ngspice/src/circuit/inpptree.c

1079 lines
28 KiB
C

/**********
Copyright 1990 Regents of the University of California. All rights reserved.
Author: 1987 Wayne A. Christopher, U. C. Berkeley CAD Group
**********/
#include "ngspice.h"
#include <stdio.h>
#include <ctype.h>
#include "ifsim.h"
#include "iferrmsg.h"
#include "inpdefs.h"
#include "inpptree.h"
#include "inp.h"
static INPparseNode * mkcon(double value);
static INPparseNode * mkb(int type, INPparseNode *left, INPparseNode *right);
static INPparseNode * mkf(int type, INPparseNode *arg);
static int PTcheck(INPparseNode *p);
static INPparseNode * PTparse(char **line);
static INPparseNode * makepnode(PTelement *elem);
static INPparseNode * mkbnode(int opnum, INPparseNode *arg1, INPparseNode *arg2);
static INPparseNode * mkfnode(char *fname, INPparseNode *arg);
static INPparseNode * mknnode(double number);
static INPparseNode * mksnode(char *string);
static INPparseNode * PTdifferentiate(INPparseNode *p, int varnum);
static PTelement * PTlexer(char **line);
static IFvalue *values = NULL;
static int *types;
static int numvalues;
static void *circuit;
static INPtables *tables;
extern IFsimulator *ft_sim; /* XXX */
/* Some tables that the parser uses. */
static struct op {
int number;
char *name;
double (*funcptr)();
} ops[] = {
{ PT_COMMA, ",", NULL } ,
{ PT_PLUS, "+", PTplus } ,
{ PT_MINUS, "-", PTminus } ,
{ PT_TIMES, "*", PTtimes } ,
{ PT_DIVIDE, "/", PTdivide } ,
{ PT_POWER, "^", PTpower }
} ;
#define NUM_OPS (sizeof (ops) / sizeof (struct op))
static struct func {
char *name;
int number;
double (*funcptr)();
} funcs[] = {
{ "abs", PTF_ABS, PTabs } ,
{ "acos", PTF_ACOS, PTacos } ,
{ "acosh", PTF_ACOSH, PTacosh } ,
{ "asin", PTF_ASIN, PTasin } ,
{ "asinh", PTF_ASINH, PTasinh } ,
{ "atan", PTF_ATAN, PTatan } ,
{ "atanh", PTF_ATANH, PTatanh } ,
{ "cos", PTF_COS, PTcos } ,
{ "cosh", PTF_COSH, PTcosh } ,
{ "exp", PTF_EXP, PTexp } ,
{ "ln", PTF_LN, PTln } ,
{ "log", PTF_LOG, PTlog } ,
{ "sgn", PTF_SGN, PTsgn } ,
{ "sin", PTF_SIN, PTsin } ,
{ "sinh", PTF_SINH, PTsinh } ,
{ "sqrt", PTF_SQRT, PTsqrt } ,
{ "tan", PTF_TAN, PTtan } ,
{ "tanh", PTF_TANH, PTtanh } ,
{ "u", PTF_USTEP, PTustep } ,
{ "uramp", PTF_URAMP, PTuramp } ,
{ "-", PTF_UMINUS, PTuminus }
} ;
#define NUM_FUNCS (sizeof (funcs) / sizeof (struct func))
/* These are all the constants any sane person needs. */
static struct constant {
char *name;
double value;
} constants[] = {
{ "e", M_E },
{ "pi", M_PI }
} ;
#define NUM_CONSTANTS (sizeof (constants) / sizeof (struct constant))
/* Parse the expression in *line as far as possible, and return the parse
* tree obtained. If there is an error, *pt will be set to NULL and an error
* message will be printed.
*/
void
INPgetTree(char **line, INPparseTree **pt, void *ckt, INPtables *tab)
{
INPparseNode *p;
int i;
values = NULL;
types = NULL;
numvalues = 0;
circuit = ckt;
tables = tab;
p = PTparse(line);
if (!p || !PTcheck(p)) {
*pt = NULL;
return;
}
(*pt) = (INPparseTree *) MALLOC(sizeof (INPparseTree));
(*pt)->p.numVars = numvalues;
(*pt)->p.varTypes = types;
(*pt)->p.vars = values;
(*pt)->p.IFeval = IFeval;
(*pt)->tree = p;
(*pt)->derivs = (INPparseNode **)
MALLOC(numvalues * sizeof (INPparseNode *));
for (i = 0; i < numvalues; i++)
(*pt)->derivs[i] = PTdifferentiate(p, i);
return;
}
/* This routine takes the partial derivative of the parse tree with respect to
* the i'th variable. We try to do optimizations like getting rid of 0-valued
* terms.
*
*** Note that in the interests of simplicity we share some subtrees between
*** the function and its derivatives. This means that you can't free the
*** trees.
*/
static INPparseNode *
PTdifferentiate(INPparseNode *p, int varnum)
{
INPparseNode *arg1, *arg2, *newp;
/* printf("differentiating: "); printTree(p); printf(" wrt var %d\n", varnum);*/
switch (p->type) {
case PT_CONSTANT:
newp = mkcon((double) 0);
break;
case PT_VAR:
/* Is this the variable we're differentiating wrt? */
if (p->valueIndex == varnum)
newp = mkcon((double) 1);
else
newp = mkcon((double) 0);
break;
case PT_PLUS:
case PT_MINUS:
arg1 = PTdifferentiate(p->left, varnum);
arg2 = PTdifferentiate(p->right, varnum);
newp = mkb(p->type, arg1, arg2);
break;
case PT_TIMES:
/* d(a * b) = d(a) * b + d(b) * a */
arg1 = PTdifferentiate(p->left, varnum);
arg2 = PTdifferentiate(p->right, varnum);
newp = mkb(PT_PLUS, mkb(PT_TIMES, arg1, p->right),
mkb(PT_TIMES, p->left, arg2));
break;
case PT_DIVIDE:
/* d(a / b) = (d(a) * b - d(b) * a) / b^2 */
arg1 = PTdifferentiate(p->left, varnum);
arg2 = PTdifferentiate(p->right, varnum);
newp = mkb(PT_DIVIDE, mkb(PT_MINUS, mkb(PT_TIMES, arg1,
p->right), mkb(PT_TIMES, p->left, arg2)),
mkb(PT_POWER, p->right, mkcon((double) 2)));
break;
case PT_POWER:
/* Two cases... If the power is a constant then we're cool.
* Otherwise we have to be tricky.
*/
if (p->right->type == PT_CONSTANT) {
arg1 = PTdifferentiate(p->left, varnum);
newp = mkb(PT_TIMES, mkb(PT_TIMES,
mkcon(p->right->constant),
mkb(PT_POWER, p->left,
mkcon(p->right->constant - 1))),
arg1);
} else {
/* This is complicated. f(x) ^ g(x) ->
* exp(y(x) * ln(f(x)) ...
*/
arg1 = PTdifferentiate(p->left, varnum);
arg2 = PTdifferentiate(p->right, varnum);
newp = mkb(PT_TIMES, mkf(PTF_EXP, mkb(PT_TIMES,
p->right, mkf(PTF_LN, p->left))),
mkb(PT_PLUS, mkb(PT_TIMES, p->right,
mkb(PT_DIVIDE, arg1, p->left)),
mkb(PT_TIMES, arg2,
mkf(PTF_LN, arg1))));
}
break;
case PT_FUNCTION:
/* Many cases. Set arg1 to the derivative of the function,
* and arg2 to the derivative of the argument.
*/
switch (p->funcnum) {
case PTF_ABS: /* sgn(u) */
/* arg1 = mkf(PTF_SGN, p->left, 0); */
arg1 = mkf(PTF_SGN, p->left);
break;
case PTF_SGN:
arg1 = mkcon((double) 0.0);
break;
case PTF_ACOS: /* - 1 / sqrt(1 - u^2) */
arg1 = mkb(PT_DIVIDE, mkcon((double) -1), mkf(PTF_SQRT,
mkb(PT_MINUS, mkcon((double) 1),
mkb(PT_POWER, p->left, mkcon((double)
2)))));
break;
case PTF_ACOSH: /* 1 / sqrt(u^2 - 1) */
arg1 = mkb(PT_DIVIDE, mkcon((double) 1), mkf(PTF_SQRT,
mkb(PT_MINUS, mkb(PT_POWER, p->left,
mkcon((double) 2)),
mkcon((double) 1))));
break;
case PTF_ASIN: /* 1 / sqrt(1 - u^2) */
arg1 = mkb(PT_DIVIDE, mkcon((double) 1), mkf(PTF_SQRT,
mkb(PT_MINUS, mkcon((double) 1),
mkb(PT_POWER, p->left, mkcon((double)
2)))));
break;
case PTF_ASINH: /* 1 / sqrt(u^2 + 1) */
arg1 = mkb(PT_DIVIDE, mkcon((double) 1), mkf(PTF_SQRT,
mkb(PT_PLUS, mkb(PT_POWER, p->left,
mkcon((double) 2)),
mkcon((double) 1))));
break;
case PTF_ATAN: /* 1 / (1 + u^2) */
arg1 = mkb(PT_DIVIDE, mkcon((double) 1), mkb(PT_PLUS,
mkb(PT_POWER, p->left, mkcon((double)
2)), mkcon((double) 1)));
break;
case PTF_ATANH: /* 1 / (1 - u^2) */
arg1 = mkb(PT_DIVIDE, mkcon((double) 1), mkb(PT_MINUS,
mkcon((double) 1), mkb(PT_POWER,
p->left, mkcon((double) 2))));
break;
case PTF_COS: /* - sin(u) */
arg1 = mkf(PTF_UMINUS, mkf(PTF_SIN, p->left));
break;
case PTF_COSH: /* sinh(u) */
arg1 = mkf(PTF_SINH, p->left);
break;
case PTF_EXP: /* exp(u) */
/* arg1 = mkf(PTF_EXP, p->left, 0); */
arg1 = mkf(PTF_EXP, p->left);
break;
case PTF_LN: /* 1 / u */
arg1 = mkb(PT_DIVIDE, mkcon((double) 1), p->left);
break;
case PTF_LOG: /* log(e) / u */
arg1 = mkb(PT_DIVIDE, mkcon((double) M_LOG10E), p->left);
break;
case PTF_SIN: /* cos(u) */
arg1 = mkf(PTF_COS, p->left);
break;
case PTF_SINH: /* cosh(u) */
arg1 = mkf(PTF_COSH, p->left);
break;
case PTF_SQRT: /* 1 / (2 * sqrt(u)) */
arg1 = mkb(PT_DIVIDE, mkcon((double) 1), mkb(PT_TIMES,
mkcon((double) 2), mkf(PTF_SQRT,
p->left)));
break;
case PTF_TAN: /* 1 / (cos(u) ^ 2) */
arg1 = mkb(PT_DIVIDE, mkcon((double) 1), mkb(PT_POWER,
mkf(PTF_COS, p->left), mkcon((double)
2)));
break;
case PTF_TANH: /* 1 / (cosh(u) ^ 2) */
arg1 = mkb(PT_DIVIDE, mkcon((double) 1), mkb(PT_POWER,
mkf(PTF_COSH, p->left), mkcon((double)
2)));
break;
case PTF_USTEP:
arg1 = mkcon((double) 0.0);
break;
case PTF_URAMP:
arg1 = mkf(PTF_USTEP, p->left);
break;
case PTF_UMINUS: /* - 1 ; like a constant (was 0 !) */
arg1 = mkcon((double) - 1.0);
break;
default:
fprintf(stderr, "Internal Error: bad function # %d\n",
p->funcnum);
newp = NULL;
break;
}
arg2 = PTdifferentiate(p->left, varnum);
newp = mkb(PT_TIMES, arg1, arg2);
break;
default:
fprintf(stderr, "Internal error: bad node type %d\n", p->type);
newp = NULL;
break;
}
/* printf("result is: "); printTree(newp); printf("\n"); */
return (newp);
}
static INPparseNode *
mkcon(double value)
{
INPparseNode *p = (INPparseNode *) MALLOC(sizeof (INPparseNode));
p->type = PT_CONSTANT;
p->constant = value;
return (p);
}
static INPparseNode *
mkb(int type, INPparseNode *left, INPparseNode *right)
{
INPparseNode *p = (INPparseNode *) MALLOC(sizeof (INPparseNode));
int i;
if ((right->type == PT_CONSTANT) && (left->type == PT_CONSTANT)) {
switch (type) {
case PT_TIMES:
return (mkcon(left->constant * right->constant));
case PT_DIVIDE:
return (mkcon(left->constant / right->constant));
case PT_PLUS:
return (mkcon(left->constant + right->constant));
case PT_MINUS:
return (mkcon(left->constant - right->constant));
case PT_POWER:
return (mkcon(pow(left->constant, right->constant)));
}
}
switch (type) {
case PT_TIMES:
if ((left->type == PT_CONSTANT) && (left->constant == 0))
return (left);
else if ((right->type == PT_CONSTANT) && (right->constant == 0))
return (right);
else if ((left->type == PT_CONSTANT) && (left->constant == 1))
return (right);
else if ((right->type == PT_CONSTANT) && (right->constant == 1))
return (left);
break;
case PT_DIVIDE:
if ((left->type == PT_CONSTANT) && (left->constant == 0))
return (left);
else if ((right->type == PT_CONSTANT) && (right->constant == 1))
return (left);
break;
case PT_PLUS:
if ((left->type == PT_CONSTANT) && (left->constant == 0))
return (right);
else if ((right->type == PT_CONSTANT) && (right->constant == 0))
return (left);
break;
case PT_MINUS:
if ((right->type == PT_CONSTANT) && (right->constant == 0))
return (left);
else if ((left->type == PT_CONSTANT) && (left->constant == 0))
return (mkf(PTF_UMINUS, right));
break;
case PT_POWER:
if (right->type == PT_CONSTANT) {
if (right->constant == 0)
return (mkcon(1.0));
else if (right->constant == 1)
return (left);
}
break;
}
p->type = type;
p->left = left;
p->right = right;
for (i = 0; i < NUM_OPS; i++)
if (ops[i].number == type)
break;
if (i == NUM_OPS) {
fprintf(stderr, "Internal Error: bad type %d\n", type);
return (NULL);
}
p->function = ops[i].funcptr;
p->funcname = ops[i].name;
return (p);
}
static INPparseNode *
mkf(int type, INPparseNode *arg)
{
INPparseNode *p = (INPparseNode *) MALLOC(sizeof (INPparseNode));
int i;
double constval;
for (i = 0; i < NUM_FUNCS; i++)
if (funcs[i].number == type)
break;
if (i == NUM_FUNCS) {
fprintf(stderr, "Internal Error: bad type %d\n", type);
return (NULL);
}
if (arg->type == PT_CONSTANT) {
constval = ((*funcs[i].funcptr) (arg->constant));
return (mkcon(constval));
}
p->type = PT_FUNCTION;
p->left = arg;
p->funcnum = i;
p->function = funcs[i].funcptr;
p->funcname = funcs[i].name;
return (p);
}
/* Check for remaining PT_PLACEHOLDERs in the parse tree. Returns 1 if ok. */
static int
PTcheck(INPparseNode *p)
{
switch (p->type) {
case PT_PLACEHOLDER:
return (0);
case PT_CONSTANT:
case PT_VAR:
return (1);
case PT_FUNCTION:
return (PTcheck(p->left));
case PT_PLUS:
case PT_MINUS:
case PT_TIMES:
case PT_DIVIDE:
case PT_POWER:
return (PTcheck(p->left) && PTcheck(p->right));
default:
fprintf(stderr, "Internal error: bad node type %d\n", p->type);
return (0);
}
}
/* The operator-precedence table for the parser. */
#define G 1 /* Greater than. */
#define L 2 /* Less than. */
#define E 3 /* Equal. */
#define R 4 /* Error. */
static char prectable[11][11] = {
/* $ + - * / ^ u- ( ) v , */
/* $ */ { R, L, L, L, L, L, L, L, R, L, R },
/* + */ { G, G, G, L, L, L, L, L, G, L, G },
/* - */ { G, G, G, L, L, L, L, L, G, L, G },
/* * */ { G, G, G, G, G, L, L, L, G, L, G },
/* / */ { G, G, G, G, G, L, L, L, G, L, G },
/* ^ */ { G, G, G, G, G, L, L, L, G, L, G },
/* u-*/ { G, G, G, G, G, G, G, L, G, L, R },
/* ( */ { R, L, L, L, L, L, L, L, E, L, L },
/* ) */ { G, G, G, G, G, G, G, R, G, R, G },
/* v */ { G, G, G, G, G, G, G, G, G, R, G },
/* , */ { G, L, L, L, L, L, L, L, G, L, G }
} ;
/* Return an expr. */
static INPparseNode *
PTparse(char **line)
{
PTelement stack[PT_STACKSIZE];
int sp = 0, st, i;
PTelement *top, *next;
INPparseNode *pn, *lpn, *rpn;
stack[0].token = TOK_END;
next = PTlexer(line);
while ((sp > 1) || (next->token != TOK_END)) {
/* Find the top-most terminal. */
i = sp;
do {
top = &stack[i--];
} while (top->token == TOK_VALUE);
switch (prectable[top->token][next->token]) {
case L:
case E:
/* Push the token read. */
if (sp == (PT_STACKSIZE - 1)) {
fprintf(stderr, "Error: stack overflow\n");
return (NULL);
}
bcopy((char *) next, (char *) &stack[++sp],
sizeof (PTelement));
next = PTlexer(line);
continue;
case R:
fprintf(stderr, "Syntax error.\n");
return (NULL);
case G:
/* Reduce. Make st and sp point to the elts on the
* stack at the end and beginning of the junk to
* reduce, then try and do some stuff. When scanning
* back for a <, ignore VALUES.
*/
st = sp;
if (stack[sp].token == TOK_VALUE)
sp--;
while (sp > 0) {
if (stack[sp - 1].token == TOK_VALUE)
i = 2; /* No 2 pnodes together... */
else
i = 1;
if (prectable[stack[sp - i].token]
[stack[sp].token] == L)
break;
else
sp = sp - i;
}
if (stack[sp - 1].token == TOK_VALUE)
sp--;
/* Now try and see what we can make of this.
* The possibilities are: - node
* node op node
* ( node )
* func ( node )
* func ( node, node, node, ... ) <- new
* node
*/
if (st == sp) {
pn = makepnode(&stack[st]);
if (pn == NULL)
goto err;
} else if ((stack[sp].token == TOK_UMINUS) &&
(st == sp + 1)) {
lpn = makepnode(&stack[st]);
if (lpn == NULL)
goto err;
pn = mkfnode("-", lpn);
} else if ((stack[sp].token == TOK_LPAREN) &&
(stack[st].token == TOK_RPAREN)) {
pn = makepnode(&stack[sp + 1]);
if (pn == NULL)
goto err;
} else if ((stack[sp + 1].token == TOK_LPAREN) &&
(stack[st].token == TOK_RPAREN)) {
lpn = makepnode(&stack[sp + 2]);
if ((lpn == NULL) || (stack[sp].type != TYP_STRING))
goto err;
if (!(pn = mkfnode(stack[sp].value.string, lpn)))
return (NULL);
} else { /* node op node */
lpn = makepnode(&stack[sp]);
rpn = makepnode(&stack[st]);
if ((lpn == NULL) || (rpn == NULL))
goto err;
pn = mkbnode(stack[sp + 1].token, lpn, rpn);
}
stack[sp].token = TOK_VALUE;
stack[sp].type = TYP_PNODE;
stack[sp].value.pnode = pn;
continue;
}
}
pn = makepnode(&stack[1]);
if (pn)
return (pn);
err:
fprintf(stderr, "Syntax error.\n");
return (NULL);
}
/* Given a pointer to an element, make a pnode out of it (if it already
* is one, return a pointer to it). If it isn't of type VALUE, then return
* NULL.
*/
static INPparseNode *
makepnode(PTelement *elem)
{
if (elem->token != TOK_VALUE)
return (NULL);
switch (elem->type) {
case TYP_STRING:
return (mksnode(elem->value.string));
case TYP_NUM:
return (mknnode(elem->value.real));
case TYP_PNODE:
return (elem->value.pnode);
default:
fprintf(stderr, "Internal Error: bad token type\n");
return (NULL);
}
}
/* Binop node. */
static INPparseNode *
mkbnode(int opnum, INPparseNode *arg1, INPparseNode *arg2)
{
INPparseNode *p;
int i;
for (i = 0; i < NUM_OPS; i++)
if (ops[i].number == opnum)
break;
if (i == NUM_OPS) {
fprintf(stderr, "Internal Error: no such op num %d\n",
opnum);
return (NULL);
}
p = (INPparseNode *) MALLOC(sizeof (INPparseNode));
p->type = opnum;
p->funcname = ops[i].name;
p->function = ops[i].funcptr;
p->left = arg1;
p->right = arg2;
return (p);
}
static INPparseNode *
mkfnode(char *fname, INPparseNode *arg)
{
int i;
INPparseNode *p;
char buf[128], *name, *s;
IFvalue temp;
/* Make sure the case is ok. */
(void) strcpy(buf, fname);
for (s = buf; *s; s++)
if (isupper(*s))
*s = tolower(*s);
p = (INPparseNode *) MALLOC(sizeof (INPparseNode));
if (!strcmp(buf, "v")) {
name = MALLOC(128);
if (arg->type == PT_PLACEHOLDER) {
strcpy(name, arg->funcname);
} else if (arg->type == PT_CONSTANT) {
(void) sprintf(name, "%d", (int) arg->constant);
} else if (arg->type != PT_COMMA) {
fprintf(stderr, "Error: badly formed node voltage\n");
return (NULL);
}
if (arg->type == PT_COMMA) {
/* Change v(a,b) into v(a) - v(b) */
p = mkb(PT_MINUS, mkfnode(fname, arg->left),
mkfnode(fname, arg->right));
} else {
/* printf("getting a node called '%s'\n", name); */
INPtermInsert(circuit, &name, tables, &(temp.nValue));
for (i = 0; i < numvalues; i++)
if ((types[i] == IF_NODE) && (values[i].nValue ==
temp.nValue))
break;
if (i == numvalues) {
if (numvalues) {
values = (IFvalue *)
REALLOC((char *) values, (numvalues + 1) * sizeof (IFvalue));
types = (int *)
REALLOC((char *) types, (numvalues + 1) * sizeof (int));
} else {
values = (IFvalue *) MALLOC(sizeof (IFvalue));
types = (int *) MALLOC(sizeof (int));
}
values[i] = temp;
types[i] = IF_NODE;
numvalues++;
}
p->valueIndex = i;
p->type = PT_VAR;
}
} else if (!strcmp(buf, "i")) {
name = MALLOC(128);
if (arg->type == PT_PLACEHOLDER)
strcpy(name, arg->funcname);
else if (arg->type == PT_CONSTANT)
(void) sprintf(name, "%d", (int) arg->constant);
else {
fprintf(stderr, "Error: badly formed branch current\n");
return (NULL);
}
/* printf("getting a device called '%s'\n", name); */
INPinsert(&name, tables);
for (i = 0; i < numvalues; i++)
if ((types[i] == IF_INSTANCE) && (values[i].uValue ==
temp.uValue))
break;
if (i == numvalues) {
if (numvalues) {
values = (IFvalue *)
REALLOC((char *) values, (numvalues + 1) * sizeof (IFvalue));
types = (int *)
REALLOC((char *) types, (numvalues + 1) * sizeof (int));
} else {
values = (IFvalue *) MALLOC(sizeof (IFvalue));
types = (int *) MALLOC(sizeof (int));
}
values[i].uValue = (IFuid) name;
types[i] = IF_INSTANCE;
numvalues++;
}
p->valueIndex = i;
p->type = PT_VAR;
} else {
for (i = 0; i < NUM_FUNCS; i++)
if (!strcmp(funcs[i].name, buf))
break;
if (i == NUM_FUNCS) {
fprintf(stderr, "Error: no such function '%s'\n", buf);
return (NULL);
}
p->type = PT_FUNCTION;
p->left = arg;
p->funcname = funcs[i].name;
p->funcnum = funcs[i].number;
p->function = funcs[i].funcptr;
}
return (p);
}
/* Number node. */
static INPparseNode *
mknnode(double number)
{
struct INPparseNode *p;
p = (INPparseNode *) MALLOC(sizeof (INPparseNode));
p->type = PT_CONSTANT;
p->constant = number;
return (p);
}
/* String node. */
static INPparseNode *
mksnode(char *string)
{
int i, j;
char buf[128], *s;
INPparseNode *p;
/* Make sure the case is ok. */
(void) strcpy(buf, string);
for (s = buf; *s; s++)
if (isupper(*s))
*s = tolower(*s);
p = (INPparseNode *) MALLOC(sizeof (INPparseNode));
/* First see if it's something special. */
for (i = 0; i < ft_sim->numSpecSigs; i++)
if (!strcmp(ft_sim->specSigs[i], buf))
break;
if (i < ft_sim->numSpecSigs) {
for (j = 0; j < numvalues; j++)
if ((types[j] == IF_STRING) && !strcmp(buf,
values[i].sValue))
break;
if (j == numvalues) {
if (numvalues) {
values = (IFvalue *)
REALLOC((char *) values, (numvalues + 1) * sizeof (IFvalue));
types = (int *)
REALLOC((char *) types, (numvalues + 1) * sizeof (int));
} else {
values = (IFvalue *) MALLOC(sizeof (IFvalue));
types = (int *) MALLOC(sizeof (int));
}
values[i].sValue = MALLOC(strlen(buf) + 1);
strcpy(values[i].sValue, buf);
types[i] = IF_STRING;
numvalues++;
}
p->valueIndex = i;
p->type = PT_VAR;
return (p);
}
for (i = 0; i < NUM_CONSTANTS; i++)
if (!strcmp(constants[i].name, buf))
break;
if (i == NUM_CONSTANTS) {
/* We'd better save this in case it's part of i(something). */
p->type = PT_PLACEHOLDER;
p->funcname = string;
} else {
p->type = PT_CONSTANT;
p->constant = constants[i].value;
}
return (p);
}
/* The lexical analysis routine. */
static PTelement *
PTlexer(char **line)
{
double td;
int err;
static PTelement el;
static char *specials = " \t()^+-*/,";
static int lasttoken = TOK_END, lasttype;
char *sbuf, *s;
sbuf = *line;
while ((*sbuf == ' ') || (*sbuf == '\t') || (*sbuf == '='))
sbuf++;
switch (*sbuf) {
case '\0':
el.token = TOK_END;
break;
case ',':
el.token = TOK_COMMA;
sbuf++;
break;
case '-':
if ((lasttoken == TOK_VALUE) || (lasttoken == TOK_RPAREN))
el.token = TOK_MINUS;
else
el.token = TOK_UMINUS;
sbuf++;
break;
case '+':
el.token = TOK_PLUS;
sbuf++;
break;
case '*':
el.token = TOK_TIMES;
sbuf++;
break;
case '/':
el.token = TOK_DIVIDE;
sbuf++;
break;
case '^':
el.token = TOK_POWER;
sbuf++;
break;
case '(':
if (((lasttoken == TOK_VALUE) && ((lasttype == TYP_NUM))) ||
(lasttoken == TOK_RPAREN)) {
el.token = TOK_END;
} else {
el.token = TOK_LPAREN;
sbuf++;
}
break;
case ')':
el.token = TOK_RPAREN;
sbuf++;
break;
default:
if ((lasttoken == TOK_VALUE) || (lasttoken == TOK_RPAREN)) {
el.token = TOK_END;
break;
}
td = INPevaluate(&sbuf, &err, 1);
if (err == OK) {
el.token = TOK_VALUE;
el.type = TYP_NUM;
el.value.real = td;
} else {
el.token = TOK_VALUE;
el.type = TYP_STRING;
for (s = sbuf; *s; s++)
if (index(specials, *s))
break;
el.value.string = MALLOC(s - sbuf + 1);
strncpy(el.value.string, sbuf, s - sbuf);
el.value.string[s - sbuf] = '\0';
sbuf = s;
}
}
lasttoken = el.token;
lasttype = el.type;
*line = sbuf;
/* printf("PTlexer: token = %d, type = %d, left = '%s'\n",
el.token, el.type, sbuf); */
return (&el);
}
#if 0
/* Debugging stuff. */
void printTree(INPparseNode*);
void
INPptPrint(char *str, IFparseTree *ptree)
{
int i;
printf("%s\n\t", str);
printTree(((INPparseTree *) ptree)->tree);
printf("\n");
for (i = 0; i < ptree->numVars; i++) {
printf("d / d v%d : ", i);
printTree(((INPparseTree *) ptree)->derivs[i]);
printf("\n");
}
return;
}
void
printTree(INPparseNode *pt)
{
switch (pt->type) {
case PT_CONSTANT:
printf("%g", pt->constant);
break;
case PT_VAR:
printf("v%d", pt->valueIndex);
break;
case PT_PLUS:
printf("(");
printTree(pt->left);
printf(") + (");
printTree(pt->right);
printf(")");
break;
case PT_MINUS:
printf("(");
printTree(pt->left);
printf(") - (");
printTree(pt->right);
printf(")");
break;
case PT_TIMES:
printf("(");
printTree(pt->left);
printf(") * (");
printTree(pt->right);
printf(")");
break;
case PT_DIVIDE:
printf("(");
printTree(pt->left);
printf(") / (");
printTree(pt->right);
printf(")");
break;
case PT_POWER:
printf("(");
printTree(pt->left);
printf(") ^ (");
printTree(pt->right);
printf(")");
break;
case PT_FUNCTION:
printf("%s (", pt->funcname);
printTree(pt->left);
printf(")");
break;
default:
printf("oops");
break;
}
return;
}
#endif