ngspice/src/frontend/fourier.c

295 lines
9.3 KiB
C

/**********
Copyright 1990 Regents of the University of California. All rights reserved.
Author: 1985 Wayne A. Christopher, U. C. Berkeley CAD Group
**********/
/*
* Code to do fourier transforms on data. Note that we do interpolation
* to get a uniform grid. Note that if polydegree is 0 then no interpolation
* is done.
*/
#include "ngspice/ngspice.h"
#include "ngspice/cpdefs.h"
#include "ngspice/ftedefs.h"
#include "ngspice/dvec.h"
#include "ngspice/fteparse.h"
#include "ngspice/sperror.h"
#include "ngspice/const.h"
#include "fourier.h"
#include "variable.h"
/* static declarations */
static char * pn(double num);
static int CKTfour(int ndata, int numFreq, double *thd, double *Time, double *Value,
double FundFreq, double *Freq, double *Mag, double *Phase, double *nMag,
double *nPhase);
#define DEF_FOURGRIDSIZE 200
/* CKTfour(ndata,numFreq,thd,Time,Value,FundFreq,Freq,Mag,Phase,nMag,nPhase)
* len 10 ? inp inp inp out out out out out
*/
/* FIXME: This function leaks memory due to non local exit bypassing
freeing of memory at the end of the function. */
int
fourier(wordlist *wl, struct plot *current_plot)
{
struct dvec *time, *vec;
struct pnode *names, *first_name;
double *ff, fundfreq, *dp, *stuff;
int nfreqs, fourgridsize, polydegree;
double *freq, *mag, *phase, *nmag, *nphase; /* Outputs from CKTfour */
double thd, *timescale, *grid, d;
char *s;
int i, err, fw;
char xbuf[20];
int shift;
if (!current_plot)
return 1;
sprintf(xbuf, "%1.1e", 0.0);
shift = (int) strlen(xbuf) - 7;
if (!current_plot || !current_plot->pl_scale) {
fprintf(cp_err, "Error: no vectors loaded.\n");
return 1;
}
if (!cp_getvar("nfreqs", CP_NUM, &nfreqs) || nfreqs < 1)
nfreqs = 10;
if (!cp_getvar("polydegree", CP_NUM, &polydegree) || polydegree < 0)
polydegree = 1;
if (!cp_getvar("fourgridsize", CP_NUM, &fourgridsize) || fourgridsize < 1)
fourgridsize = DEF_FOURGRIDSIZE;
time = current_plot->pl_scale;
if (!isreal(time)) {
fprintf(cp_err, "Error: fourier needs real time scale\n");
return 1;
}
s = wl->wl_word;
if ((ff = ft_numparse(&s, FALSE)) == NULL || (*ff <= 0.0)) {
fprintf(cp_err, "Error: bad fund freq %s\n", wl->wl_word);
return 1;
}
fundfreq = *ff;
freq = TMALLOC(double, nfreqs);
mag = TMALLOC(double, nfreqs);
phase = TMALLOC(double, nfreqs);
nmag = TMALLOC(double, nfreqs);
nphase = TMALLOC(double, nfreqs);
wl = wl->wl_next;
names = ft_getpnames(wl, TRUE);
first_name = names;
while (names) {
vec = ft_evaluate(names);
names = names->pn_next;
while (vec) {
if (vec->v_length != time->v_length) {
fprintf(cp_err,
"Error: lengths don't match: %d, %d\n",
vec->v_length, time->v_length);
continue;
}
if (!isreal(vec)) {
fprintf(cp_err, "Error: %s isn't real!\n",
vec->v_name);
continue;
}
if (polydegree) {
/* Build the grid... */
grid = TMALLOC(double, fourgridsize);
stuff = TMALLOC(double, fourgridsize);
dp = ft_minmax(time, TRUE);
/* Now get the last fund freq... */
d = 1 / fundfreq; /* The wavelength... */
if (dp[1] - dp[0] < d) {
fprintf(cp_err,
"Error: wavelength longer than time span\n");
return 1;
} else if (dp[1] - dp[0] > d) {
dp[0] = dp[1] - d;
}
d = (dp[1] - dp[0]) / fourgridsize;
for (i = 0; i < fourgridsize; i++)
grid[i] = dp[0] + i * d;
/* Now interpolate the stuff... */
if (!ft_interpolate(vec->v_realdata, stuff,
time->v_realdata, vec->v_length,
grid, fourgridsize,
polydegree)) {
fprintf(cp_err,
"Error: can't interpolate\n");
return 1;
}
timescale = grid;
} else {
fourgridsize = vec->v_length;
stuff = vec->v_realdata;
timescale = time->v_realdata;
}
err = CKTfour(fourgridsize, nfreqs, &thd, timescale,
stuff, fundfreq, freq, mag, phase, nmag,
nphase);
if (err != OK) {
ft_sperror(err, "fourier");
return 1;
}
fprintf(cp_out, "Fourier analysis for %s:\n",
vec->v_name);
fprintf(cp_out,
" No. Harmonics: %d, THD: %g %%, Gridsize: %d, Interpolation Degree: %d\n\n",
nfreqs, thd, fourgridsize,
polydegree);
/* Each field will have width cp_numdgt + 6 (or 7
* with HP-UX) + 1 if there is a - sign.
*/
fw = ((cp_numdgt > 0) ? cp_numdgt : 6) + 5 + shift;
fprintf(cp_out, "Harmonic %-*s %-*s %-*s %-*s %-*s\n",
fw, "Frequency", fw, "Magnitude",
fw, "Phase", fw, "Norm. Mag",
fw, "Norm. Phase");
fprintf(cp_out, "-------- %-*s %-*s %-*s %-*s %-*s\n",
fw, "---------", fw, "---------",
fw, "-----", fw, "---------",
fw, "-----------");
for (i = 0; i < nfreqs; i++)
fprintf(cp_out,
" %-4d %-*s %-*s %-*s %-*s %-*s\n",
i,
fw, pn(freq[i]),
fw, pn(mag[i]),
fw, pn(phase[i]),
fw, pn(nmag[i]),
fw, pn(nphase[i]));
fputs("\n", cp_out);
vec = vec->v_link2;
}
}
free_pnode(first_name);
tfree(freq);
tfree(mag);
tfree(phase);
tfree(nmag);
tfree(nphase);
return 0;
}
void
com_fourier(wordlist *wl)
{
fourier(wl, plot_cur);
}
static char *
pn(double num)
{
char buf[BSIZE_SP];
int i = cp_numdgt;
if (i < 1)
i = 6;
if (num < 0.0)
sprintf(buf, "%.*g", i - 1, num);
else
sprintf(buf, "%.*g", i, num);
return (copy(buf));
}
/* CKTfour() - perform fourier analysis of an output vector.
*
* Due to the construction of the program which places all the output
* data in the post-processor, the fourier analysis can not be done
* directly. This function allows the post processor to hand back
* vectors of time and data values to have the fourier analysis
* performed on them. */
static int
CKTfour(int ndata, /* number of entries in the Time and
Value arrays */
int numFreq, /* number of harmonics to calculate */
double *thd, /* total harmonic distortion (percent)
to be returned */
double *Time, /* times at which the voltage/current
values were measured*/
double *Value, /* voltage or current vector whose
transform is desired */
double FundFreq, /* the fundamental frequency of the
analysis */
double *Freq, /* the frequency value of the various
harmonics */
double *Mag, /* the Magnitude of the fourier
transform */
double *Phase, /* the Phase of the fourier transform */
double *nMag, /* the normalized magnitude of the
transform: nMag(fund)=1*/
double *nPhase) /* the normalized phase of the
transform: Nphase(fund)=0 */
{
/* Note: we can consider these as a set of arrays. The sizes are:
* Time[ndata], Value[ndata], Freq[numFreq], Mag[numfreq],
* Phase[numfreq], nMag[numfreq], nPhase[numfreq]
*
* The arrays must all be allocated by the caller.
* The Time and Value array must be reasonably distributed over at
* least one full period of the fundamental Frequency for the
* fourier transform to be useful. The function will take the
* last period of the frequency as data for the transform.
*
* We are assuming that the caller has provided exactly one period
* of the fundamental frequency. */
int i;
int j;
double tmp;
NG_IGNORE(Time);
/* clear output/computation arrays */
for(i=0;i<numFreq;i++) {
Mag[i]=0;
Phase[i]=0;
}
for(i=0;i<ndata;i++) {
for(j=0;j<numFreq;j++) {
Mag[j] += (Value[i]*sin(j*2.0*M_PI*i/((double) ndata)));
Phase[j] += (Value[i]*cos(j*2.0*M_PI*i/((double) ndata)));
}
}
Mag[0] = Phase[0]/ndata;
Phase[0]=nMag[0]=nPhase[0]=Freq[0]=0;
*thd = 0;
for(i=1;i<numFreq;i++) {
tmp = Mag[i]*2.0 /ndata;
Phase[i] *= 2.0/ndata;
Freq[i] = i * FundFreq;
Mag[i] = sqrt(tmp*tmp+Phase[i]*Phase[i]);
Phase[i] = atan2(Phase[i],tmp)*180.0/M_PI;
nMag[i] = Mag[i]/Mag[1];
nPhase[i] = Phase[i]-Phase[1];
if(i>1) *thd += nMag[i]*nMag[i];
}
*thd = 100*sqrt(*thd);
return(OK);
}