Added test netlists for cpl and txl from kspice.

This commit is contained in:
pnenzi 2003-12-31 16:14:20 +00:00
parent ebb73dcfc8
commit f62f7a18ad
19 changed files with 3074 additions and 0 deletions

View File

@ -0,0 +1,44 @@
************ test circuit for transmission simulation **************
m1 0 268 299 0 mn0p9 w = 18.0u l=1.0u
m2 299 267 748 0 mn0p9 w = 18.0u l=1.0u
m3 0 168 648 0 mn0p9 w = 18.0u l=0.9u
m4 1 268 748 1 mp1p0 w = 36.0u l=1.0u
m5 1 267 748 1 mp1p0 w = 36.0u l=1.0u
m6 1 168 648 1 mp1p0 w = 36.0u l=1.0u
*
CN648 648 0 0.025398e-12
CN651 651 0 0.007398e-12
CN748 748 0 0.025398e-12
CN751 751 0 0.009398e-12
CN299 299 0 0.005398e-12
*
P1 648 748 0 651 751 0 PLINE
*
vdd 1 0 DC 5.0
VK 267 0 DC 5.0
*
*VS 168 0 PWL 4 15.9N 0.0 16.1n 5.0 31.9n 5.0 32.1n 0.0
*VS 268 0 PWL 4 15.9N 0.0 16.1n 5.0 31.9n 5.0 32.1n 0.0
*
VS1 168 0 PULSE (0 5 15.9N 0.2N 0.2N 15.8N 60N)
VS2 268 0 PULSE (0 5 15.9N 0.2N 0.2N 15.8N 60N)
*
.PRINT TRAN v(648) v(651) v(751)
*
.TRAN 0.2N 47.9NS 0 1N
.MODEL PLINE CPL
+R=0.2 0 0.2
+L=9.13e-9 3.3e-9
+ 9.13e-9
+G=0 0 0
+C=3.65e-13 -9e-14
+ 3.65e-13
+length=24
******************* MODEL SPECIFICATION **********************
.MODEL mn0p9 NMOS VTO=0.8 KP=48U GAMMA=0.30 PHI=0.55 LAMBDA=0.00 CGSO=0 CGDO=0
+ CJ=0 CJSW=0 TOX=18000N LD=0.0U
.MODEL mp1p0 PMOS VTO=-0.8 KP=21U GAMMA=0.45 PHI=0.61 LAMBDA=0.00 CGSO=0 CGDO=0
+ CJ=0 CJSW=0 TOX=18000N LD=0.0U
.END

View File

@ -0,0 +1,96 @@
************ test circuit for transmission simulation **************
m1 0 268 299 0 mn0p9 w = 18.0u l=1.0u
m2 299 267 748 0 mn0p9 w = 18.0u l=1.0u
m3 0 168 648 0 mn0p9 w = 18.0u l=0.9u
m4 1 268 748 1 mp1p0 w = 36.0u l=1.0u
m5 1 267 748 1 mp1p0 w = 36.0u l=1.0u
m6 1 168 648 1 mp1p0 w = 36.0u l=1.0u
*
CN648 648 0 0.025398e-12
CN651 651 0 0.007398e-12
CN748 748 0 0.025398e-12
CN751 751 0 0.009398e-12
CN299 299 0 0.005398e-12
*
* Subcircuit test
* test is a subcircuit that models a 2-conductor transmission line with
* the following parameters: l=9.13e-09, c=2.75e-13, r=0.2, g=0,
* inductive_coeff_of_coupling k=0.36144, inter-line capacitance cm=9e-14,
* length=24. Derived parameters are: lm=3.29995e-09, ctot=3.65e-13.
*
* It is important to note that the model is a simplified one - the
* following assumptions are made: 1. The self-inductance l, the
* self-capacitance ctot (note: not c), the series resistance r and the
* parallel capacitance g are the same for all lines, and 2. Each line
* is coupled only to the two lines adjacent to it, with the same
* coupling parameters cm and lm. The first assumption implies that edge
* effects have to be neglected. The utility of these assumptions is
* that they make the sL+R and sC+G matrices symmetric, tridiagonal and
* Toeplitz, with useful consequences (see "Efficient Transient
* Simulation of Lossy Interconnect", by J.S. Roychowdhury and
* D.O Pederson, Proc. DAC 91).
* It may be noted that a symmetric two-conductor line is
* represented accurately by this model.
* Subckt node convention:
*
* |--------------------------|
* 1-----| |-----n+1
* 2-----| |-----n+2
* : | n-wire multiconductor | :
* : | line | :
* n-1-----|(node 0=common gnd plane) |-----2n-1
* n-----| |-----2n
* |--------------------------|
* Lossy line models
.model mod1_test ltra rel=1.2 nocontrol r=0.2 l=5.83005279316e-09 g=0 c=4.55000000187e-13 len=24
.model mod2_test ltra rel=1.2 nocontrol r=0.2 l=1.24299471863e-08 g=0 c=2.75000000373e-13 len=24
* subcircuit m_test - modal transformation network for test
.subckt m_test 1 2 3 4
v1 5 0 0v
v2 6 0 0v
f1 0 3 v1 0.707106779721
f2 0 3 v2 -0.707106782652
f3 0 4 v1 0.707106781919
f4 0 4 v2 0.707106780454
e1 7 5 3 0 0.707106780454
e2 1 7 4 0 0.707106782652
e3 8 6 3 0 -0.707106781919
e4 2 8 4 0 0.707106779721
.ends m_test
* Subckt test
.subckt test 1 2 3 4
x1 1 2 5 6 m_test
o1 5 0 7 0 mod1_test
o2 6 0 8 0 mod2_test
x2 3 4 7 8 m_test
.ends test
*
x1 648 748 651 751 test
*
*
vdd 1 0 DC 5.0
VK 267 0 DC 5.0
*
VS1 168 0 PULSE (0 5 15.9N 0.2N 0.2N 15.8N 60N)
VS2 268 0 PULSE (0 5 15.9N 0.2N 0.2N 15.8N 60N)
*
.TRAN 0.2N 47.9NS
.PRINT TRAN v(648) v(651) v(751)
*
.model mn0p9 nmos LEVEL=1 vto=0.8V kp=48u gamma=0.3 phi=0.55 lambda=0.0
+ PHI=0.55 LAMBDA=0.00 CGSO=0 CGDO=0 CGBO=0
+ CJ=0 CJSW=0 TOX=18000N NSUB=1E16 LD=0.0U
.model mp1p0 pmos LEVEL=1 vto=-0.8V kp=21u gamma=0.45 phi=0.61 lambda=0.0
+ PHI=0.61 LAMBDA=0.00 CGSO=0 CGDO=0 CGBO=0
+ CJ=0 CJSW=0 TOX=18000N NSUB=3E16 LD=0.0U
.END

View File

@ -0,0 +1,59 @@
************ test circuit for transmission simulation **************
m1 1 2 6 1 mp1p0 w = 36.0u l=1.0u
m2 1 3 7 1 mp1p0 w = 36.0u l=1.0u
m3 1 4 8 1 mp1p0 w = 36.0u l=1.0u
m4 1 10 5 1 mp1p0 w = 36.0u l=1.0u
m5 1 11 13 1 mp1p0 w = 36.0u l=1.0u
m6 1 12 13 1 mp1p0 w = 36.0u l=1.0u
m7 0 2 6 0 mn0p9 w = 18.0u l=0.9u
m8 0 3 7 0 mn0p9 w = 18.0u l=0.9u
m9 0 4 8 0 mn0p9 w = 18.0u l=0.9u
m10 0 10 5 0 mn0p9 w = 18.0u l=0.9u
m11 14 11 13 0 mn0p9 w = 18.0u l=0.9u
m12 0 12 14 0 mn0p9 w = 18.0u l=0.9u
*
CN5 5 0 0.025398e-12
CN6 6 0 0.007398e-12
CN7 7 0 0.007398e-12
CN8 8 0 0.007398e-12
CN9 9 0 0.097398e-12
CN10 10 0 0.007398e-12
CN11 11 0 0.003398e-12
CN12 12 0 0.004398e-12
CN13 13 0 0.008398e-12
CN14 14 0 0.005398e-12
*
P1 5 6 7 8 0 9 10 11 12 0 pline
*
*
vdd 1 0 DC 5.0
v3 3 0 DC 5.0
*
VS1 2 0 PULSE ( 0 5 15.9NS 0.2NS 0.2NS 15.8NS 32NS)
VS2 4 0 PULSE (0 5 15.9NS 0.2NS 0.2NS 15.8NS 32NS )
*
.TRAN 0.2N 47.9N 0 0.05N
.MODEL mn0p9 NMOS VTO=0.8 KP=48U GAMMA=0.30 PHI=0.55 LAMBDA=0.00 CGSO=0 CGDO=0
+CJ=0 CJSW=0 TOX=18000N LD=0.0U
.MODEL mp1p0 PMOS VTO=-0.8 KP=21U GAMMA=0.45 PHI=0.61 LAMBDA=0.00 CGSO=0 CGDO=0
+CJ=0 CJSW=0 TOX=18000N LD=0.0U
.PRINT TRAN V(5) V(11) V(13)
.MODEL PLINE cpl
+R=0.03 0 0 0 0.03 0 0 0.03 0 0.03
+L=9e-9 5.4e-9 0 0
+9e-9 5.4e-9 0
+9e-9 5.4e-9
+9e-9
+G=0 0 0 0 0 0 0 0 0 0
+C=3.5e-13 -3e-14 0 0
+3.5e-13 -3e-14 0
+3.5e-13 -3e-14
+3.5e-13
+length=6.3
.END

View File

@ -0,0 +1,145 @@
************ test circuit for transmission simulation **************
m1 1 2 6 1 mp1p0 w = 36.0u l=1.0u
m2 1 3 7 1 mp1p0 w = 36.0u l=1.0u
m3 1 4 8 1 mp1p0 w = 36.0u l=1.0u
m4 1 10 5 1 mp1p0 w = 36.0u l=1.0u
m5 1 11 13 1 mp1p0 w = 36.0u l=1.0u
m6 1 12 13 1 mp1p0 w = 36.0u l=1.0u
m7 0 2 6 0 mn0p9 w = 18.0u l=0.9u
m8 0 3 7 0 mn0p9 w = 18.0u l=0.9u
m9 0 4 8 0 mn0p9 w = 18.0u l=0.9u
m10 0 10 5 0 mn0p9 w = 18.0u l=0.9u
m11 14 11 13 0 mn0p9 w = 18.0u l=0.9u
m12 0 12 14 0 mn0p9 w = 18.0u l=0.9u
*
CN5 5 0 0.025398e-12
CN6 6 0 0.007398e-12
CN7 7 0 0.007398e-12
CN8 8 0 0.007398e-12
CN9 9 0 0.097398e-12
CN10 10 0 0.007398e-12
CN11 11 0 0.003398e-12
CN12 12 0 0.004398e-12
CN13 13 0 0.008398e-12
CN14 14 0 0.005398e-12
*
* Subcircuit test
* test is a subcircuit that models a 4-conductor transmission line with
* the following parameters: l=9e-09, c=2.9e-13, r=0.3, g=0,
* inductive_coeff_of_coupling k=0.6, inter-line capacitance cm=3e-14,
* length=6.3. Derived parameters are: lm=5.4e-09, ctot=3.5e-13.
*
* It is important to note that the model is a simplified one - the
* following assumptions are made: 1. The self-inductance l, the
* self-capacitance ctot (note: not c), the series resistance r and the
* parallel capacitance g are the same for all lines, and 2. Each line
* is coupled only to the two lines adjacent to it, with the same
* coupling parameters cm and lm. The first assumption implies that edge
* effects have to be neglected. The utility of these assumptions is
* that they make the sL+R and sC+G matrices symmetric, tridiagonal and
* Toeplitz, with useful consequences (see "Efficient Transient
* Simulation of Lossy Interconnect", by J.S. Roychowdhury and
* D.O Pederson, Proc. DAC 91).
* It may be noted that a symmetric two-conductor line is
* represented accurately by this model.
* Subckt node convention:
*
* |--------------------------|
* 1-----| |-----n+1
* 2-----| |-----n+2
* : | n-wire multiconductor | :
* : | line | :
* n-1-----|(node 0=common gnd plane) |-----2n-1
* n-----| |-----2n
* |--------------------------|
* Lossy line models
.model mod1_test ltra rel=1.2 nocontrol r=0.3 l=2.62616456193e-10 g=0 c=3.98541019688e-13 len=6.3
.model mod2_test ltra rel=1.2 nocontrol r=0.3 l=5.662616446e-09 g=0 c=3.68541019744e-13 len=6.3
.model mod3_test ltra rel=1.2 nocontrol r=0.3 l=1.23373835171e-08 g=0 c=3.3145898046e-13 len=6.3
.model mod4_test ltra rel=1.2 nocontrol r=0.3 l=1.7737383521e-08 g=0 c=3.01458980439e-13 len=6.3
* subcircuit m_test - modal transformation network for test
.subckt m_test 1 2 3 4 5 6 7 8
v1 9 0 0v
v2 10 0 0v
v3 11 0 0v
v4 12 0 0v
f1 0 5 v1 0.371748033738
f2 0 5 v2 -0.601500954587
f3 0 5 v3 0.601500954587
f4 0 5 v4 -0.371748036544
f5 0 6 v1 0.60150095443
f6 0 6 v2 -0.371748035044
f7 0 6 v3 -0.371748030937
f8 0 6 v4 0.601500957402
f9 0 7 v1 0.601500954079
f10 0 7 v2 0.37174803072
f11 0 7 v3 -0.371748038935
f12 0 7 v4 -0.601500955482
f13 0 8 v1 0.371748035626
f14 0 8 v2 0.601500956073
f15 0 8 v3 0.601500954504
f16 0 8 v4 0.371748032386
e1 13 9 5 0 0.371748033909
e2 14 13 6 0 0.601500954587
e3 15 14 7 0 0.601500955639
e4 1 15 8 0 0.371748036664
e5 16 10 5 0 -0.60150095443
e6 17 16 6 0 -0.371748035843
e7 18 17 7 0 0.371748032386
e8 2 18 8 0 0.601500957319
e9 19 11 5 0 0.601500955131
e10 20 19 6 0 -0.371748032169
e11 21 20 7 0 -0.371748037896
e12 3 21 8 0 0.601500954513
e13 22 12 5 0 -0.371748035746
e14 23 22 6 0 0.60150095599
e15 24 23 7 0 -0.601500953534
e16 4 24 8 0 0.371748029317
.ends m_test
* Subckt test
.subckt test 1 2 3 4 5 6 7 8
x1 1 2 3 4 9 10 11 12 m_test
o1 9 0 13 0 mod1_test
o2 10 0 14 0 mod2_test
o3 11 0 15 0 mod3_test
o4 12 0 16 0 mod4_test
x2 5 6 7 8 13 14 15 16 m_test
.ends test
*
x1 5 6 7 8 9 10 11 12 test
*
*
vdd 1 0 PULSE (0 5 0Ns 0.1Ns 0.1Ns 600Ns 800Ns)
v3 3 0 PULSE (0 5 0Ns 0.1Ns 0.1Ns 600Ns 800Ns)
*.model lline ltra rel=1 r=0.2 g=0 l=9.13e-9 c=3.65e-12 len=24 steplimit
*compactrel=1.0e-3 compactabs=1.0e-14
.model lline ltra (r=0.2 c=0.365pF l=9.13nH len=24)
.model mn0p9 nmos LEVEL=1 vto=0.8V kp=48u gamma=0.3 phi=0.55 lambda=0.00
+ PHI=0.55 LAMBDA=0.00 CGSO=0 CGDO=0 CGBO=0
+ CJ=0 CJSW=0 TOX=18000N NSUB=1E16 LD=0.0U
.model mp1p0 pmos vto=-0.8V kp=21u gamma=0.45 phi=0.61 lambda=0.00
+ PHI=0.61 LAMBDA=0.00 CGSO=0 CGDO=0 CGBO=0
+ CJ=0 CJSW=0 TOX=18000N NSUB=3E16 LD=0.0U
VS1 2 0 PULSE (0 5 15.9Ns 0.2Ns 0.2Ns 15.8Ns 32Ns)
VS2 4 0 PULSE (0 5 15.9Ns 0.2Ns 0.2Ns 15.8Ns 32Ns)
*.TRAN 0.1N 384.1N
.TRAN 0.1N 47.9N
.PRINT TRAN V(5) V(11) V(13)
*
.END

View File

@ -0,0 +1,77 @@
************ Multiconductor 6-line with ECL drivers *******
vemm mm g DC -0.4
vepp pp g DC 0.4
vein_left lin g PULSE (-0.4 0.4 0N 1N 1N 7N 200N)
vein_right ring g PULSE (-0.4 0.4 2N 1N 1N 7N 200N)
* upper 2 lines
x1 lin g 1 1outn ECL
x2 mm g 2 2outn ECL
x7 7 g 7r 7routn ECL
x8 8 g 8r 8routn ECL
c7r 7r g 0.1P
c8r 8r g 0.1P
* lower 2 lines
x11 pp g 11 11outn ECL
x12 rin g 12 12outn ECL
x5 5 g 5l 5loutn ECL
x6 6 g 6l 6loutn ECL
c5l 5l g 0.1P
c6l 6l g 0.1P
p1 6 1 2 3 4 5 6 7 8 9 10 11 12 pline
.model pline cpl
+C = 0.907067P -0.657947P -0.0767356P -0.0536544P -0.0386514P -0.0523990P
+ -0.657947P 0.138873P -0.607034P -0.0597635P -0.0258851P -0.0273442P
+ -0.0767356P -0.607034P 1.39328P -0.625675P -0.0425551P -0.0319791P
+ -0.0536544P -0.0597635P -0.625675P 1.07821P -0.255048P -0.0715824P
+ -0.0386514P -0.0258851P -0.0425551P -0.255048P 1.06882P -0.692091P
+ -0.0523990P -0.0273442P -0.0319791P -0.0715824P -0.692091P 0.903603P
+L = 0.868493E-7 0.781712E-7 0.748428E-7 0.728358E-7 0.700915E-7 0.692178E-7
+ 0.781712E-7 0.866074E-7 0.780613E-7 0.748122E-7 0.711591E-7 0.701023E-7
+ 0.748428E-7 0.780613E-7 0.865789E-7 0.781095E-7 0.725431E-7 0.711986E-7
+ 0.728358E-7 0.748122E-7 0.781095E-7 0.867480E-7 0.744242E-7 0.725826E-7
+ 0.700915E-7 0.711591E-7 0.725431E-7 0.744242E-7 0.868022E-7 0.782377E-7
+ 0.692178E-7 0.701023E-7 0.711986E-7 0.725826E-7 0.782377E-7 0.868437E-7
+R = 0.2 0.2 0.2 0.2 0.2 0.2
+G = 0 0 0 0 0 0
+
+length = 2
*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.SUBCKT ECL EIN GND 9 8
* Input-GND-OUTP-OUTN
RIN 1 2 0.077K
REF 5 6 0.077K
R1 7 N 1.0K
R2 P 3 0.4K
R3 P 4 0.4555K
R4 8 N 0.615K
R5 9 N 0.615K
RL1 8 GND 0.093K
RL2 9 GND 0.093
LIN EIN 1 0.01U
LREF 5 GND 0.01U
CIN 1 GND 0.68P
CL1 8 GND 1P
CL2 9 GND 1P
Q1 2 3 7 JCNTRAN
Q2 6 4 7 JCNTRAN
Q3 3 P 8 JCNTRAN
Q4 4 P 9 JCNTRAN
VEP P GND DC 1.25
VEN N GND DC -3
.ENDS ECL
.MODEL JCNTRAN (B-C-E)
*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.TRAN 0.1N 20N
.PRINT TRAN V(3) V(5) V(8) V(11) V(12)
.MODEL JCTRAN NPN BF=150 VAF=20V IS=4E-17 RB=300 RC=100 CJE=30FF CJC=30FF
+ CJS=40FF VJE=0.6V VJC=0.6V VJS=0.6 MJE=0.5 MJC=0.5
+ MJS=0.5 TF=16PS TR=1NS
.END

View File

@ -0,0 +1,19 @@
ibm 2
VES IN 0 PULSE (0 1 0N 1.5N 1.5N 4.5N 200N)
R1 IN V1 50
R2 V2 0 10
p1 2 V1 V2 V3 V4 cpl1
.model cpl1 cpl
+R = 0.5 0.5
+L = 247.3e-9 31.65e-9
+ 31.65e-9 247.3e-9
+C = 31.4e-12 -2.45e-12
+ -2.45e-12 31.4e-12
+G = 0 0
+length = 0.3048
*length = 0.6096
R3 V3 0 100
R4 V4 0 100
.TRAN 0.1N 20N
.END

View File

@ -0,0 +1,71 @@
********************** test circuit No. 3 **************************
c1g 1 0 1P
l11a 1 1a 6e-9
r1a7 1a 7 0.025K
rin6 in 6 0.075K
l67 6 7 10e-9
c7g 7 0 1P
P2 2 1 7 2 8 PLINE
.MODEL PLINE CPL
+R = 2.25 2.25
+L = 0.6e-6 0.05e-6
+ 0.05e-6 0.6e-6
+G = 0
+C = 1.2e-9 -0.11e-9
+ -0.11e-9 1.2e-9
+length = 0.03
c2g 2 0 0.5P
r2g 2 0 0.05K
r23 2 3 0.025K
l34 3 4 5e-9
c4g 4 0 2P
l89 8 9 10e-9
c9g 9 0 1P
Y1 9 10 txline
.model txline txl R = 1 L =0.6e-6 G = 0 C= 1.0e-9 length=0.04
l1011 10 11 10e-9
c11g 11 0 0.5P
r11g 11 0 0.05K
r1112 11 12 0.025K
l1213 12 13 5e-9
c13g 13 0 2P
r1116 11 16 0.025K
l1617 16 17 5e-9
c17g 17 0 2P
P1 4 4 2 13 17 5 14 15 18 PLINE1
.MODEL PLINE1 CPL
+R = 3.5 3.5 3.5 3.5
+L =
+1e-6 0.11e-6 0.03e-6 0
+0.11e-6 1e-6 0.11e-6 0.03e-6
+0.03e-6 0.11e-6 1e-6 0.11e-6
+0 0.03e-6 0.11e-6 1e-6
+G = 0 0 0 0
+C =
+1.5e-9 -0.17e-9 -0.03e-9 0
+-0.17e-9 1.5e-9 -0.17e-9 -0.03e-9
+-0.03e-9 -0.17e-9 1.5e-9 -0.17e-9
+0 -0.03e-9 -0.17e-9 1.5e-9
+length = 0.02
*D1 5 0 my_diode
*D2 14 0 my_diode
*D3 15 0 my_diode
*D4 18 0 my_diode
D1 5 0
D2 14 0
D3 15 0
D4 18 0
VES in 0 PULSE (0 5 0 1.1ns 0.1ns 0.9ns 200ns)
*.PRINT 6 3 6 7 8 11 15
*
.TRAN 0.2N 10.0N
*.SIMULATE VSTEP = 0.1
*.SIMULATE EBOUND = 0.05
*.DC OUTPUT d1
.END

View File

@ -0,0 +1,28 @@
corresponding to ckt in swec
m5 0 168 2 0 mn0p9 w = 18.0u l=0.9u
m6 1 168 2 1 mp1p0 w = 36.0u l=1.0u
m1 0 3 4 0 mn0p9 w = 18.0u l=0.9u
m2 1 3 4 1 mp1p0 w = 36.0u l=1.0u
CN2 2 0 0.025398e-12
CN3 3 0 0.007398e-12
CN4 4 0 0.025398e-12
CN5 5 0 0.007398e-12
CN6 6 0 0.007398e-12
CN7 168 0 0.007398e-12
y1 2 0 3 0 ymod
y2 4 0 5 0 ymod
y3 6 0 168 0 ymod
vdd 1 0 dc 5.0
VS 168 0 PULSE (0 5 15.9NS 0.2NS 0.2NS 15.8NS 32NS )
.TRAN 0.2N 47N 0 0.1N
.print tran v(2) v(3)
.MODEL mn0p9 NMOS VTO=0.8 KP=48U GAMMA=0.30 PHI=0.55
+LAMBDA=0.00 CGSO=0 CGDO=0 CJ=0 CJSW=0 TOX=18000N LD=0.0U
.MODEL mp1p0 PMOS VTO=-0.8 KP=21U GAMMA=0.45 PHI=0.61
+LAMBDA=0.00 CGSO=0 CGDO=0 CJ=0 CJSW=0 TOX=18000N LD=0.0U
.MODEL ymod txl R=12.45 L=8.972e-9 G=0 C=0.468e-12 length=16
.end

View File

@ -0,0 +1,29 @@
corresponding to ckt in swec
m5 0 168 2 0 mn0p9 w = 18.0u l=0.9u
m6 1 168 2 1 mp1p0 w = 36.0u l=1.0u
m1 0 3 4 0 mn0p9 w = 18.0u l=0.9u
m2 1 3 4 1 mp1p0 w = 36.0u l=1.0u
CN2 2 0 0.025398e-12
CN3 3 0 0.007398e-12
CN4 4 0 0.025398e-12
CN5 5 0 0.007398e-12
o1 2 0 3 0 lline
o2 4 0 5 0 lline
vdd 1 0 dc 5.0
VS 168 0 PULSE (0 5 15.9NS 0.2NS 0.2NS 15.8NS 32NS )
.TRAN 0.2N 47N 0 1N
.print tran v(2) v(3)
*.nodeset v(2)=5.0 v(3)=5.0
.MODEL mn0p9 NMOS VTO=0.8 KP=48U GAMMA=0.30 PHI=0.55
+LAMBDA=0.00 CGSO=0 CGDO=0 CJ=0 CJSW=0 TOX=18000N LD=0.0U
.MODEL mp1p0 PMOS VTO=-0.8 KP=21U GAMMA=0.45 PHI=0.61
+LAMBDA=0.00 CGSO=0 CGDO=0 CJ=0 CJSW=0 TOX=18000N LD=0.0U
.MODEL ymod txl R=12.45 L=8.972e-9 G=0 C=0.468e-12 length=16
.model lline ltra rel=1 r=12.45 g=0 l=8.972e-9 c=0.468e-12
+len=16 steplimit compactrel=1.0e-3 compactabs=1.0e-14
*.options reltol=0.01
.end

View File

@ -0,0 +1,34 @@
************** 4-LOSSY TRANSMISSION LINES **************
Ra 1 2 1K
Rb 0 3 1K
Rc 0 4 1K
Rd 0 5 1K
Re 6 0 1Meg
Rf 7 0 1Meg
Rg 8 0 1Meg
Rh 9 0 1Meg
*
P1 2 3 4 5 0 6 7 8 9 0 LOSSYMODE
*
*
VS1 1 0 PWL(15.9NS 0.0 16.1Ns 5.0 31.9Ns 5.0 32.1Ns 0.0)
*
.TRAN 0.2NS 50NS 0 0.05N
.MODEL LOSSYMODE CPL
+R= 0.3 0 0 0 0.3 0 0 0.3 0 0.3
+L= 9e-9 5.4e-9 0 0
+ 9e-9 5.4e-9 0
+ 9e-9 5.4e-9
+ 9e-9
+G= 0 0 0 0 0 0 0 0 0 0
+C= 3.5e-13 -3e-14 0 0
+ 3.5e-13 -3e-14 0
+ 3.5e-13 -3e-14
+ 3.5e-13
+length=6.3
.END

View File

@ -0,0 +1,112 @@
************ test circuit for transmission simulation **************
Ra 1 2 1K
Rb 0 3 1K
Rc 0 4 1K
Rd 0 5 1K
Re 6 0 1Meg
Rf 7 0 1Meg
Rg 8 0 1Meg
Rh 9 0 1Meg
*
* Subcircuit test
* test is a subcircuit that models a 4-conductor transmission line with
* the following parameters: l=9e-09, c=2.9e-13, r=0.3, g=0,
* inductive_coeff_of_coupling k=0.6, inter-line capacitance cm=3e-14,
* length=6.3. Derived parameters are: lm=5.4e-09, ctot=3.5e-13.
*
* It is important to note that the model is a simplified one - the
* following assumptions are made: 1. The self-inductance l, the
* self-capacitance ctot (note: not c), the series resistance r and the
* parallel capacitance g are the same for all lines, and 2. Each line
* is coupled only to the two lines adjacent to it, with the same
* coupling parameters cm and lm. The first assumption implies that edge
* effects have to be neglected. The utility of these assumptions is
* that they make the sL+R and sC+G matrices symmetric, tridiagonal and
* Toeplitz, with useful consequences (see "Efficient Transient
* Simulation of Lossy Interconnect", by J.S. Roychowdhury and
* D.O Pederson, Proc. DAC 91).
* It may be noted that a symmetric two-conductor line is
* represented accurately by this model.
* Subckt node convention:
*
* |--------------------------|
* 1-----| |-----n+1
* 2-----| |-----n+2
* : | n-wire multiconductor | :
* : | line | :
* n-1-----|(node 0=common gnd plane) |-----2n-1
* n-----| |-----2n
* |--------------------------|
* Lossy line models
.model mod1_test ltra rel=1.2 nocontrol r=0.3 l=2.62616456193e-10 g=0 c=3.98541019688e-13 len=6.3
.model mod2_test ltra rel=1.2 nocontrol r=0.3 l=5.662616446e-09 g=0 c=3.68541019744e-13 len=6.3
.model mod3_test ltra rel=1.2 nocontrol r=0.3 l=1.23373835171e-08 g=0 c=3.3145898046e-13 len=6.3
.model mod4_test ltra rel=1.2 nocontrol r=0.3 l=1.7737383521e-08 g=0 c=3.01458980439e-13 len=6.3
* subcircuit m_test - modal transformation network for test
.subckt m_test 1 2 3 4 5 6 7 8
v1 9 0 0v
v2 10 0 0v
v3 11 0 0v
v4 12 0 0v
f1 0 5 v1 0.371748033738
f2 0 5 v2 -0.601500954587
f3 0 5 v3 0.601500954587
f4 0 5 v4 -0.371748036544
f5 0 6 v1 0.60150095443
f6 0 6 v2 -0.371748035044
f7 0 6 v3 -0.371748030937
f8 0 6 v4 0.601500957402
f9 0 7 v1 0.601500954079
f10 0 7 v2 0.37174803072
f11 0 7 v3 -0.371748038935
f12 0 7 v4 -0.601500955482
f13 0 8 v1 0.371748035626
f14 0 8 v2 0.601500956073
f15 0 8 v3 0.601500954504
f16 0 8 v4 0.371748032386
e1 13 9 5 0 0.371748033909
e2 14 13 6 0 0.601500954587
e3 15 14 7 0 0.601500955639
e4 1 15 8 0 0.371748036664
e5 16 10 5 0 -0.60150095443
e6 17 16 6 0 -0.371748035843
e7 18 17 7 0 0.371748032386
e8 2 18 8 0 0.601500957319
e9 19 11 5 0 0.601500955131
e10 20 19 6 0 -0.371748032169
e11 21 20 7 0 -0.371748037896
e12 3 21 8 0 0.601500954513
e13 22 12 5 0 -0.371748035746
e14 23 22 6 0 0.60150095599
e15 24 23 7 0 -0.601500953534
e16 4 24 8 0 0.371748029317
.ends m_test
* Subckt test
.subckt test 1 2 3 4 5 6 7 8
x1 1 2 3 4 9 10 11 12 m_test
o1 9 0 13 0 mod1_test
o2 10 0 14 0 mod2_test
o3 11 0 15 0 mod3_test
o4 12 0 16 0 mod4_test
x2 5 6 7 8 13 14 15 16 m_test
.ends test
*
x1 2 3 4 5 6 7 8 9 test
*
*
VS1 1 0 PWL(15.9NS 0.0 16.1Ns 5.0 31.9Ns 5.0 32.1Ns 0.0)
.TRAN 0.2NS 50NS
*
.END

View File

@ -0,0 +1,241 @@
BJTdriver -- 24inch lossy line -- DiodeCircuit
* This unclassified circuit is from Raytheon, courtesy Gerry Marino.
* It consists of a BJT driver connected by a 24 inch lossy line to a
* passive load consisting mostly of diodes. Each inch
* of the lossy line is modelled by 10 LRC lumps in the Raytheon
* model.
* The line parameters (derived from the Raytheon input file) are:
* L = 9.13nH per inch
* C = 3.65pF per inch
* R = 0.2 ohms per inch
* the circuit
*tran 0.1ns 60ns 0 0.5ns
v1 1 0 0v pulse(0 4 1ns 1ns 1ns 20ns 40ns)
*v1 1 0 4v pulse(4 0 1ns 1ns 1ns 20ns 40ns)
vcc 10 0 5v
*rseries 1 2 5
x1 1 2 10 bjtdrvr
*t1 2 0 3 0 z0=50.0136 td=4.38119ns rel=10
y2 2 0 3 0 ymod1
*x2 2 3 oneinch
*x2 100 101 twentyfourinch
*x2 100 101 xtwentyfourinch
vtest1 2 100 0
vtest2 101 3 0
x3 3 4 10 dioload
*rl 3 0 5
*dl 0 3 diod2
.model ymod1 txl r=0.2 g=0 l=9.13e-9 c=3.65e-12 length=24
.model qmodn npn(bf=100 rb=100 cje=0.09375pF cjc=0.28125pF is=1e-12
+pe=0.5 pc=0.5)
.model qmodpd npn(bf=100 rb=100 cje=0.08187pF cjc=0.2525pF is=1e-12
+pe=0.5 pc=0.5)
*.model qmodpdmine npn(bf=100 rb=100 cje=0.08187pF cjc=0.15pF is=1e-12
.model qmodpdmine npn(bf=100 rb=100 cje=0.08187pF cjc=0.05pF is=1e-12
+pe=0.5 pc=0.5)
.model dmod1 d(n=2.25 is=1.6399e-4 bv=10)
.model dmod2 d
.model dmod d(vj=0.3v)
*.model diod1 d(1.0 tt=0.75ns vj=0.6 rs=909 bv=10)
.model diod1 d(tt=0.75ns vj=0.6 rs=909 bv=10)
*.model diod2 d(1.0 tt=0.5ns vj=0.3 rs=100 bv=10)
.model diod2 d(tt=0.5ns vj=0.3 rs=100 bv=10)
.options itl5=0 acct
+reltol=1e-3 abstol=1e-14
.tran 0.1ns 60ns
.save v(1) v(2) v(3)
*.tran 1e-9 1e-8
* bjt driver - 19=input, 268=output, 20=vcc; wierd node numbers from
* the Raytheon file
.subckt bjtdrvr 19 268 20
q1 22 18 13 qmodn
q2 18 16 13 qmodn
qd2 21 9 0 qmodn
q4 14 14 0 qmodn
q3 16 15 14 qmodpd
q5 8 13 17 qmodn
q6 25 12 0 qmodn
q7 6 17 0 qmodpd
qd1 26 10 0 qmodn
q8 7 11 10 qmodn
q10 268 17 0 qmodpdmine
*q10 268 17 0 qmodpd
q9 7 10 268 qmodn
d1 0 19 dmod1
d2 18 19 dmod2
d3 13 19 dmod
dq1 18 22 dmod
dq2 16 18 dmod
d502 9 21 dmod
dq3 15 16 dmod
d10 24 8 dmod
d4 15 6 dmod
dq6 12 25 dmod
dq7 17 6 dmod
dd1 17 10 dmod
d7 11 6 dmod
dd2 17 26 dmod
d9 23 6 dmod
dq8 11 7 dmod
d501 17 268 dmod
dq9 10 7 dmod
d14 20 27 dmod
d8 0 268 dmod
r1 18 20 6k
r2 22 20 2.2k
r4 0 13 7k
rd1 9 13 2k
rd2 21 13 3k
r3 16 20 10k
r5 15 20 15k
r9 0 17 4k
r6 24 20 750
r10 12 17 2k
r12 24 11 1.5k
r11 25 17 3k
r15 23 20 10k
r13 0 10 15k
r14 7 27 12
.ends bjtdrvr
* subckt dioload - diode load: input=28, output=4, vcc=5
.subckt dioload 28 4 5
*comment out everything in dioload except d5 and r503, and watch
* the difference in results obtained between a tran 0.1ns 20ns and
* a tran 0.01ns 20ns
c1 28 0 5pF
r503 0 4 5.55
r4 0 28 120k
r5 1 5 7.5k
d5 4 28 diod2
d1 1 28 diod1
d4 2 0 diod1
d3 3 2 diod1
d2 1 3 diod1
.ends dioload
* subckt lump - one RLC lump of the lossy line
*10 segments per inch
.subckt lump 1 2
*r1 1 3 0.02
*c1 3 0 0.365pF
*l1 3 2 0.913nH
l1 1 3 0.913nH
c1 2 0 0.365pF
r1 3 2 0.02
*r1 1 3 0.01
*c1 3 0 0.1825pF
*l1 3 4 0.4565nH
*r2 4 5 0.01
*c2 5 0 0.1825pF
*l2 5 2 0.4565nH
*c1 1 0 0.365pF
*l1 1 2 0.913nH
.ends lump
.subckt oneinch 1 2
x1 1 3 lump
x2 3 4 lump
x3 4 5 lump
x4 5 6 lump
x5 6 7 lump
x6 7 8 lump
x7 8 9 lump
x8 9 10 lump
x9 10 11 lump
x10 11 2 lump
.ends oneinch
.subckt fourinch 1 2
x1 1 3 oneinch
x2 3 4 oneinch
x3 4 5 oneinch
x4 5 2 oneinch
.ends fourinch
.subckt fiveinch 1 2
x1 1 3 oneinch
x2 3 4 oneinch
x3 4 5 oneinch
x4 5 6 oneinch
x5 6 2 oneinch
.ends fiveinch
.subckt twentyfourinch 1 2
x1 1 3 fiveinch
x2 3 4 fiveinch
x3 4 5 fiveinch
x4 5 6 fiveinch
x5 6 2 fourinch
.ends twentyfourinch
*modelling using R and lossless lines
*5 segments per inch
.model ymod2 txl r=0 g=0 l=9.13e-9 c=3.65e-12 length=0.2
.subckt xlump 1 2
y1 1 0 3 0 ymod2
r1 2 3 0.04
.ends xlump
.subckt xoneinch 1 2
x1 1 3 xlump
x2 3 4 xlump
x3 4 5 xlump
x4 5 6 xlump
x5 6 2 xlump
*x5 6 7 xlump
*x6 7 8 xlump
*x7 8 9 xlump
*x8 9 10 xlump
*x9 10 11 xlump
*x10 11 2 xlump
.ends xoneinch
.subckt xfourinch 1 2
x1 1 3 xoneinch
x2 3 4 xoneinch
x3 4 5 xoneinch
x4 5 2 xoneinch
.ends xfourinch
.subckt xfiveinch 1 2
x1 1 3 xoneinch
x2 3 4 xoneinch
x3 4 5 xoneinch
x4 5 6 xoneinch
x5 6 2 xoneinch
.ends xfiveinch
.subckt xtwentyfourinch 1 2
x1 1 3 xfiveinch
x2 3 4 xfiveinch
x3 4 5 xfiveinch
x4 5 6 xfiveinch
x5 6 2 xfourinch
.ends xtwentyfourinch

View File

@ -0,0 +1,243 @@
BJTdriver -- 24inch lossy line -- DiodeCircuit
* This unclassified circuit is from Raytheon, courtesy Gerry Marino.
* It consists of a BJT driver connected by a 24 inch lossy line to a
* passive load consisting mostly of diodes. Each inch
* of the lossy line is modelled by 10 LRC lumps in the Raytheon
* model.
* The line parameters (derived from the Raytheon input file) are:
* L = 9.13nH per inch
* C = 3.65pF per inch
* R = 0.2 ohms per inch
* the circuit
*tran 0.1ns 60ns 0 0.5ns
v1 1 0 0v pulse(0 4 1ns 1ns 1ns 20ns 40ns)
*v1 1 0 4v pulse(4 0 1ns 1ns 1ns 20ns 40ns)
vcc 10 0 5v
*rseries 1 2 5
x1 1 2 10 bjtdrvr
*t1 2 0 3 0 z0=50.0136 td=4.38119ns rel=10
o2 2 0 3 0 lline1
*x2 2 3 oneinch
*x2 100 101 twentyfourinch
*x2 100 101 xtwentyfourinch
vtest1 2 100 0
vtest2 101 3 0
x3 3 4 10 dioload
*rl 3 0 5
*dl 0 3 diod2
.model lline1 ltra rel=1 r=0.2 g=0 l=9.13e-9 c=3.65e-12 len=24 steplimit
.model lline2 ltra level=2 rel=1 r=0.2 g=0 l=9.13e-9 c=3.65e-12 len=24 steplimit debuglevel=2 impresintgrmethod=1
.model qmodn npn(bf=100 rb=100 cje=0.09375pF cjc=0.28125pF is=1e-12
+pe=0.5 pc=0.5)
.model qmodpd npn(bf=100 rb=100 cje=0.08187pF cjc=0.2525pF is=1e-12
+pe=0.5 pc=0.5)
*.model qmodpdmine npn(bf=100 rb=100 cje=0.08187pF cjc=0.15pF is=1e-12
.model qmodpdmine npn(bf=100 rb=100 cje=0.08187pF cjc=0.05pF is=1e-12
+pe=0.5 pc=0.5)
.model dmod1 d(n=2.25 is=1.6399e-4 bv=10)
.model dmod2 d
.model dmod d(vj=0.3v)
*.model diod1 d(1.0 tt=0.75ns vj=0.6 rs=909 bv=10)
.model diod1 d(tt=0.75ns vj=0.6 rs=909 bv=10)
*.model diod2 d(1.0 tt=0.5ns vj=0.3 rs=100 bv=10)
.model diod2 d(tt=0.5ns vj=0.3 rs=100 bv=10)
.options itl5=0 acct
+reltol=1e-3 abstol=1e-14
.tran 0.1ns 60ns
.save v(1) v(2) v(3)
*.tran 1e-9 1e-8
* bjt driver - 19=input, 268=output, 20=vcc; wierd node numbers from
* the Raytheon file
.subckt bjtdrvr 19 268 20
q1 22 18 13 qmodn
q2 18 16 13 qmodn
qd2 21 9 0 qmodn
q4 14 14 0 qmodn
q3 16 15 14 qmodpd
q5 8 13 17 qmodn
q6 25 12 0 qmodn
q7 6 17 0 qmodpd
qd1 26 10 0 qmodn
q8 7 11 10 qmodn
q10 268 17 0 qmodpdmine
*q10 268 17 0 qmodpd
q9 7 10 268 qmodn
d1 0 19 dmod1
d2 18 19 dmod2
d3 13 19 dmod
dq1 18 22 dmod
dq2 16 18 dmod
d502 9 21 dmod
dq3 15 16 dmod
d10 24 8 dmod
d4 15 6 dmod
dq6 12 25 dmod
dq7 17 6 dmod
dd1 17 10 dmod
d7 11 6 dmod
dd2 17 26 dmod
d9 23 6 dmod
dq8 11 7 dmod
d501 17 268 dmod
dq9 10 7 dmod
d14 20 27 dmod
d8 0 268 dmod
r1 18 20 6k
r2 22 20 2.2k
r4 0 13 7k
rd1 9 13 2k
rd2 21 13 3k
r3 16 20 10k
r5 15 20 15k
r9 0 17 4k
r6 24 20 750
r10 12 17 2k
r12 24 11 1.5k
r11 25 17 3k
r15 23 20 10k
r13 0 10 15k
r14 7 27 12
.ends bjtdrvr
* subckt dioload - diode load: input=28, output=4, vcc=5
.subckt dioload 28 4 5
*comment out everything in dioload except d5 and r503, and watch
* the difference in results obtained between a tran 0.1ns 20ns and
* a tran 0.01ns 20ns
c1 28 0 5pF
r503 0 4 5.55
r4 0 28 120k
r5 1 5 7.5k
d5 4 28 diod2
d1 1 28 diod1
d4 2 0 diod1
d3 3 2 diod1
d2 1 3 diod1
.ends dioload
* subckt lump - one RLC lump of the lossy line
*10 segments per inch
.subckt lump 1 2
*r1 1 3 0.02
*c1 3 0 0.365pF
*l1 3 2 0.913nH
l1 1 3 0.913nH
c1 2 0 0.365pF
r1 3 2 0.02
*r1 1 3 0.01
*c1 3 0 0.1825pF
*l1 3 4 0.4565nH
*r2 4 5 0.01
*c2 5 0 0.1825pF
*l2 5 2 0.4565nH
*c1 1 0 0.365pF
*l1 1 2 0.913nH
.ends lump
.subckt oneinch 1 2
x1 1 3 lump
x2 3 4 lump
x3 4 5 lump
x4 5 6 lump
x5 6 7 lump
x6 7 8 lump
x7 8 9 lump
x8 9 10 lump
x9 10 11 lump
x10 11 2 lump
.ends oneinch
.subckt fourinch 1 2
x1 1 3 oneinch
x2 3 4 oneinch
x3 4 5 oneinch
x4 5 2 oneinch
.ends fourinch
.subckt fiveinch 1 2
x1 1 3 oneinch
x2 3 4 oneinch
x3 4 5 oneinch
x4 5 6 oneinch
x5 6 2 oneinch
.ends fiveinch
.subckt twentyfourinch 1 2
x1 1 3 fiveinch
x2 3 4 fiveinch
x3 4 5 fiveinch
x4 5 6 fiveinch
x5 6 2 fourinch
.ends twentyfourinch
*modelling using R and lossless lines
*5 segments per inch
.model llfifth ltra nocontrol noprint rel=10 r=0 g=0 l=9.13e-9
+c=3.65e-12 len=0.2 steplimit quadinterp
.subckt xlump 1 2
o1 1 0 3 0 llfifth
r1 2 3 0.04
.ends xlump
.subckt xoneinch 1 2
x1 1 3 xlump
x2 3 4 xlump
x3 4 5 xlump
x4 5 6 xlump
x5 6 2 xlump
*x5 6 7 xlump
*x6 7 8 xlump
*x7 8 9 xlump
*x8 9 10 xlump
*x9 10 11 xlump
*x10 11 2 xlump
.ends xoneinch
.subckt xfourinch 1 2
x1 1 3 xoneinch
x2 3 4 xoneinch
x3 4 5 xoneinch
x4 5 2 xoneinch
.ends xfourinch
.subckt xfiveinch 1 2
x1 1 3 xoneinch
x2 3 4 xoneinch
x3 4 5 xoneinch
x4 5 6 xoneinch
x5 6 2 xoneinch
.ends xfiveinch
.subckt xtwentyfourinch 1 2
x1 1 3 xfiveinch
x2 3 4 xfiveinch
x3 4 5 xfiveinch
x4 5 6 xfiveinch
x5 6 2 xfourinch
.ends xtwentyfourinch

View File

@ -0,0 +1,523 @@
Example 3 for interconnect simulation
* From neug1, Mosaic aluminum lines. 2um thick, 11um wide. Assuming
* 10um above the ground.
* Material: aluminum; resistivity (sigma) = 2.74uohm-cm = 2.74e-8 ohm-m
* Dielectric: SiO2, dielectric constant (epsilon) =3.7
* epsilon0 = 8.85e-12 MKS units
* mu0 = 4e-7*PI
* speed of light in free space = 1/sqrt(mu0*epsilon0) = 2.9986e8 MKS units
*
* Line parameter calculations:
* capacitance: parallel plate
* C = epsilon*epsilon0 * A / l
* C = 3.7*8.85e-12 * 11e-6 * 1(metre) / 10e-6 = 36.02e-12 F/m
* + 30% = 46.8e-12 F/m = 0.468pF/cm
*
* C_freespace = 46.8e-12/epsilon = 12.65e-12 F/m
* speed of light in free space v0 = 2.9986e8 = 1/sqrt(L0*C0)
* => L0 = 1/C0*v0^2
* L0 = 1/(12.65e-12 * 8.9916e16) = 1/113.74e4 = 0.008792e-4 H/m
* = 0.8792 uH/m = 8.792nH/cm
*
* R = rho * l / A = 2.74e-8 * 1 / (11e-6*2e-6) = 1245.45 ohms/m
* = 12.45ohms/cm
*
* transmission line parameters:
* nominal z0 = sqrt(L/C) = 137 ohms
* td = sqrt(LC) = 64.14e-12 secs/cm = 0.064ns/cm
*
*
vcc vcc 0 5
*v1 1 0 0v pulse(0 5 1ns 0.1ns 0.1ns 5ns 100ns)
v1 1 0 0v pulse(0 5 0.1ns 0.1ns 0.1ns 1ns 100ns)
rs 1 2 10
xdrv 1 2 vcc bjtdrvr
xrcv 3 4 vcc bjtdrvr
xrcv 3 4 vcc dioload
d1 3 vcc diod
d2 0 3 diod
cl 3 0 1pF
y1 2 0 3 0 yline
*x1 2 3 sixteencm
x1 2 3 xonecm
.model diod d
.model yline txl r=12.45 g=0 l=8.792e-9 c=0.468e-12 length=16
* 1cm
* 2cm
* 4cm
* 6cm
* 8cm
* 10cm
* 12cm
*.tran 0.001ns 15ns 0 0.1ns
* 24cm
.tran 0.001ns 10ns 0 0.1ns
* onecm10
*.tran 0.001ns 10ns 0 0.01ns
* 1. define the subckt r10 to be one tenth of the resistance per cm.
* 2. define the subckt onecm to be one of onecm10 (modelled using
* 10 segments), onecm8, onecm4, onecm2 and lump1. Then use
* the subckts onecm, fourcm, fivecm, tencm, twelvecm,
* twentyfourcm in the circuit. The line is modelled as rlc segments.
* 3. define the subckt xonecm to be one of xonecm10, xonecm8,
* xonecm4, xonecm2 and xlump1. Use the subckts xonecm,
* xfourcm, xfivecm, xtencm, xtwelvecm, xtwentyfourcm in the
* circuit. The line will be modelled as r-lossless lumps.
.subckt xonecm 1 2
*x1 1 2 xlump1
x1 1 2 xonecm4
.ends xonecm
.subckt onecm 1 2
*x1 1 2 lump1
x1 1 2 onecm4
.ends onecm
.subckt r10 1 2
r1 1 2 1.245
.ends r10
* ECL driver and diode receiver models - from Raytheon
.model qmodn npn(bf=100 rb=100 cje=0.09375pF cjc=0.28125pF is=1e-12
+pe=0.5 pc=0.5)
.model qmodpd npn(bf=100 rb=100 cje=0.08187pF cjc=0.2525pF is=1e-12
+pe=0.5 pc=0.5)
*.model qmodpdmine npn(bf=100 rb=100 cje=0.08187pF cjc=0.15pF is=1e-12
.model qmodpdmine npn(bf=100 rb=100 cje=0.08187pF cjc=0.05pF is=1e-12
+pe=0.5 pc=0.5)
.model dmod1 d(n=2.25 is=1.6399e-4 bv=10)
.model dmod2 d
.model dmod d(vj=0.3v)
*.model diod1 d(1.0 tt=0.75ns vj=0.6 rs=909 bv=10)
.model diod1 d(tt=0.75ns vj=0.6 rs=909 bv=10)
*.model diod2 d(1.0 tt=0.5ns vj=0.3 rs=100 bv=10)
.model diod2 d(tt=0.5ns vj=0.3 rs=100 bv=10)
* bjt driver - 19=input, 268=output, 20=vcc; wierd node numbers from
* the Raytheon file
.subckt bjtdrvr 19 268 20
q1 22 18 13 qmodn
q2 18 16 13 qmodn
qd2 21 9 0 qmodn
q4 14 14 0 qmodn
q3 16 15 14 qmodpd
q5 8 13 17 qmodn
q6 25 12 0 qmodn
q7 6 17 0 qmodpd
qd1 26 10 0 qmodn
q8 7 11 10 qmodn
q10 268 17 0 qmodpdmine
*q10 268 17 0 qmodpd
q9 7 10 268 qmodn
d1 0 19 dmod1
d2 18 19 dmod2
d3 13 19 dmod
dq1 18 22 dmod
dq2 16 18 dmod
d502 9 21 dmod
dq3 15 16 dmod
d10 24 8 dmod
d4 15 6 dmod
dq6 12 25 dmod
dq7 17 6 dmod
dd1 17 10 dmod
d7 11 6 dmod
dd2 17 26 dmod
d9 23 6 dmod
dq8 11 7 dmod
d501 17 268 dmod
dq9 10 7 dmod
d14 20 27 dmod
d8 0 268 dmod
r1 18 20 6k
r2 22 20 2.2k
r4 0 13 7k
rd1 9 13 2k
rd2 21 13 3k
r3 16 20 10k
r5 15 20 15k
r9 0 17 4k
r6 24 20 750
r10 12 17 2k
r12 24 11 1.5k
r11 25 17 3k
r15 23 20 10k
r13 0 10 15k
r14 7 27 12
.ends bjtdrvr
* subckt dioload - diode load: input=28, output=4, vcc=5
.subckt dioload 28 4 5
c1 28 0 5pF
r503 0 4 5.55
r400 0 28 120k
r500 1 5 7.5k
d5 4 28 diod2
d1 1 28 diod1
d4 2 0 diod1
d3 3 2 diod1
d2 1 3 diod1
.ends dioload
* End ECL driver and Diode receiver models from Raytheon
*10 segments per cm
.subckt lump10 1 2
l1 1 3 0.0.8792nH
c1 2 0 0.0468pF
x1 3 2 r10
.ends lump10
*1 segment per cm
.subckt lump1 1 2
l1 1 3 8.792nH
c1 2 0 0.468pF
x1 3 4 r10
x2 4 5 r10
x3 5 6 r10
x4 6 7 r10
x5 7 8 r10
x6 8 9 r10
x7 9 10 r10
x8 10 11 r10
x9 11 12 r10
x10 12 2 r10
.ends lump1
*2 segments per cm
.subckt lump2 1 2
l1 1 3 4.396nH
c1 2 0 0.234pF
x1 3 4 r10
x2 4 5 r10
x3 5 6 r10
x4 6 7 r10
x5 7 2 r10
.ends lump2
*4 segments per cm
.subckt lump4 1 2
l1 1 3 2.198nH
c1 2 0 0.117pF
x1 3 4 r10
x2 4 5 r10
x3 5 2 r10
x4 5 2 r10
.ends lump4
*8 segments per cm
.subckt lump8 1 2
l1 1 3 1.099nH
c1 2 0 0.0585pF
x1 3 4 r10
x2 4 2 r10
x3 4 2 r10
x4 4 2 r10
x5 4 2 r10
.ends lump8
.subckt onecm10 1 2
x1 1 3 lump10
x2 3 4 lump10
x3 4 5 lump10
x4 5 6 lump10
x5 6 7 lump10
x6 7 8 lump10
x7 8 9 lump10
x8 9 10 lump10
x9 10 11 lump10
x10 11 2 lump10
.ends onecm10
.subckt onecm8 1 2
x1 1 3 lump8
x2 3 4 lump8
x3 4 5 lump8
x4 5 6 lump8
x5 6 7 lump8
x6 7 8 lump8
x7 8 9 lump8
x8 9 2 lump8
.ends onecm8
.subckt onecm4 1 2
x1 1 3 lump4
x2 3 4 lump4
x3 4 5 lump4
x4 5 2 lump4
.ends onecm4
.subckt onecm2 1 2
x1 1 3 lump2
x2 3 2 lump2
.ends onecm2
.subckt twocm 1 2
x1 1 3 onecm
x2 3 2 onecm
.ends twocm
.subckt threecm 1 2
x1 1 3 onecm
x2 3 4 onecm
x3 4 2 onecm
.ends threecm
.subckt fourcm 1 2
x1 1 3 onecm
x2 3 4 onecm
x3 4 5 onecm
x4 5 2 onecm
.ends fourcm
.subckt fivecm 1 2
x1 1 3 onecm
x2 3 4 onecm
x3 4 5 onecm
x4 5 6 onecm
x5 6 2 onecm
.ends fivecm
.subckt sixcm 1 2
x1 1 3 fivecm
x2 3 2 onecm
.ends sixcm
.subckt sevencm 1 2
x1 1 3 sixcm
x2 3 2 onecm
.ends sevencm
.subckt eightcm 1 2
x1 1 3 sevencm
x2 3 2 onecm
.ends eightcm
.subckt ninecm 1 2
x1 1 3 eightcm
x2 3 2 onecm
.ends ninecm
.subckt tencm 1 2
x1 1 3 fivecm
x2 3 2 fivecm
.ends tencm
.subckt elevencm 1 2
x1 1 3 tencm
x2 3 2 onecm
.ends elevencm
.subckt twelvecm 1 2
x1 1 3 tencm
x2 3 4 onecm
x3 4 2 onecm
.ends twelvecm
.subckt sixteencm 1 2
x1 1 3 eightcm
x2 3 2 eightcm
.ends sixteencm
.subckt twentyfourcm 1 2
x1 1 3 twelvecm
x2 3 2 twelvecm
.ends twentyfourcm
*modelling using R and lossless lines
* 10 segments per cm
.model yless10 txl r=0 g=0 l=8.792e-9 c=0.468e-12 length=0.1
* 8 segments per cm
.model yless8 txl r=0 g=0 l=8.792e-9 c=0.468e-12 length=0.125
* 4 segments per cm
.model yless4 txl r=0 g=0 l=8.792e-9 c=0.468e-12 length=0.25
* 2 segments per cm
.model yless2 txl r=0 g=0 l=8.792e-9 c=0.468e-12 length=0.5
* 1 segment per cm
.model yless1 txl r=0 g=0 l=8.792e-9 c=0.468e-12 length=1
*10 segments per cm
.subckt xlump10 1 2
y1 1 0 3 0 yless10
x1 3 2 r10
.ends xlump10
*1 segment per cm
.subckt xlump1 1 2
y1 1 0 3 0 yless1
x1 3 4 r10
x2 4 5 r10
x3 5 6 r10
x4 6 7 r10
x5 7 8 r10
x6 8 9 r10
x7 9 10 r10
x8 10 11 r10
x9 11 12 r10
x10 12 2 r10
.ends xlump1
*2 segments per cm
.subckt xlump2 1 2
y1 1 0 3 0 yless2
x1 3 4 r10
x2 4 5 r10
x3 5 6 r10
x4 6 7 r10
x5 7 2 r10
.ends xlump2
*4 segments per cm
.subckt xlump4 1 2
y1 1 0 3 0 yless4
x1 3 4 r10
x2 4 5 r10
x3 5 2 r10
x4 5 2 r10
.ends xlump4
*8 segments per cm
.subckt xlump8 1 2
y1 1 0 3 0 yless8
x1 3 4 r10
x2 4 2 r10
x3 4 2 r10
x4 4 2 r10
x5 4 2 r10
.ends xlump8
.subckt xonecm10 1 2
x1 1 3 xlump10
x2 3 4 xlump10
x3 4 5 xlump10
x4 5 6 xlump10
x5 6 7 xlump10
x6 7 8 xlump10
x7 8 9 xlump10
x8 9 10 xlump10
x9 10 11 xlump10
x10 11 2 xlump10
.ends xonecm10
.subckt xonecm8 1 2
x1 1 3 xlump8
x2 3 4 xlump8
x3 4 5 xlump8
x4 5 6 xlump8
x5 6 7 xlump8
x6 7 8 xlump8
x7 8 9 xlump8
x8 9 2 xlump8
.ends xonecm8
.subckt xonecm4 1 2
x1 1 3 xlump4
x2 3 4 xlump4
x3 4 5 xlump4
x4 5 2 xlump4
.ends xonecm4
.subckt xonecm2 1 2
x1 1 3 xlump2
x2 3 2 xlump2
.ends xonecm2
.subckt xtwocm 1 2
x1 1 3 xonecm
x2 3 2 xonecm
.ends xtwocm
.subckt xthreecm 1 2
x1 1 3 xonecm
x2 3 4 xonecm
x3 4 2 xonecm
.ends xthreecm
.subckt xfourcm 1 2
x1 1 3 xonecm
x2 3 4 xonecm
x3 4 5 xonecm
x4 5 2 xonecm
.ends xfourcm
.subckt xfivecm 1 2
x1 1 3 xonecm
x2 3 4 xonecm
x3 4 5 xonecm
x4 5 6 xonecm
x5 6 2 xonecm
.ends xfivecm
.subckt xsixcm 1 2
x1 1 3 xfivecm
x2 3 2 xonecm
.ends xsixcm
.subckt xsevencm 1 2
x1 1 3 xsixcm
x2 3 2 xonecm
.ends xsevencm
.subckt xeightcm 1 2
x1 1 3 xsevencm
x2 3 2 xonecm
.ends xeightcm
.subckt xninecm 1 2
x1 1 3 xeightcm
x2 3 2 xonecm
.ends xninecm
.subckt xtencm 1 2
x1 1 3 xfivecm
x2 3 2 xfivecm
.ends xtencm
.subckt xelevencm 1 2
x1 1 3 xtencm
x2 3 2 xonecm
.ends xelevencm
.subckt xtwelvecm 1 2
x1 1 3 xtencm
x2 3 4 xonecm
x3 4 2 xonecm
.ends xtwelvecm
.subckt xsixteencm 1 2
x1 1 3 xeightcm
x2 3 2 xeightcm
.ends xsixteencm
.subckt xtwentyfourcm 1 2
x1 1 3 xtwelvecm
x2 3 2 xtwelvecm
.ends xtwentyfourcm

View File

@ -0,0 +1,528 @@
Example 3 for interconnect simulation
* From neug1, Mosaic aluminum lines. 2um thick, 11um wide. Assuming
* 10um above the ground.
* Material: aluminum; resistivity (sigma) = 2.74uohm-cm = 2.74e-8 ohm-m
* Dielectric: SiO2, dielectric constant (epsilon) =3.7
* epsilon0 = 8.85e-12 MKS units
* mu0 = 4e-7*PI
* speed of light in free space = 1/sqrt(mu0*epsilon0) = 2.9986e8 MKS units
*
* Line parameter calculations:
* capacitance: parallel plate
* C = epsilon*epsilon0 * A / l
* C = 3.7*8.85e-12 * 11e-6 * 1(metre) / 10e-6 = 36.02e-12 F/m
* + 30% = 46.8e-12 F/m = 0.468pF/cm
*
* C_freespace = 46.8e-12/epsilon = 12.65e-12 F/m
* speed of light in free space v0 = 2.9986e8 = 1/sqrt(L0*C0)
* => L0 = 1/C0*v0^2
* L0 = 1/(12.65e-12 * 8.9916e16) = 1/113.74e4 = 0.008792e-4 H/m
* = 0.8792 uH/m = 8.792nH/cm
*
* R = rho * l / A = 2.74e-8 * 1 / (11e-6*2e-6) = 1245.45 ohms/m
* = 12.45ohms/cm
*
* transmission line parameters:
* nominal z0 = sqrt(L/C) = 137 ohms
* td = sqrt(LC) = 64.14e-12 secs/cm = 0.064ns/cm
*
*
vcc vcc 0 5
*v1 1 0 0v pulse(0 5 1ns 0.1ns 0.1ns 5ns 100ns)
v1 1 0 0v pulse(0 5 0.1ns 0.1ns 0.1ns 1ns 100ns)
rs 1 2 10
xdrv 1 2 vcc bjtdrvr
xrcv 3 4 vcc bjtdrvr
xrcv 3 4 vcc dioload
d1 3 vcc diod
d2 0 3 diod
cl 3 0 1pF
o1 2 0 3 0 lline
*x1 2 3 sixteencm
x1 2 3 xonecm
.model diod d
.model lline ltra rel=1.8 r=12.45 g=0 l=8.792e-9 c=0.468e-12 len=16 steplimit
* 1cm
* 2cm
* 4cm
* 6cm
* 8cm
* 10cm
* 12cm
*.tran 0.001ns 15ns 0 0.1ns
* 24cm
.tran 0.001ns 10ns 0 0.1ns
* onecm10
*.tran 0.001ns 10ns 0 0.01ns
* 1. define the subckt r10 to be one tenth of the resistance per cm.
* 2. define the subckt onecm to be one of onecm10 (modelled using
* 10 segments), onecm8, onecm4, onecm2 and lump1. Then use
* the subckts onecm, fourcm, fivecm, tencm, twelvecm,
* twentyfourcm in the circuit. The line is modelled as rlc segments.
* 3. define the subckt xonecm to be one of xonecm10, xonecm8,
* xonecm4, xonecm2 and xlump1. Use the subckts xonecm,
* xfourcm, xfivecm, xtencm, xtwelvecm, xtwentyfourcm in the
* circuit. The line will be modelled as r-lossless lumps.
.subckt xonecm 1 2
*x1 1 2 xlump1
x1 1 2 xonecm4
.ends xonecm
.subckt onecm 1 2
*x1 1 2 lump1
x1 1 2 onecm4
.ends onecm
.subckt r10 1 2
r1 1 2 1.245
.ends r10
* ECL driver and diode receiver models - from Raytheon
.model qmodn npn(bf=100 rb=100 cje=0.09375pF cjc=0.28125pF is=1e-12
+pe=0.5 pc=0.5)
.model qmodpd npn(bf=100 rb=100 cje=0.08187pF cjc=0.2525pF is=1e-12
+pe=0.5 pc=0.5)
*.model qmodpdmine npn(bf=100 rb=100 cje=0.08187pF cjc=0.15pF is=1e-12
.model qmodpdmine npn(bf=100 rb=100 cje=0.08187pF cjc=0.05pF is=1e-12
+pe=0.5 pc=0.5)
.model dmod1 d(n=2.25 is=1.6399e-4 bv=10)
.model dmod2 d
.model dmod d(vj=0.3v)
*.model diod1 d(1.0 tt=0.75ns vj=0.6 rs=909 bv=10)
.model diod1 d(tt=0.75ns vj=0.6 rs=909 bv=10)
*.model diod2 d(1.0 tt=0.5ns vj=0.3 rs=100 bv=10)
.model diod2 d(tt=0.5ns vj=0.3 rs=100 bv=10)
* bjt driver - 19=input, 268=output, 20=vcc; wierd node numbers from
* the Raytheon file
.subckt bjtdrvr 19 268 20
q1 22 18 13 qmodn
q2 18 16 13 qmodn
qd2 21 9 0 qmodn
q4 14 14 0 qmodn
q3 16 15 14 qmodpd
q5 8 13 17 qmodn
q6 25 12 0 qmodn
q7 6 17 0 qmodpd
qd1 26 10 0 qmodn
q8 7 11 10 qmodn
q10 268 17 0 qmodpdmine
*q10 268 17 0 qmodpd
q9 7 10 268 qmodn
d1 0 19 dmod1
d2 18 19 dmod2
d3 13 19 dmod
dq1 18 22 dmod
dq2 16 18 dmod
d502 9 21 dmod
dq3 15 16 dmod
d10 24 8 dmod
d4 15 6 dmod
dq6 12 25 dmod
dq7 17 6 dmod
dd1 17 10 dmod
d7 11 6 dmod
dd2 17 26 dmod
d9 23 6 dmod
dq8 11 7 dmod
d501 17 268 dmod
dq9 10 7 dmod
d14 20 27 dmod
d8 0 268 dmod
r1 18 20 6k
r2 22 20 2.2k
r4 0 13 7k
rd1 9 13 2k
rd2 21 13 3k
r3 16 20 10k
r5 15 20 15k
r9 0 17 4k
r6 24 20 750
r10 12 17 2k
r12 24 11 1.5k
r11 25 17 3k
r15 23 20 10k
r13 0 10 15k
r14 7 27 12
.ends bjtdrvr
* subckt dioload - diode load: input=28, output=4, vcc=5
.subckt dioload 28 4 5
c1 28 0 5pF
r503 0 4 5.55
r400 0 28 120k
r500 1 5 7.5k
d5 4 28 diod2
d1 1 28 diod1
d4 2 0 diod1
d3 3 2 diod1
d2 1 3 diod1
.ends dioload
* End ECL driver and Diode receiver models from Raytheon
*10 segments per cm
.subckt lump10 1 2
l1 1 3 0.0.8792nH
c1 2 0 0.0468pF
x1 3 2 r10
.ends lump10
*1 segment per cm
.subckt lump1 1 2
l1 1 3 8.792nH
c1 2 0 0.468pF
x1 3 4 r10
x2 4 5 r10
x3 5 6 r10
x4 6 7 r10
x5 7 8 r10
x6 8 9 r10
x7 9 10 r10
x8 10 11 r10
x9 11 12 r10
x10 12 2 r10
.ends lump1
*2 segments per cm
.subckt lump2 1 2
l1 1 3 4.396nH
c1 2 0 0.234pF
x1 3 4 r10
x2 4 5 r10
x3 5 6 r10
x4 6 7 r10
x5 7 2 r10
.ends lump2
*4 segments per cm
.subckt lump4 1 2
l1 1 3 2.198nH
c1 2 0 0.117pF
x1 3 4 r10
x2 4 5 r10
x3 5 2 r10
x4 5 2 r10
.ends lump4
*8 segments per cm
.subckt lump8 1 2
l1 1 3 1.099nH
c1 2 0 0.0585pF
x1 3 4 r10
x2 4 2 r10
x3 4 2 r10
x4 4 2 r10
x5 4 2 r10
.ends lump8
.subckt onecm10 1 2
x1 1 3 lump10
x2 3 4 lump10
x3 4 5 lump10
x4 5 6 lump10
x5 6 7 lump10
x6 7 8 lump10
x7 8 9 lump10
x8 9 10 lump10
x9 10 11 lump10
x10 11 2 lump10
.ends onecm10
.subckt onecm8 1 2
x1 1 3 lump8
x2 3 4 lump8
x3 4 5 lump8
x4 5 6 lump8
x5 6 7 lump8
x6 7 8 lump8
x7 8 9 lump8
x8 9 2 lump8
.ends onecm8
.subckt onecm4 1 2
x1 1 3 lump4
x2 3 4 lump4
x3 4 5 lump4
x4 5 2 lump4
.ends onecm4
.subckt onecm2 1 2
x1 1 3 lump2
x2 3 2 lump2
.ends onecm2
.subckt twocm 1 2
x1 1 3 onecm
x2 3 2 onecm
.ends twocm
.subckt threecm 1 2
x1 1 3 onecm
x2 3 4 onecm
x3 4 2 onecm
.ends threecm
.subckt fourcm 1 2
x1 1 3 onecm
x2 3 4 onecm
x3 4 5 onecm
x4 5 2 onecm
.ends fourcm
.subckt fivecm 1 2
x1 1 3 onecm
x2 3 4 onecm
x3 4 5 onecm
x4 5 6 onecm
x5 6 2 onecm
.ends fivecm
.subckt sixcm 1 2
x1 1 3 fivecm
x2 3 2 onecm
.ends sixcm
.subckt sevencm 1 2
x1 1 3 sixcm
x2 3 2 onecm
.ends sevencm
.subckt eightcm 1 2
x1 1 3 sevencm
x2 3 2 onecm
.ends eightcm
.subckt ninecm 1 2
x1 1 3 eightcm
x2 3 2 onecm
.ends ninecm
.subckt tencm 1 2
x1 1 3 fivecm
x2 3 2 fivecm
.ends tencm
.subckt elevencm 1 2
x1 1 3 tencm
x2 3 2 onecm
.ends elevencm
.subckt twelvecm 1 2
x1 1 3 tencm
x2 3 4 onecm
x3 4 2 onecm
.ends twelvecm
.subckt sixteencm 1 2
x1 1 3 eightcm
x2 3 2 eightcm
.ends sixteencm
.subckt twentyfourcm 1 2
x1 1 3 twelvecm
x2 3 2 twelvecm
.ends twentyfourcm
*modelling using R and lossless lines
* 10 segments per cm
.model lless10 ltra nocontrol rel=10 r=0 g=0 l=8.792e-9
+c=0.468e-12 len=0.1 steplimit quadinterp
* 8 segments per cm
.model lless8 ltra nocontrol rel=10 r=0 g=0 l=8.792e-9
+c=0.468e-12 len=0.125 steplimit quadinterp
* 4 segments per cm
.model lless4 ltra nocontrol rel=10 r=0 g=0 l=8.792e-9
+c=0.468e-12 len=0.25 steplimit quadinterp
* 2 segments per cm
.model lless2 ltra nocontrol rel=10 r=0 g=0 l=8.792e-9
+c=0.468e-12 len=0.5 steplimit quadinterp
* 1 segment per cm
.model lless1 ltra nocontrol rel=10 r=0 g=0 l=8.792e-9
+c=0.468e-12 len=1 steplimit quadinterp
*10 segments per cm
.subckt xlump10 1 2
o1 1 0 3 0 lless10
x1 3 2 r10
.ends xlump10
*1 segment per cm
.subckt xlump1 1 2
o1 1 0 3 0 lless1
x1 3 4 r10
x2 4 5 r10
x3 5 6 r10
x4 6 7 r10
x5 7 8 r10
x6 8 9 r10
x7 9 10 r10
x8 10 11 r10
x9 11 12 r10
x10 12 2 r10
.ends xlump1
*2 segments per cm
.subckt xlump2 1 2
o1 1 0 3 0 lless2
x1 3 4 r10
x2 4 5 r10
x3 5 6 r10
x4 6 7 r10
x5 7 2 r10
.ends xlump2
*4 segments per cm
.subckt xlump4 1 2
o1 1 0 3 0 lless4
x1 3 4 r10
x2 4 5 r10
x3 5 2 r10
x4 5 2 r10
.ends xlump4
*8 segments per cm
.subckt xlump8 1 2
o1 1 0 3 0 lless8
x1 3 4 r10
x2 4 2 r10
x3 4 2 r10
x4 4 2 r10
x5 4 2 r10
.ends xlump8
.subckt xonecm10 1 2
x1 1 3 xlump10
x2 3 4 xlump10
x3 4 5 xlump10
x4 5 6 xlump10
x5 6 7 xlump10
x6 7 8 xlump10
x7 8 9 xlump10
x8 9 10 xlump10
x9 10 11 xlump10
x10 11 2 xlump10
.ends xonecm10
.subckt xonecm8 1 2
x1 1 3 xlump8
x2 3 4 xlump8
x3 4 5 xlump8
x4 5 6 xlump8
x5 6 7 xlump8
x6 7 8 xlump8
x7 8 9 xlump8
x8 9 2 xlump8
.ends xonecm8
.subckt xonecm4 1 2
x1 1 3 xlump4
x2 3 4 xlump4
x3 4 5 xlump4
x4 5 2 xlump4
.ends xonecm4
.subckt xonecm2 1 2
x1 1 3 xlump2
x2 3 2 xlump2
.ends xonecm2
.subckt xtwocm 1 2
x1 1 3 xonecm
x2 3 2 xonecm
.ends xtwocm
.subckt xthreecm 1 2
x1 1 3 xonecm
x2 3 4 xonecm
x3 4 2 xonecm
.ends xthreecm
.subckt xfourcm 1 2
x1 1 3 xonecm
x2 3 4 xonecm
x3 4 5 xonecm
x4 5 2 xonecm
.ends xfourcm
.subckt xfivecm 1 2
x1 1 3 xonecm
x2 3 4 xonecm
x3 4 5 xonecm
x4 5 6 xonecm
x5 6 2 xonecm
.ends xfivecm
.subckt xsixcm 1 2
x1 1 3 xfivecm
x2 3 2 xonecm
.ends xsixcm
.subckt xsevencm 1 2
x1 1 3 xsixcm
x2 3 2 xonecm
.ends xsevencm
.subckt xeightcm 1 2
x1 1 3 xsevencm
x2 3 2 xonecm
.ends xeightcm
.subckt xninecm 1 2
x1 1 3 xeightcm
x2 3 2 xonecm
.ends xninecm
.subckt xtencm 1 2
x1 1 3 xfivecm
x2 3 2 xfivecm
.ends xtencm
.subckt xelevencm 1 2
x1 1 3 xtencm
x2 3 2 xonecm
.ends xelevencm
.subckt xtwelvecm 1 2
x1 1 3 xtencm
x2 3 4 xonecm
x3 4 2 xonecm
.ends xtwelvecm
.subckt xsixteencm 1 2
x1 1 3 xeightcm
x2 3 2 xeightcm
.ends xsixteencm
.subckt xtwentyfourcm 1 2
x1 1 3 xtwelvecm
x2 3 2 xtwelvecm
.ends xtwentyfourcm

View File

@ -0,0 +1,380 @@
BJTdriver -- 2in st. lin -- 20in coupled line -- 2in st line -- DiodeCircuit
* This unclassified circuit is from Raytheon, courtesy Gerry Marino.
*
* _______
* -------- 2in _________________ 2in | |
* | BJT |______| |______|Diode|
* | |------| |------| |
* | Drvr | line | 2-wire | line |rcvr.|
* -------- | coupled | |_____|
* | transmission |
* |-/\/\/\/\----| line |-------\/\/\/\/\----|
* | 50ohms | | 50ohms |
* | | | |
* Ground ----------------- Ground
*
*
* Each inch of the lossy line is modelled by 10 LRC lumps in the
* Raytheon model.
* The line parameters (derived from the Raytheon input file) are:
* L = 9.13nH per inch
* C = 3.65pF per inch
* R = 0.2 ohms per inch
* K = 0.482 [coupling coefficient; K = M/sqrt(L1*L2)]
* Cc = 1.8pF per inch
*
* coupled ltra model generated using the standalone program
* multi_decomp
* the circuit
*tran 0.1ns 60ns
v1 1 0 0v pulse(0 4 1ns 1ns 1ns 20ns 40ns)
*v1 1 0 4v pulse(4 0 1ns 1ns 1ns 20ns 40ns)
vcc 10 0 5v
* series termination
*x1 1 oof 10 bjtdrvr
*rseries oof 2 50
x1 1 2 10 bjtdrvr
rt1 3 0 50
* convolution model
x2 2 3 4 5 conv2wetcmodel
* rlc segments model
*x2 2 3 4 5 rlc2wetcmodel
x3 4 dioload
rt2 5 0 50
*.model qmodn npn(bf=100 rb=100 cje=0.09375pF cjc=0.28125pF is=1e-12
*+pe=0.5 pc=0.5)
.model qmodn npn(bf=100 rb=100 cje=0.09375pF cjc=0.28125pF is=1e-12
+pe=0.5 pc=0.5)
.model qmodpd npn(bf=100 rb=100 cje=0.08187pF cjc=0.2525pF is=1e-12
+pe=0.5 pc=0.5)
*.model qmodpd npn(bf=100 rb=100 cje=0.08187pF cjc=0.15pF is=1e-12
.model qmodpdmine npn(bf=100 rb=100 cje=0.08187pF cjc=0.05pF is=1e-12
+pe=0.5 pc=0.5)
.model dmod1 d(n=2.25 is=1.6399e-4 bv=10)
*.model dmod1 d
.model dmod2 d
.model dmod d(vj=0.3v)
*.model diod1 d(1.0 tt=0.75ns vj=0.6 rs=909 bv=10)
.model diod1 d(tt=0.75ns vj=0.6 rs=909 bv=10)
*.model diod2 d(1.0 tt=0.5ns vj=0.3 rs=100 bv=10)
.model diod2 d(tt=0.5ns vj=0.3 rs=100 bv=10)
.options itl5=0 acct reltol=1e-3 abstol=1e-12
.tran 0.1ns 60ns 0 0.35N
*.tran 1e-9 1e-8
* bjt driver - 19=input, 268=output, 20=vcc; wierd node numbers from
* the Raytheon file
.subckt bjtdrvr 19 268 20
q1 22 18 13 qmodn
q2 18 16 13 qmodn
qd2 21 9 0 qmodn
q4 14 14 0 qmodn
q3 16 15 14 qmodpd
q5 8 13 17 qmodn
q6 25 12 0 qmodn
q7 6 17 0 qmodpd
qd1 26 10 0 qmodn
q8 7 11 10 qmodn
*q10 268 17 0 qmodpd
q10 268 17 0 qmodpdmine
q9 7 10 268 qmodn
d1 0 19 dmod1
d2 18 19 dmod2
d3 13 19 dmod
dq1 18 22 dmod
dq2 16 18 dmod
d502 9 21 dmod
dq3 15 16 dmod
d10 24 8 dmod
d4 15 6 dmod
dq6 12 25 dmod
dq7 17 6 dmod
dd1 17 10 dmod
d7 11 6 dmod
dd2 17 26 dmod
d9 23 6 dmod
dq8 11 7 dmod
d501 17 268 dmod
dq9 10 7 dmod
d14 20 27 dmod
d8 0 268 dmod
r1 18 20 6k
r2 22 20 2.2k
r4 0 13 7k
rd1 9 13 2k
rd2 21 13 3k
r3 16 20 10k
r5 15 20 15k
r9 0 17 4k
r6 24 20 750
r10 12 17 2k
r12 24 11 1.5k
r11 25 17 3k
r15 23 20 10k
r13 0 10 15k
r14 7 27 12
.ends bjtdrvr
* subckt dioload - diode load: input=28, output=4, vcc=5
.subckt dioload 28
*comment out everything in dioload except d5 and r503, and watch
* the difference in results obtained between a tran 0.1ns 20ns and
* a tran 0.01ns 20ns
vccint 5 0 5v
c1 28 0 5pF
r503 0 4 5.55
r4 0 28 120k
r5 1 5 7.5k
d5 4 28 diod2
d1 1 28 diod1
d4 2 0 diod1
d3 3 2 diod1
d2 1 3 diod1
.ends dioload
* subckt rlclump - one RLC lump of the lossy line
.subckt rlclump 1 2
*r1 1 3 0.02
*c1 3 0 0.365pF
*l1 3 2 0.913nH
l1 1 3 0.913nH
c1 2 0 0.365pF
r1 3 2 0.02
*r1 1 3 0.01
*c1 3 0 0.1825pF
*l1 3 4 0.4565nH
*r2 4 5 0.01
*c2 5 0 0.1825pF
*l2 5 2 0.4565nH
*c1 1 0 0.365pF
*l1 1 2 0.913nH
.ends lump
.subckt rlconeinch 1 2
x1 1 3 rlclump
x2 3 4 rlclump
x3 4 5 rlclump
x4 5 6 rlclump
x5 6 7 rlclump
x6 7 8 rlclump
x7 8 9 rlclump
x8 9 10 rlclump
x9 10 11 rlclump
x10 11 2 rlclump
.ends rlconeinch
.subckt rlctwoinch 1 2
x1 1 3 rlconeinch
x2 3 2 rlconeinch
.ends rlctwoinch
.subckt rlcfourinch 1 2
x1 1 3 rlconeinch
x2 3 4 rlconeinch
x3 4 5 rlconeinch
x4 5 2 rlconeinch
.ends rlcfourinch
.subckt rlcfiveinch 1 2
x1 1 3 rlconeinch
x2 3 4 rlconeinch
x3 4 5 rlconeinch
x4 5 6 rlconeinch
x5 6 2 rlconeinch
.ends rlcfiveinch
.subckt rlctwentyrlcfourinch 1 2
x1 1 3 rlcfiveinch
x2 3 4 rlcfiveinch
x3 4 5 rlcfiveinch
x4 5 6 rlcfiveinch
x5 6 2 rlcfourinch
.ends rlctwentyrlcfourinch
.subckt rlclumpstub A B C D
x1 A int1 rlcfiveinch
x2 int1 int2 rlcfiveinch
x3 int2 1 rlcfiveinch
x4 1 2 rlcfourinch
x5 1 int3 rlcfiveinch
x6 int3 B rlconeinch
x7 2 C rlcfiveinch
x8 2 D rlcfourinch
.ends rlclumpstub
.subckt ltrastub A B C D
yy1 A 0 1 0 ylline15in
yy2 1 0 B 0 ylline6in
yy3 1 0 2 0 ylline4in
yy4 2 0 C 0 ylline5in
yy5 2 0 D 0 ylline4in
.ends ltrastub
*modelling using R and lossless lines
*5 segments per inch
.model yllfifth txl r=0 g=0 l=9.13e-9 c=3.65e-12 length=0.2
.subckt xlump 1 2
y1 1 0 3 0 yllfifth
r1 2 3 0.04
.ends xlump
.subckt xoneinch 1 2
x1 1 3 xlump
x2 3 4 xlump
x3 4 5 xlump
x4 5 6 xlump
x5 6 2 xlump
*x5 6 7 xlump
*x6 7 8 xlump
*x7 8 9 xlump
*x8 9 10 xlump
*x9 10 11 xlump
*x10 11 2 xlump
.ends xoneinch
.subckt xFourinch 1 2
x1 1 3 xoneinch
x2 3 4 xoneinch
x3 4 5 xoneinch
x4 5 2 xoneinch
.ends xfourinch
.subckt xfiveinch 1 2
x1 1 3 xoneinch
x2 3 4 xoneinch
x3 4 5 xoneinch
x4 5 6 xoneinch
x5 6 2 xoneinch
.ends xfiveinch
.subckt xlumpstub A B C D
x1 A int1 xfiveinch
x2 int1 int2 xfiveinch
x3 int2 1 xfiveinch
x4 1 2 xfourinch
x5 1 int3 xfiveinch
x6 int3 B xoneinch
x7 2 C xfiveinch
x8 2 D xfourinch
.ends xlumpstub
* modelling a 2 wire coupled system using RLC lumps
* 10 segments per inch
*
* 1---xxxxx----2
* 3---xxxxx----4
.subckt rlc2wlump 1 3 2 4
l1 1 5 0.913nH
c1 2 0 0.365pF
r1 5 2 0.02
l2 3 6 0.913nH
c2 4 0 0.365pF
r2 6 4 0.02
cmut 2 4 0.18pF
k12 l1 l2 0.482
.ends rlc2wlump
.subckt rlc2woneinch 1 2 3 4
x1 1 2 5 6 rlc2wlump
x2 5 6 7 8 rlc2wlump
x3 7 8 9 10 rlc2wlump
x4 9 10 11 12 rlc2wlump
x5 11 12 13 14 rlc2wlump
x6 13 14 15 16 rlc2wlump
x7 15 16 17 18 rlc2wlump
x8 17 18 19 20 rlc2wlump
x9 19 20 21 22 rlc2wlump
x10 21 22 3 4 rlc2wlump
.ends rlc2woneinch
.subckt rlc2wfiveinch 1 2 3 4
x1 1 2 5 6 rlc2woneinch
x2 5 6 7 8 rlc2woneinch
x3 7 8 9 10 rlc2woneinch
x4 9 10 11 12 rlc2woneinch
x5 11 12 3 4 rlc2woneinch
.ends rlc2wfiveinch
.subckt rlc2wtwentyinch 1 2 3 4
x1 1 2 5 6 rlc2wfiveinch
x2 5 6 7 8 rlc2wfiveinch
x3 7 8 9 10 rlc2wfiveinch
x4 9 10 3 4 rlc2wfiveinch
.ends rlc2wtwentyinch
.subckt rlc2wetcmodel 1 2 3 4
x1 1 5 rlctwoinch
x2 5 2 6 4 rlc2wtwentyinch
x3 6 3 rlctwoinch
.ends rlc2wetcmodel
* Subcircuit conv2wtwentyinch
* conv2wtwentyinch is a subcircuit that models a 2-conductor transmission line with
* the following parameters: l=9.13e-09, c=3.65e-12, r=0.2, g=0,
* inductive_coeff_of_coupling k=0.482, inter-line capacitance cm=1.8e-12,
* length=20. Derived parameters are: lm=4.40066e-09, ctot=5.45e-12.
*
* It is important to note that the model is a simplified one - the
* following assumptions are made: 1. The self-inductance l, the
* self-capacitance ctot (note: not c), the series resistance r and the
* parallel capacitance g are the same for all lines, and 2. Each line
* is coupled only to the two lines adjacent to it, with the same
* coupling parameters cm and lm. The first assumption imply that edge
* effects have to be neglected. The utility of these assumptions is
* that they make the sL+R and sC+G matrices symmetric, tridiagonal and
* Toeplitz, with useful consequences.
*
* It may be noted that a symmetric two-conductor line will be
* accurately represented by this model.
* swec model
.model plines cpl
+R=0.2 0 0.2
+L=9.13e-9 4.4e-9 9.13e-9
+G=0 0 0
+C=5.45e-12 -1.8e-12 5.45e-12
+length=20
.model yconvtwoinch txl r=0.2 l=9.13e-9 c=3.65e-12 length=2.0
.subckt conv2wetcmodel 1 2 3 4
y1 1 0 5 0 yconvtwoinch
p2 5 2 0 6 4 0 plines
y2 6 0 3 0 yconvtwoinch
.ends conv2wetcmodel

View File

@ -0,0 +1,399 @@
BJTdriver -- 2in st. lin -- 20in coupled line -- 2in st line -- DiodeCircuit
* This unclassified circuit is from Raytheon, courtesy Gerry Marino.
*
* _______
* -------- 2in _________________ 2in | |
* | BJT |______| |______|Diode|
* | |------| |------| |
* | Drvr | line | 2-wire | line |rcvr.|
* -------- | coupled | |_____|
* | transmission |
* |-/\/\/\/\----| line |-------\/\/\/\/\----|
* | 50ohms | | 50ohms |
* | | | |
* Ground ----------------- Ground
*
*
* Each inch of the lossy line is modelled by 10 LRC lumps in the
* Raytheon model.
* The line parameters (derived from the Raytheon input file) are:
* L = 9.13nH per inch
* C = 3.65pF per inch
* R = 0.2 ohms per inch
* K = 0.482 [coupling coefficient; K = M/sqrt(L1*L2)]
* Cc = 1.8pF per inch
*
* coupled ltra model generated using the standalone program
* multi_decomp
* the circuit
*tran 0.1ns 60ns
v1 1 0 0v pulse(0 4 1ns 1ns 1ns 20ns 40ns)
*v1 1 0 4v pulse(4 0 1ns 1ns 1ns 20ns 40ns)
vcc 10 0 5v
* series termination
*x1 1 oof 10 bjtdrvr
*rseries oof 2 50
x1 1 2 10 bjtdrvr
rt1 3 0 50
* convolution model
x2 2 3 4 5 conv2wetcmodel
* rlc segments model
*x2 2 3 4 5 rlc2wetcmodel
x3 4 dioload
rt2 5 0 50
*.model qmodn npn(bf=100 rb=100 cje=0.09375pF cjc=0.28125pF is=1e-12
*+pe=0.5 pc=0.5)
.model qmodn npn(bf=100 rb=100 cje=0.09375pF cjc=0.28125pF is=1e-12
+pe=0.5 pc=0.5)
.model qmodpd npn(bf=100 rb=100 cje=0.08187pF cjc=0.2525pF is=1e-12
+pe=0.5 pc=0.5)
*.model qmodpd npn(bf=100 rb=100 cje=0.08187pF cjc=0.15pF is=1e-12
.model qmodpdmine npn(bf=100 rb=100 cje=0.08187pF cjc=0.05pF is=1e-12
+pe=0.5 pc=0.5)
.model dmod1 d(n=2.25 is=1.6399e-4 bv=10)
*.model dmod1 d
.model dmod2 d
.model dmod d(vj=0.3v)
*.model diod1 d(1.0 tt=0.75ns vj=0.6 rs=909 bv=10)
.model diod1 d(tt=0.75ns vj=0.6 rs=909 bv=10)
*.model diod2 d(1.0 tt=0.5ns vj=0.3 rs=100 bv=10)
.model diod2 d(tt=0.5ns vj=0.3 rs=100 bv=10)
.options itl5=0 acct reltol=1e-3 abstol=1e-12
.tran 0.1ns 60ns
*.tran 1e-9 1e-8
* bjt driver - 19=input, 268=output, 20=vcc; wierd node numbers from
* the Raytheon file
.subckt bjtdrvr 19 268 20
q1 22 18 13 qmodn
q2 18 16 13 qmodn
qd2 21 9 0 qmodn
q4 14 14 0 qmodn
q3 16 15 14 qmodpd
q5 8 13 17 qmodn
q6 25 12 0 qmodn
q7 6 17 0 qmodpd
qd1 26 10 0 qmodn
q8 7 11 10 qmodn
*q10 268 17 0 qmodpd
q10 268 17 0 qmodpdmine
q9 7 10 268 qmodn
d1 0 19 dmod1
d2 18 19 dmod2
d3 13 19 dmod
dq1 18 22 dmod
dq2 16 18 dmod
d502 9 21 dmod
dq3 15 16 dmod
d10 24 8 dmod
d4 15 6 dmod
dq6 12 25 dmod
dq7 17 6 dmod
dd1 17 10 dmod
d7 11 6 dmod
dd2 17 26 dmod
d9 23 6 dmod
dq8 11 7 dmod
d501 17 268 dmod
dq9 10 7 dmod
d14 20 27 dmod
d8 0 268 dmod
r1 18 20 6k
r2 22 20 2.2k
r4 0 13 7k
rd1 9 13 2k
rd2 21 13 3k
r3 16 20 10k
r5 15 20 15k
r9 0 17 4k
r6 24 20 750
r10 12 17 2k
r12 24 11 1.5k
r11 25 17 3k
r15 23 20 10k
r13 0 10 15k
r14 7 27 12
.ends bjtdrvr
* subckt dioload - diode load: input=28, output=4, vcc=5
.subckt dioload 28
*comment out everything in dioload except d5 and r503, and watch
* the difference in results obtained between a tran 0.1ns 20ns and
* a tran 0.01ns 20ns
vccint 5 0 5v
c1 28 0 5pF
r503 0 4 5.55
r4 0 28 120k
r5 1 5 7.5k
d5 4 28 diod2
d1 1 28 diod1
d4 2 0 diod1
d3 3 2 diod1
d2 1 3 diod1
.ends dioload
* subckt rlclump - one RLC lump of the lossy line
.subckt rlclump 1 2
*r1 1 3 0.02
*c1 3 0 0.365pF
*l1 3 2 0.913nH
l1 1 3 0.913nH
c1 2 0 0.365pF
r1 3 2 0.02
*r1 1 3 0.01
*c1 3 0 0.1825pF
*l1 3 4 0.4565nH
*r2 4 5 0.01
*c2 5 0 0.1825pF
*l2 5 2 0.4565nH
*c1 1 0 0.365pF
*l1 1 2 0.913nH
.ends lump
.subckt rlconeinch 1 2
x1 1 3 rlclump
x2 3 4 rlclump
x3 4 5 rlclump
x4 5 6 rlclump
x5 6 7 rlclump
x6 7 8 rlclump
x7 8 9 rlclump
x8 9 10 rlclump
x9 10 11 rlclump
x10 11 2 rlclump
.ends rlconeinch
.subckt rlctwoinch 1 2
x1 1 3 rlconeinch
x2 3 2 rlconeinch
.ends rlctwoinch
.subckt rlcfourinch 1 2
x1 1 3 rlconeinch
x2 3 4 rlconeinch
x3 4 5 rlconeinch
x4 5 2 rlconeinch
.ends rlcfourinch
.subckt rlcfiveinch 1 2
x1 1 3 rlconeinch
x2 3 4 rlconeinch
x3 4 5 rlconeinch
x4 5 6 rlconeinch
x5 6 2 rlconeinch
.ends rlcfiveinch
.subckt rlctwentyrlcfourinch 1 2
x1 1 3 rlcfiveinch
x2 3 4 rlcfiveinch
x3 4 5 rlcfiveinch
x4 5 6 rlcfiveinch
x5 6 2 rlcfourinch
.ends rlctwentyrlcfourinch
.subckt rlclumpstub A B C D
x1 A int1 rlcfiveinch
x2 int1 int2 rlcfiveinch
x3 int2 1 rlcfiveinch
x4 1 2 rlcfourinch
x5 1 int3 rlcfiveinch
x6 int3 B rlconeinch
x7 2 C rlcfiveinch
x8 2 D rlcfourinch
.ends rlclumpstub
.subckt ltrastub A B C D
o1 A 0 1 0 lline15in
o2 1 0 B 0 lline6in
o3 1 0 2 0 lline4in
o4 2 0 C 0 lline5in
o5 2 0 D 0 lline4in
.ends ltrastub
*modelling using R and lossless lines
*5 segments per inch
.model llfifth ltra nocontrol rel=10 r=0 g=0 l=9.13e-9
+c=3.65e-12 len=0.2 steplimit quadinterp
.subckt xlump 1 2
o1 1 0 3 0 llfifth
r1 2 3 0.04
.ends xlump
.subckt xoneinch 1 2
x1 1 3 xlump
x2 3 4 xlump
x3 4 5 xlump
x4 5 6 xlump
x5 6 2 xlump
*x5 6 7 xlump
*x6 7 8 xlump
*x7 8 9 xlump
*x8 9 10 xlump
*x9 10 11 xlump
*x10 11 2 xlump
.ends xoneinch
.subckt xFourinch 1 2
x1 1 3 xoneinch
x2 3 4 xoneinch
x3 4 5 xoneinch
x4 5 2 xoneinch
.ends xfourinch
.subckt xfiveinch 1 2
x1 1 3 xoneinch
x2 3 4 xoneinch
x3 4 5 xoneinch
x4 5 6 xoneinch
x5 6 2 xoneinch
.ends xfiveinch
.subckt xlumpstub A B C D
x1 A int1 xfiveinch
x2 int1 int2 xfiveinch
x3 int2 1 xfiveinch
x4 1 2 xfourinch
x5 1 int3 xfiveinch
x6 int3 B xoneinch
x7 2 C xfiveinch
x8 2 D xfourinch
.ends xlumpstub
* modelling a 2 wire coupled system using RLC lumps
* 10 segments per inch
*
* 1---xxxxx----2
* 3---xxxxx----4
.subckt rlc2wlump 1 3 2 4
l1 1 5 0.913nH
c1 2 0 0.365pF
r1 5 2 0.02
l2 3 6 0.913nH
c2 4 0 0.365pF
r2 6 4 0.02
cmut 2 4 0.18pF
k12 l1 l2 0.482
.ends rlc2wlump
.subckt rlc2woneinch 1 2 3 4
x1 1 2 5 6 rlc2wlump
x2 5 6 7 8 rlc2wlump
x3 7 8 9 10 rlc2wlump
x4 9 10 11 12 rlc2wlump
x5 11 12 13 14 rlc2wlump
x6 13 14 15 16 rlc2wlump
x7 15 16 17 18 rlc2wlump
x8 17 18 19 20 rlc2wlump
x9 19 20 21 22 rlc2wlump
x10 21 22 3 4 rlc2wlump
.ends rlc2woneinch
.subckt rlc2wfiveinch 1 2 3 4
x1 1 2 5 6 rlc2woneinch
x2 5 6 7 8 rlc2woneinch
x3 7 8 9 10 rlc2woneinch
x4 9 10 11 12 rlc2woneinch
x5 11 12 3 4 rlc2woneinch
.ends rlc2wfiveinch
.subckt rlc2wtwentyinch 1 2 3 4
x1 1 2 5 6 rlc2wfiveinch
x2 5 6 7 8 rlc2wfiveinch
x3 7 8 9 10 rlc2wfiveinch
x4 9 10 3 4 rlc2wfiveinch
.ends rlc2wtwentyinch
.subckt rlc2wetcmodel 1 2 3 4
x1 1 5 rlctwoinch
x2 5 2 6 4 rlc2wtwentyinch
x3 6 3 rlctwoinch
.ends rlc2wetcmodel
* Subcircuit conv2wtwentyinch
* conv2wtwentyinch is a subcircuit that models a 2-conductor transmission line with
* the following parameters: l=9.13e-09, c=3.65e-12, r=0.2, g=0,
* inductive_coeff_of_coupling k=0.482, inter-line capacitance cm=1.8e-12,
* length=20. Derived parameters are: lm=4.40066e-09, ctot=5.45e-12.
*
* It is important to note that the model is a simplified one - the
* following assumptions are made: 1. The self-inductance l, the
* self-capacitance ctot (note: not c), the series resistance r and the
* parallel capacitance g are the same for all lines, and 2. Each line
* is coupled only to the two lines adjacent to it, with the same
* coupling parameters cm and lm. The first assumption imply that edge
* effects have to be neglected. The utility of these assumptions is
* that they make the sL+R and sC+G matrices symmetric, tridiagonal and
* Toeplitz, with useful consequences.
*
* It may be noted that a symmetric two-conductor line will be
* accurately represented by this model.
* Lossy line models
.model mod1_conv2wtwentyinch ltra rel=1.2 nocontrol r=0.2 l=4.72933999088e-09 g=0 c=7.25000000373e-12 len=20
.model mod2_conv2wtwentyinch ltra rel=1.2 nocontrol r=0.2 l=1.35306599818e-08 g=0 c=3.65000000746e-12 len=20
* subcircuit m_conv2wtwentyinch - modal transformation network for conv2wtwentyinch
.subckt m_conv2wtwentyinch 1 2 3 4
v1 5 0 0v
v2 6 0 0v
f1 0 3 v1 0.707106779721
f2 0 3 v2 -0.707106782652
f3 0 4 v1 0.707106781919
f4 0 4 v2 0.707106780454
e1 7 5 3 0 0.707106780454
e2 1 7 4 0 0.707106782652
e3 8 6 3 0 -0.707106781919
e4 2 8 4 0 0.707106779721
.ends m_conv2wtwentyinch
* Subckt conv2wtwentyinch
.subckt conv2wtwentyinch 1 2 3 4
x1 1 2 5 6 m_conv2wtwentyinch
o1 5 0 7 0 mod1_conv2wtwentyinch
o2 6 0 8 0 mod2_conv2wtwentyinch
x2 3 4 7 8 m_conv2wtwentyinch
.ends conv2wtwentyinch
.model convtwoinch ltra r=0.2 l=9.13e-9 c=3.65e-12 len=2.0 rel=1.2 nocontrol
.subckt conv2wetcmodel 1 2 3 4
o1 1 0 5 0 convtwoinch
x1 5 2 6 4 conv2wtwentyinch
o2 6 0 3 0 convtwoinch
.ends conv2wetcmodel

View File

@ -0,0 +1,21 @@
corresponding to ckt in swec
m5 0 168 2 0 mn0p9 w = 18.0u l=0.9u
m6 1 168 2 1 mp1p0 w = 36.0u l=1.0u
CN2 2 0 0.025398e-12
CN3 3 0 0.007398e-12
y1 2 0 3 0 ymod
vdd 1 0 dc 5.0
VS 168 0 PULSE (0 5 15.9NS 0.2NS 0.2NS 15.8NS 32NS )
*VS 168 0 PWL(15.9N 0.0 16.1n 5.0 31.9n 5.0 32.1n 0.0)
.TRAN 0.2N 47N 0 0.1N
.print tran v(2) v(3)
.MODEL mn0p9 NMOS VTO=0.8 KP=48U GAMMA=0.30 PHI=0.55
+LAMBDA=0.00 CGSO=0 CGDO=0 CJ=0 CJSW=0 TOX=18000N LD=0.0U
.MODEL mp1p0 PMOS VTO=-0.8 KP=21U GAMMA=0.45 PHI=0.61
+LAMBDA=0.00 CGSO=0 CGDO=0 CJ=0 CJSW=0 TOX=18000N LD=0.0U
.MODEL ymod txl R=12.45 L=8.972e-9 G=0 C=0.468e-12 length=16
.end

View File

@ -0,0 +1,25 @@
corresponding to ckt in swec
m5 0 168 2 0 mn0p9 w = 18.0u l=0.9u
m6 1 168 2 1 mp1p0 w = 36.0u l=1.0u
CN2 2 0 0.025398e-12
CN3 3 0 0.007398e-12
o1 2 0 3 0 lline
vdd 1 0 dc 5.0
VS 168 0 PULSE (0 5 15.9NS 0.2NS 0.2NS 15.8NS 32NS )
*VS 168 0 PWL(15.9N 0.0 16.1n 5.0 31.9n 5.0 32.1n 0.0)
.TRAN 0.2N 47N 0 1N
.print tran v(2) v(3)
*.nodeset v(2)=5.0 v(3)=5.0
.MODEL mn0p9 NMOS VTO=0.8 KP=48U GAMMA=0.30 PHI=0.55
+LAMBDA=0.00 CGSO=0 CGDO=0 CJ=0 CJSW=0 TOX=18000N LD=0.0U
.MODEL mp1p0 PMOS VTO=-0.8 KP=21U GAMMA=0.45 PHI=0.61
+LAMBDA=0.00 CGSO=0 CGDO=0 CJ=0 CJSW=0 TOX=18000N LD=0.0U
.MODEL ymod txl R=12.45 L=8.972e-9 G=0 C=0.468e-12 length=16
.model lline ltra rel=1 r=12.45 g=0 l=8.972e-9 c=0.468e-12
+len=16 steplimit compactrel=1.0e-3 compactabs=1.0e-14
*.options reltol=0.01
.end