; i++)
|
|
datax[i] = realdata[i] * win[i];
|
|
for (i = length; i < N; i++)
|
|
datax[i] = 0.0;
|
|
|
|
fftInit(M);
|
|
rffts(datax, M, 1);
|
|
fftFree();
|
|
|
|
scale = (double) N;
|
|
/* Re(x[0]), Re(x[N/2]), Re(x[1]), Im(x[1]), Re(x[2]), Im(x[2]), ... Re(x[N/2-1]), Im(x[N/2-1]). */
|
|
outdata[0].cx_real = datax[0]/scale;
|
|
outdata[0].cx_imag = 0.0;
|
|
for (i = 1; i < fpts-1; i++) {
|
|
outdata[i].cx_real = datax[2*i]/scale;
|
|
outdata[i].cx_imag = datax[2*i+1]/scale;
|
|
}
|
|
outdata[fpts-1].cx_real = datax[1]/scale;
|
|
outdata[fpts-1].cx_imag = 0.0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
done:
|
|
#ifdef HAVE_LIBFFTW3
|
|
fftw_free(out);
|
|
fftw_destroy_plan(plan_forward);
|
|
#else
|
|
tfree(datax);
|
|
#endif
|
|
tfree(time);
|
|
tfree(win);
|
|
|
|
return ((void *) outdata);
|
|
}
|
|
|
|
|
|
void *
|
|
cx_ifft(void *data, short int type, int length, int *newlength, short int *newtype, struct plot *pl, struct plot *newpl, int grouping)
|
|
{
|
|
ngcomplex_t *indata = (ngcomplex_t *) data;
|
|
int i, tpts;
|
|
double span;
|
|
double *xscale;
|
|
ngcomplex_t *outdata = NULL;
|
|
struct dvec *sv;
|
|
|
|
#ifdef HAVE_LIBFFTW3
|
|
fftw_complex *in;
|
|
fftw_complex *out = NULL;
|
|
fftw_plan plan_backward = NULL;
|
|
#else
|
|
int N, M;
|
|
double *datax = NULL;
|
|
double scale;
|
|
#endif
|
|
|
|
if (grouping == 0)
|
|
grouping = length;
|
|
|
|
/* First do some sanity checks. */
|
|
if (!pl || !pl->pl_scale || !newpl || !newpl->pl_scale) {
|
|
fprintf(cp_err, "Internal error cx_ifft: bad scale\n");
|
|
return (NULL);
|
|
}
|
|
if ((type != VF_REAL) && (type != VF_COMPLEX)) {
|
|
fprintf(cp_err, "Internal error cx_ifft: argument has wrong data\n");
|
|
return (NULL);
|
|
}
|
|
|
|
#ifdef HAVE_LIBFFTW3
|
|
tpts = length;
|
|
#else
|
|
/* size of ifft input vector is power of two and larger or equal than spice vector */
|
|
N = 1;
|
|
M = 0;
|
|
while (N < length) {
|
|
N <<= 1;
|
|
M++;
|
|
}
|
|
tpts = N;
|
|
#endif
|
|
|
|
if (pl->pl_scale->v_type == SV_TIME) { /* take the time from transient */
|
|
|
|
/* output vector has same length as the plot scale vector */
|
|
tpts = pl->pl_scale->v_length;
|
|
|
|
xscale = TMALLOC(double, tpts);
|
|
|
|
for (i = 0; i<tpts; i++)
|
|
xscale[i] = pl->pl_scale->v_realdata[i];
|
|
|
|
} else if (pl->pl_scale->v_type == SV_FREQUENCY) { /* calculate time from frequency */
|
|
|
|
/* output vector has same length as the plot scale vector */
|
|
tpts = pl->pl_scale->v_length;
|
|
|
|
xscale = TMALLOC(double, tpts);
|
|
|
|
/* Deal with complex frequency vector */
|
|
if (pl->pl_scale->v_type == VF_COMPLEX)
|
|
span = realpart(pl->pl_scale->v_compdata[tpts-1]) - realpart(pl->pl_scale->v_compdata[0]);
|
|
else
|
|
span = pl->pl_scale->v_realdata[tpts-1] - pl->pl_scale->v_realdata[0];
|
|
|
|
for (i = 0; i<tpts; i++)
|
|
#ifdef HAVE_LIBFFTW3
|
|
xscale[i] = i*1.0/span;
|
|
#else
|
|
xscale[i] = i*1.0/span*length/N;
|
|
#endif
|
|
|
|
} else {
|
|
|
|
/* output vector has same length as input vector */
|
|
tpts = length;
|
|
|
|
xscale = TMALLOC(double, tpts);
|
|
|
|
for (i = 0; i < tpts; i++)
|
|
xscale[i] = i;
|
|
|
|
}
|
|
|
|
span = xscale[tpts-1] - xscale[0];
|
|
|
|
/* create a new scale vector */
|
|
sv = alloc(struct dvec);
|
|
ZERO(sv, struct dvec);
|
|
sv->v_name = copy("ifft_scale");
|
|
sv->v_type = SV_TIME;
|
|
sv->v_flags = (VF_REAL | VF_PERMANENT | VF_PRINT);
|
|
sv->v_length = tpts;
|
|
sv->v_realdata = xscale;
|
|
vec_new(sv);
|
|
|
|
*newtype = VF_COMPLEX;
|
|
*newlength = tpts;
|
|
outdata = alloc_c(tpts);
|
|
|
|
#ifdef HAVE_LIBFFTW3
|
|
|
|
printf("IFFT: Frequency span: %g Hz, input length: %d\n", 1/span*length, length);
|
|
printf("IFFT: Time resolution: %g s, output length: %d\n", span/(tpts-1), tpts);
|
|
|
|
in = fftw_malloc(sizeof(fftw_complex) * (unsigned int) length);
|
|
out = fftw_malloc(sizeof(fftw_complex) * (unsigned int) tpts);
|
|
|
|
for (i = 0; i < length; i++) {
|
|
in[i][0] = indata[i].cx_real;
|
|
in[i][1] = indata[i].cx_imag;
|
|
}
|
|
|
|
plan_backward = fftw_plan_dft_1d(tpts, in, out, FFTW_BACKWARD, FFTW_ESTIMATE);
|
|
|
|
fftw_execute(plan_backward);
|
|
|
|
for (i = 0; i < tpts; i++) {
|
|
outdata[i].cx_real = out[i][0];
|
|
outdata[i].cx_imag = out[i][1];
|
|
}
|
|
|
|
fftw_free(in);
|
|
fftw_destroy_plan(plan_backward);
|
|
fftw_free(out);
|
|
|
|
#else /* Green's IFFT */
|
|
|
|
printf("IFFT: Frequency span: %g Hz, input length: %d, zero padding: %d\n", 1/span*length, length, N-length);
|
|
printf("IFFT: Time resolution: %g s, output length: %d\n", span/(tpts-1), tpts);
|
|
|
|
datax = TMALLOC(double, 2*N);
|
|
|
|
for (i = 0; i < length; i++) {
|
|
datax[2*i] = indata[i].cx_real;
|
|
datax[2*i+1] = indata[i].cx_imag;
|
|
}
|
|
for (i = length; i < N; i++) {
|
|
datax[2*i] = 0.0;
|
|
datax[2*i+1] = 0.0;
|
|
}
|
|
|
|
fftInit(M);
|
|
iffts(datax, M, 1);
|
|
fftFree();
|
|
|
|
scale = (double) tpts;
|
|
for (i = 0; i < tpts; i++) {
|
|
outdata[i].cx_real = datax[2*i] * scale;
|
|
outdata[i].cx_imag = datax[2*i+1] * scale;
|
|
}
|
|
|
|
tfree(datax);
|
|
|
|
#endif
|
|
|
|
return ((void *) outdata);
|
|
}
|