ngspice/src/maths/SuperLU/superlusmp.c

738 lines
17 KiB
C

/*
* Spice3 COMPATIBILITY MODULE
*
* Author: Advising professor:
* Kenneth S. Kundert Alberto Sangiovanni-Vincentelli
* UC Berkeley
*
* This module contains routines that make Sparse1.3 a direct
* replacement for the SMP sparse matrix package in Spice3c1 or Spice3d1.
* Sparse1.3 is in general a faster and more robust package than SMP.
* These advantages become significant on large circuits.
*
* >>> User accessible functions contained in this file:
* SMPaddElt
* SMPmakeElt
* SMPcClear
* SMPclear
* SMPcLUfac
* SMPluFac
* SMPcReorder
* SMPreorder
* SMPcaSolve
* SMPcSolve
* SMPsolve
* SMPmatSize
* SMPnewMatrix
* SMPdestroy
* SMPpreOrder
* SMPprint
* SMPgetError
* SMPcProdDiag
* LoadGmin
* SMPfindElt
* SMPcombine
* SMPcCombine
*/
/*
* To replace SMP with Sparse, rename the file spSpice3.h to
* spMatrix.h and place Sparse in a subdirectory of SPICE called
* `sparse'. Then on UNIX compile Sparse by executing `make spice'.
* If not on UNIX, after compiling Sparse and creating the sparse.a
* archive, compile this file (spSMP.c) and spSMP.o to the archive,
* then copy sparse.a into the SPICE main directory and rename it
* SMP.a. Finally link SPICE.
*
* To be compatible with SPICE, the following Sparse compiler options
* (in spConfig.h) should be set as shown below:
*
* EXPANDABLE YES
* TRANSLATE NO
* INITIALIZE NO or YES, YES for use with test prog.
* DIAGONAL_PIVOTING YES
* MODIFIED_MARKOWITZ NO
* DELETE NO
* STRIP NO
* MODIFIED_NODAL YES
* QUAD_ELEMENT NO
* TRANSPOSE YES
* SCALING NO
* DOCUMENTATION YES
* MULTIPLICATION NO
* DETERMINANT YES
* STABILITY NO
* CONDITION NO
* PSEUDOCONDITION NO
* DEBUG YES
*
* spREAL double
*/
/*
* Revision and copyright information.
*
* Copyright (c) 1985,86,87,88,89,90
* by Kenneth S. Kundert and the University of California.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose and without fee is hereby granted, provided
* that the above copyright notice appear in all copies and supporting
* documentation and that the authors and the University of California
* are properly credited. The authors and the University of California
* make no representations as to the suitability of this software for
* any purpose. It is provided `as is', without express or implied warranty.
*/
/*
* IMPORTS
*
* >>> Import descriptions:
* spMatrix.h
* Sparse macros and declarations.
* SMPdefs.h
* Spice3's matrix macro definitions.
*/
#include "ngspice/config.h"
#include <assert.h>
#include <stdio.h>
#include <math.h>
#include "ngspice/spmatrix.h"
#include "../sparse/spdefs.h"
#include "ngspice/smpdefs.h"
#if defined (_MSC_VER)
extern double scalbn(double, int);
#define logb _logb
extern double logb(double);
#endif
static void LoadGmin_CSC (double **diag, int n, double Gmin) ;
static void LoadGmin(SMPmatrix *eMatrix, double Gmin);
void
SMPmatrix_CSC (SMPmatrix *Matrix)
{
spMatrix_CSC (Matrix->SPmatrix, Matrix->CKTsuperluAp, Matrix->CKTsuperluAi, Matrix->CKTsuperluAx,
Matrix->CKTsuperluN, Matrix->CKTbind_Sparse, Matrix->CKTbind_CSC, Matrix->CKTdiag_CSC) ;
return ;
}
void
SMPnnz (SMPmatrix *Matrix)
{
Matrix->CKTsuperluN = spGetSize (Matrix->SPmatrix, 1) ;
Matrix->CKTsuperlunz = Matrix->SPmatrix->Elements ;
return ;
}
/*
* SMPaddElt()
*/
int
SMPaddElt (SMPmatrix *Matrix, int Row, int Col, double Value)
{
*spGetElement (Matrix->SPmatrix, Row, Col) = Value;
return spError (Matrix->SPmatrix) ;
}
/*
* SMPmakeElt()
*/
double *
SMPmakeElt (SMPmatrix *Matrix, int Row, int Col)
{
return spGetElement (Matrix->SPmatrix, Row, Col) ;
}
/*
* SMPcClear()
*/
void
SMPcClear (SMPmatrix *Matrix)
{
spClear (Matrix->SPmatrix) ;
}
/*
* SMPclear()
*/
void
SMPclear (SMPmatrix *Matrix)
{
int i ;
if (Matrix->CKTsuperluMODE)
{
spClear (Matrix->SPmatrix) ;
if (Matrix->CKTsuperluAx != NULL)
{
for (i = 0 ; i < Matrix->CKTsuperlunz ; i++)
Matrix->CKTsuperluAx [i] = 0 ;
}
} else {
spClear (Matrix->SPmatrix) ;
}
}
#define NG_IGNORE(x) (void)x
/*
* SMPcLUfac()
*/
/*ARGSUSED*/
int
SMPcLUfac (SMPmatrix *Matrix, double PivTol)
{
NG_IGNORE(PivTol);
spSetComplex (Matrix->SPmatrix) ;
return spFactor (Matrix->SPmatrix) ;
}
/*
* SMPluFac()
*/
/*ARGSUSED*/
int
SMPluFac (SMPmatrix *Matrix, double PivTol, double Gmin)
{//printf("ReFactor\n");
int relax, panel_size, lwork = 0 ;
NG_IGNORE(PivTol) ;
if (Matrix->CKTsuperluMODE)
{
spSetReal (Matrix->SPmatrix) ;
LoadGmin_CSC (Matrix->CKTdiag_CSC, Matrix->CKTsuperluN, Gmin) ;
Matrix->CKTsuperluOptions.Fact = SamePattern_SameRowPerm ; /* IMPORTANT */
panel_size = sp_ienv (1) ;
relax = sp_ienv (2) ;
// t = SuperLU_timer_();
dgstrf (&(Matrix->CKTsuperluOptions), &(Matrix->CKTsuperluAC), relax, panel_size, Matrix->CKTsuperluEtree,
NULL, lwork, Matrix->CKTsuperluPerm_c, Matrix->CKTsuperluPerm_r, &(Matrix->CKTsuperluL),
&(Matrix->CKTsuperluU), &(Matrix->CKTsuperluStat), &(Matrix->CKTsuperluInfo)) ;
// utime[FACT] = SuperLU_timer_() - t;
if (Matrix->CKTsuperluInfo == 0) return 0 ; /* ReFactorization DONE */
else return 1 ;
} else {
spSetReal (Matrix->SPmatrix) ;
LoadGmin (Matrix, Gmin) ;
return spFactor (Matrix->SPmatrix) ;
}
}
/*
* SMPcReorder()
*/
int
SMPcReorder (SMPmatrix *Matrix, double PivTol, double PivRel, int *NumSwaps)
{
*NumSwaps = 1;
spSetComplex (Matrix->SPmatrix) ;
return spOrderAndFactor (Matrix->SPmatrix, NULL,
(spREAL)PivRel, (spREAL)PivTol, YES) ;
}
/*
* SMPreorder()
*/
int
SMPreorder (SMPmatrix *Matrix, double PivTol, double PivRel, double Gmin)
{//printf("Factor\n");
// int permc_spec ;
int relax, panel_size, lwork = 0 ;
if (Matrix->CKTsuperluMODE)
{
spSetReal (Matrix->SPmatrix) ;
LoadGmin_CSC (Matrix->CKTdiag_CSC, Matrix->CKTsuperluN, Gmin) ;
Matrix->CKTsuperluOptions.Fact = SamePattern ; /* IMPORTANT */
// permc_spec = options->ColPerm;
// if ( permc_spec != MY_PERMC && options->Fact == DOFACT ) get_perm_c(permc_spec, A, perm_c);
// sp_preorder(options, A, perm_c, etree, AC);
panel_size = sp_ienv (1) ;
relax = sp_ienv (2) ;
// t = SuperLU_timer_();
dgstrf (&(Matrix->CKTsuperluOptions), &(Matrix->CKTsuperluAC), relax, panel_size, Matrix->CKTsuperluEtree,
NULL, lwork, Matrix->CKTsuperluPerm_c, Matrix->CKTsuperluPerm_r, &(Matrix->CKTsuperluL),
&(Matrix->CKTsuperluU), &(Matrix->CKTsuperluStat), &(Matrix->CKTsuperluInfo)) ;
// utime[FACT] = SuperLU_timer_() - t;
return 0 ;
}
else {
spSetReal (Matrix->SPmatrix) ;
LoadGmin (Matrix, Gmin) ;
return spOrderAndFactor (Matrix->SPmatrix, NULL,
(spREAL)PivRel, (spREAL)PivTol, YES) ;
}
}
/*
* SMPcaSolve()
*/
void
SMPcaSolve (SMPmatrix *Matrix, double RHS[], double iRHS[],
double Spare[], double iSpare[])
{
printf ("SMPcaSolve\n") ;
NG_IGNORE (iSpare) ;
NG_IGNORE (Spare) ;
spSolveTransposed (Matrix->SPmatrix, RHS, RHS, iRHS, iRHS) ;
}
/*
* SMPcSolve()
*/
void
SMPcSolve (SMPmatrix *Matrix, double RHS[], double iRHS[], double Spare[], double iSpare[])
{
NG_IGNORE (iSpare) ;
NG_IGNORE (Spare) ;
spSolve (Matrix->SPmatrix, RHS, RHS, iRHS, iRHS) ;
}
/*
* SMPsolve()
*/
void
SMPsolve (SMPmatrix *Matrix, double RHS[], double Spare[])
{//printf("Solve\n");
int i, *pExtOrder ;
NG_IGNORE (Spare) ;
if (Matrix->CKTsuperluMODE)
{
pExtOrder = &Matrix->SPmatrix->IntToExtRowMap[Matrix->CKTsuperluN] ;
for (i = Matrix->CKTsuperluN - 1 ; i >= 0 ; i--)
Matrix->CKTsuperluIntermediate [i] = RHS [*(pExtOrder--)] ;
dgstrs (NOTRANS, &(Matrix->CKTsuperluL), &(Matrix->CKTsuperluU), Matrix->CKTsuperluPerm_c,
Matrix->CKTsuperluPerm_r, &(Matrix->CKTsuperluI), &(Matrix->CKTsuperluStat),
&(Matrix->CKTsuperluInfo)) ;
pExtOrder = &Matrix->SPmatrix->IntToExtColMap[Matrix->CKTsuperluN] ;
for (i = Matrix->CKTsuperluN - 1 ; i >= 0 ; i--)
RHS [*(pExtOrder--)] = Matrix->CKTsuperluIntermediate [i] ;
} else {
spSolve (Matrix->SPmatrix, RHS, RHS, NULL, NULL) ;
}
}
/*
* SMPmatSize()
*/
int
SMPmatSize (SMPmatrix *Matrix)
{
return spGetSize (Matrix->SPmatrix, 1) ;
}
/*
* SMPnewMatrix()
*/
int
SMPnewMatrix (SMPmatrix *Matrix)
{
int Error;
Matrix->SPmatrix = spCreate (0, 1, &Error) ;
return Error ;
}
/*
* SMPdestroy()
*/
void
SMPdestroy (SMPmatrix *Matrix)
{
spDestroy (Matrix->SPmatrix) ;
}
/*
* SMPpreOrder()
*/
int
SMPpreOrder (SMPmatrix *Matrix)
{//printf("PreOrder\n");
// DNformat *Bstore ;
int permc_spec ;
// int n, i ;
if (Matrix->CKTsuperluMODE)
{
Matrix->CKTsuperluOptions.Fact = DOFACT ;
Matrix->CKTsuperluOptions.Equil = NO_SuperLU ;
Matrix->CKTsuperluOptions.ColPerm = MMD_AT_PLUS_A ;
Matrix->CKTsuperluOptions.Trans = NOTRANS ;
Matrix->CKTsuperluOptions.IterRefine = NOREFINE ;
Matrix->CKTsuperluOptions.DiagPivotThresh = 0.001 ;
Matrix->CKTsuperluOptions.SymmetricMode = YES_SuperLU ;
Matrix->CKTsuperluOptions.PivotGrowth = NO_SuperLU ;
Matrix->CKTsuperluOptions.ConditionNumber = NO_SuperLU ;
Matrix->CKTsuperluOptions.PrintStat = NO_SuperLU ;
/* Test the input parameters ... */
// *info = 0 ;
// Bstore = B->Store;
// if ( options->Fact != DOFACT ) *info = -1 ;
// else if ( A->nrow != A->ncol || A->nrow < 0 || (A->Stype != SLU_NC && A->Stype != SLU_NR) || A->Dtype != SLU_D || A->Mtype != SLU_GE ) *info = -2 ;
// else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) || B->Stype != SLU_DN || B->Dtype != SLU_D || B->Mtype != SLU_GE ) *info = -7 ;
// if ( *info != 0 ) {
// i = -(*info);
// xerbla_("dgssv", &i);
// return 0 ; /* Make sure that 0 is correct - Francesco Lannutti */
// }
// utime = stat->utime;
// t = SuperLU_timer_();
permc_spec = Matrix->CKTsuperluOptions.ColPerm;
if ( permc_spec != MY_PERMC && Matrix->CKTsuperluOptions.Fact == DOFACT )
get_perm_c (permc_spec, &(Matrix->CKTsuperluA), Matrix->CKTsuperluPerm_c) ;
// utime[COLPERM] = SuperLU_timer_() - t;
// t = SuperLU_timer_();
sp_preorder (&(Matrix->CKTsuperluOptions), &(Matrix->CKTsuperluA), Matrix->CKTsuperluPerm_c,
Matrix->CKTsuperluEtree, &(Matrix->CKTsuperluAC)) ;
// utime[ETREE] = SuperLU_timer_() - t;
return 0 ;
} else {
spMNA_Preorder (Matrix->SPmatrix) ;
return spError (Matrix->SPmatrix) ;
}
}
/*
* SMPprintRHS()
*/
void
SMPprintRHS (SMPmatrix *Matrix, char *Filename, RealVector RHS, RealVector iRHS)
{
if (!Matrix->CKTsuperluMODE)
spFileVector (Matrix->SPmatrix, Filename, RHS, iRHS) ;
}
/*
* SMPprint()
*/
void
SMPprint (SMPmatrix *Matrix, char *Filename)
{
if (!Matrix->CKTsuperluMODE)
{
if (Filename)
spFileMatrix (Matrix->SPmatrix, Filename, "Circuit Matrix", 0, 1, 1) ;
else
spPrint (Matrix->SPmatrix, 0, 1, 1) ;
}
}
/*
* SMPgetError()
*/
void
SMPgetError (SMPmatrix *Matrix, int *Col, int *Row)
{
spWhereSingular (Matrix->SPmatrix, Row, Col) ;
}
/*
* SMPcProdDiag()
* note: obsolete for Spice3d2 and later
*/
int
SMPcProdDiag (SMPmatrix *Matrix, SPcomplex *pMantissa, int *pExponent)
{
spDeterminant (Matrix->SPmatrix, pExponent, &(pMantissa->real), &(pMantissa->imag)) ;
return spError (Matrix->SPmatrix) ;
}
/*
* SMPcDProd()
*/
int
SMPcDProd (SMPmatrix *Matrix, SPcomplex *pMantissa, int *pExponent)
{
double re, im, x, y, z;
int p;
spDeterminant (Matrix->SPmatrix, &p, &re, &im) ;
#ifndef M_LN2
#define M_LN2 0.69314718055994530942
#endif
#ifndef M_LN10
#define M_LN10 2.30258509299404568402
#endif
#ifdef debug_print
printf("Determinant 10: (%20g,%20g)^%d\n", re, im, p);
#endif
/* Convert base 10 numbers to base 2 numbers, for comparison */
y = p * M_LN10 / M_LN2;
x = (int) y;
y -= x;
/* ASSERT
* x = integral part of exponent, y = fraction part of exponent
*/
/* Fold in the fractional part */
#ifdef debug_print
printf(" ** base10 -> base2 int = %g, frac = %20g\n", x, y);
#endif
z = pow(2.0, y);
re *= z;
im *= z;
#ifdef debug_print
printf(" ** multiplier = %20g\n", z);
#endif
/* Re-normalize (re or im may be > 2.0 or both < 1.0 */
if (re != 0.0) {
y = logb(re);
if (im != 0.0)
z = logb(im);
else
z = 0;
} else if (im != 0.0) {
z = logb(im);
y = 0;
} else {
/* Singular */
/*printf("10 -> singular\n");*/
y = 0;
z = 0;
}
#ifdef debug_print
printf(" ** renormalize changes = %g,%g\n", y, z);
#endif
if (y < z)
y = z;
*pExponent = (int)(x + y);
x = scalbn(re, (int) -y);
z = scalbn(im, (int) -y);
#ifdef debug_print
printf(" ** values are: re %g, im %g, y %g, re' %g, im' %g\n",
re, im, y, x, z);
#endif
pMantissa->real = scalbn(re, (int) -y);
pMantissa->imag = scalbn(im, (int) -y);
#ifdef debug_print
printf("Determinant 10->2: (%20g,%20g)^%d\n", pMantissa->real,
pMantissa->imag, *pExponent);
#endif
return spError (Matrix->SPmatrix) ;
}
/*
* The following routines need internal knowledge of the Sparse data
* structures.
*/
/*
* LOAD GMIN
*
* This routine adds Gmin to each diagonal element. Because Gmin is
* added to the current diagonal, which may bear little relation to
* what the outside world thinks is a diagonal, and because the
* elements that are diagonals may change after calling spOrderAndFactor,
* use of this routine is not recommended. It is included here simply
* for compatibility with Spice3.
*/
static void
LoadGmin_CSC (double **diag, int n, double Gmin)
{
int i ;
if (Gmin != 0.0) {
for (i = 0 ; i < n ; i++) {
if (diag [i] != NULL) *(diag [i]) += Gmin ;
}
}
return ;
}
static void
LoadGmin(SMPmatrix *eMatrix, double Gmin)
{
MatrixPtr Matrix = eMatrix->SPmatrix ;
int I;
ArrayOfElementPtrs Diag;
ElementPtr diag;
/* Begin `LoadGmin'. */
assert (IS_SPARSE (Matrix)) ;
if (Gmin != 0.0) {
Diag = Matrix->Diag;
for (I = Matrix->Size; I > 0; I--) {
if ((diag = Diag[I]) != NULL)
diag->Real += Gmin;
}
}
return;
}
/*
* FIND ELEMENT
*
* This routine finds an element in the matrix by row and column number.
* If the element exists, a pointer to it is returned. If not, then NULL
* is returned unless the CreateIfMissing flag is TRUE, in which case a
* pointer to the new element is returned.
*/
SMPelement *
SMPfindElt(SMPmatrix *eMatrix, int Row, int Col, int CreateIfMissing)
{
MatrixPtr Matrix = eMatrix->SPmatrix ;
ElementPtr Element;
/* Begin `SMPfindElt'. */
assert( IS_SPARSE( Matrix ) );
Row = Matrix->ExtToIntRowMap[Row];
Col = Matrix->ExtToIntColMap[Col];
Element = Matrix->FirstInCol[Col];
Element = spcFindElementInCol(Matrix, &Element, Row, Col, CreateIfMissing);
return (SMPelement *)Element;
}
/* XXX The following should probably be implemented in spUtils */
/*
* SMPcZeroCol()
*/
int
SMPcZeroCol(SMPmatrix *eMatrix, int Col)
{
MatrixPtr Matrix = eMatrix->SPmatrix ;
ElementPtr Element;
Col = Matrix->ExtToIntColMap[Col];
for (Element = Matrix->FirstInCol[Col];
Element != NULL;
Element = Element->NextInCol)
{
Element->Real = 0.0;
Element->Imag = 0.0;
}
return spError( Matrix );
}
/*
* SMPcAddCol()
*/
int
SMPcAddCol(SMPmatrix *eMatrix, int Accum_Col, int Addend_Col)
{
MatrixPtr Matrix = eMatrix->SPmatrix ;
ElementPtr Accum, Addend, *Prev;
Accum_Col = Matrix->ExtToIntColMap[Accum_Col];
Addend_Col = Matrix->ExtToIntColMap[Addend_Col];
Addend = Matrix->FirstInCol[Addend_Col];
Prev = &Matrix->FirstInCol[Accum_Col];
Accum = *Prev;;
while (Addend != NULL) {
while (Accum && Accum->Row < Addend->Row) {
Prev = &Accum->NextInCol;
Accum = *Prev;
}
if (!Accum || Accum->Row > Addend->Row) {
Accum = spcCreateElement(Matrix, Addend->Row, Accum_Col, Prev, 0);
}
Accum->Real += Addend->Real;
Accum->Imag += Addend->Imag;
Addend = Addend->NextInCol;
}
return spError( Matrix );
}
/*
* SMPzeroRow()
*/
int
SMPzeroRow(SMPmatrix *eMatrix, int Row)
{
MatrixPtr Matrix = eMatrix->SPmatrix ;
ElementPtr Element;
Row = Matrix->ExtToIntColMap[Row];
if (Matrix->RowsLinked == NO)
spcLinkRows(Matrix);
if (Matrix->PreviousMatrixWasComplex || Matrix->Complex) {
for (Element = Matrix->FirstInRow[Row];
Element != NULL;
Element = Element->NextInRow)
{
Element->Real = 0.0;
Element->Imag = 0.0;
}
} else {
for (Element = Matrix->FirstInRow[Row];
Element != NULL;
Element = Element->NextInRow)
{
Element->Real = 0.0;
}
}
return spError( Matrix );
}
#ifdef PARALLEL_ARCH
/*
* SMPcombine()
*/
void
SMPcombine(SMPmatrix *Matrix, double RHS[], double Spare[])
{
spSetReal (Matrix->SPmatrix) ;
spCombine (Matrix->SPmatrix, RHS, Spare, NULL, NULL) ;
}
/*
* SMPcCombine()
*/
void
SMPcCombine (SMPmatrix *Matrix, double RHS[], double Spare[], double iRHS[], double iSpare[])
{
spSetComplex (Matrix->SPmatrix) ;
spCombine (Matrix->SPmatrix, RHS, Spare, iRHS, iSpare) ;
}
#endif /* PARALLEL_ARCH */