whitespace

This commit is contained in:
dwarning 2013-08-05 21:23:43 +02:00 committed by rlar
parent c8cd8b95a8
commit e1fa276ddc
1 changed files with 177 additions and 174 deletions

View File

@ -32,6 +32,7 @@ Author: 1985 Wayne A. Christopher, U. C. Berkeley CAD Group
extern bool cx_degrees;
void *
cx_and(void *data1, void *data2, short int datatype1, short int datatype2, int length)
{
@ -70,6 +71,7 @@ cx_and(void *data1, void *data2, short int datatype1, short int datatype2, int l
return ((void *) d);
}
void *
cx_or(void *data1, void *data2, short int datatype1, short int datatype2, int length)
{
@ -108,6 +110,7 @@ cx_or(void *data1, void *data2, short int datatype1, short int datatype2, int le
return ((void *) d);
}
void *
cx_not(void *data, short int type, int length, int *newlength, short int *newtype)
{
@ -133,7 +136,6 @@ cx_not(void *data, short int type, int length, int *newlength, short int *newtyp
}
/* This is a strange function. What we do is fit a polynomial to the
* curve, of degree $polydegree, and then evaluate it at the points
* in the time scale. What we do is this: for every set of points that
@ -142,7 +144,9 @@ cx_not(void *data, short int type, int length, int *newlength, short int *newtyp
* one). At the ends we just use what we have... We have to detect
* badness here too...
*
* Note that we pass arguments differently for this one cx_ function... */
* Note that we pass arguments differently for this one cx_ function...
*/
void *
cx_interpolate(void *data, short int type, int length, int *newlength, short int *newtype, struct plot *pl, struct plot *newpl, int grouping)
{
@ -153,7 +157,7 @@ cx_interpolate(void *data, short int type, int length, int *newlength, short int
int base;
if (grouping == 0)
grouping = length;
grouping = length;
/* First do some sanity checks. */
if (!pl || !pl->pl_scale || !newpl || !newpl->pl_scale) {
@ -211,18 +215,19 @@ cx_interpolate(void *data, short int type, int length, int *newlength, short int
degree = 1;
for (base = 0; base < length; base += grouping) {
if (!ft_interpolate((double *) data + base, d + base,
os->v_realdata + base, grouping,
if (!ft_interpolate((double *) data + base, d + base,
os->v_realdata + base, grouping,
ns->v_realdata + base, grouping, degree))
{
tfree(d);
return (NULL);
}
{
tfree(d);
return (NULL);
}
}
return ((void *) d);
}
void *
cx_deriv(void *data, short int type, int length, int *newlength, short int *newtype, struct plot *pl, struct plot *newpl, int grouping)
{
@ -230,11 +235,11 @@ cx_deriv(void *data, short int type, int length, int *newlength, short int *newt
double *spare;
double x;
int i, j, k;
int degree;
int degree;
int n, base;
if (grouping == 0)
grouping = length;
grouping = length;
/* First do some sanity checks. */
if (!pl || !pl->pl_scale || !newpl || !newpl->pl_scale) {
fprintf(cp_err, "Internal error: cx_deriv: bad scale\n");
@ -242,9 +247,9 @@ cx_deriv(void *data, short int type, int length, int *newlength, short int *newt
}
if (!cp_getvar("dpolydegree", CP_NUM, &degree))
degree = 2; /* default quadratic */
degree = 2; /* default quadratic */
n = degree + 1;
n = degree + 1;
spare = alloc_d(n);
scratch = alloc_d(n * (n + 1));
@ -253,169 +258,168 @@ cx_deriv(void *data, short int type, int length, int *newlength, short int *newt
*newtype = type;
if (type == VF_COMPLEX) {
ngcomplex_t *c_outdata, *c_indata;
double *r_coefs, *i_coefs;
double *scale;
ngcomplex_t *c_outdata, *c_indata;
double *r_coefs, *i_coefs;
double *scale;
r_coefs = alloc_d(n);
i_coefs = alloc_d(n);
c_indata = (ngcomplex_t *) data;
c_outdata = alloc_c(length);
scale = alloc_d(length); /* XXX */
if (pl->pl_scale->v_type == VF_COMPLEX)
/* Not ideal */
for (i = 0; i < length; i++)
scale[i] = realpart(pl->pl_scale->v_compdata[i]);
else
for (i = 0; i < length; i++)
scale[i] = pl->pl_scale->v_realdata[i];
r_coefs = alloc_d(n);
i_coefs = alloc_d(n);
c_indata = (ngcomplex_t *) data;
c_outdata = alloc_c(length);
scale = alloc_d(length); /* XXX */
if (pl->pl_scale->v_type == VF_COMPLEX)
/* Not ideal */
for (i = 0; i < length; i++)
scale[i] = realpart(pl->pl_scale->v_compdata[i]);
else
for (i = 0; i < length; i++)
scale[i] = pl->pl_scale->v_realdata[i];
for (base = 0; base < length; base += grouping)
{
k = 0;
for (i = degree; i < grouping; i += 1)
{
/* real */
for (j = 0; j < n; j++)
spare[j] = c_indata[j + i + base].cx_real;
if (!ft_polyfit(scale + i + base - degree,
spare, r_coefs, degree, scratch))
{
fprintf(stderr, "ft_polyfit @ %d failed\n", i);
}
ft_polyderiv(r_coefs, degree);
/* for loop gets the beginning part */
for (j = k; j <= i + degree / 2; j++)
for (base = 0; base < length; base += grouping)
{
x = scale[j + base];
c_outdata[j + base].cx_real =
ft_peval(x, r_coefs, degree - 1);
}
k = 0;
for (i = degree; i < grouping; i += 1)
{
/* imag */
for (j = 0; j < n; j++)
spare[j] = c_indata[j + i + base].cx_imag;
if (!ft_polyfit(scale + i - degree + base,
spare, i_coefs, degree, scratch))
{
fprintf(stderr, "ft_polyfit @ %d failed\n", i);
}
ft_polyderiv(i_coefs, degree);
/* real */
for (j = 0; j < n; j++)
spare[j] = c_indata[j + i + base].cx_real;
if (!ft_polyfit(scale + i + base - degree,
spare, r_coefs, degree, scratch))
{
fprintf(stderr, "ft_polyfit @ %d failed\n", i);
}
ft_polyderiv(r_coefs, degree);
/* for loop gets the beginning part */
for (j = k; j <= i - degree / 2; j++)
{
x = scale[j + base];
c_outdata[j + base].cx_imag =
ft_peval(x, i_coefs, degree - 1);
}
k = j;
}
/* for loop gets the beginning part */
for (j = k; j <= i + degree / 2; j++)
{
x = scale[j + base];
c_outdata[j + base].cx_real =
ft_peval(x, r_coefs, degree - 1);
}
/* imag */
for (j = 0; j < n; j++)
spare[j] = c_indata[j + i + base].cx_imag;
if (!ft_polyfit(scale + i - degree + base,
spare, i_coefs, degree, scratch))
{
fprintf(stderr, "ft_polyfit @ %d failed\n", i);
}
ft_polyderiv(i_coefs, degree);
/* for loop gets the beginning part */
for (j = k; j <= i - degree / 2; j++)
{
x = scale[j + base];
c_outdata[j + base].cx_imag =
ft_peval(x, i_coefs, degree - 1);
}
k = j;
}
/* get the tail */
for (j = k; j < length; j++)
{
x = scale[j + base];
/* real */
c_outdata[j + base].cx_real = ft_peval(x, r_coefs, degree - 1);
/* imag */
c_outdata[j + base].cx_imag = ft_peval(x, i_coefs, degree - 1);
}
}
tfree(r_coefs);
tfree(i_coefs);
tfree(scale);
return (void *) c_outdata;
/* get the tail */
for (j = k; j < length; j++)
{
x = scale[j + base];
/* real */
c_outdata[j + base].cx_real = ft_peval(x, r_coefs, degree - 1);
/* imag */
c_outdata[j + base].cx_imag = ft_peval(x, i_coefs, degree - 1);
}
}
else
{
/* all-real case */
double *coefs;
tfree(r_coefs);
tfree(i_coefs);
tfree(scale);
return (void *) c_outdata;
double *outdata, *indata;
double *scale;
}
else
{
/* all-real case */
double *coefs;
coefs = alloc_d(n);
indata = (double *) data;
outdata = alloc_d(length);
scale = alloc_d(length); /* XXX */
double *outdata, *indata;
double *scale;
coefs = alloc_d(n);
indata = (double *) data;
outdata = alloc_d(length);
scale = alloc_d(length); /* XXX */
/* Here I encountered a problem because when we issue an instruction like this:
* plot -deriv(vp(3)) to calculate something similar to the group delay, the code
* detects that vector vp(3) is real and it is believed that the frequency is also
* real. The frequency is COMPLEX and the program aborts so I'm going to put the
* check that the frequency is complex vector not to abort.
*/
/* Here I encountered a problem because when we issue an instruction like this:
* plot -deriv(vp(3)) to calculate something similar to the group delay, the code
* detects that vector vp(3) is real and it is believed that the frequency is also
* real. The frequency is COMPLEX and the program aborts so I'm going to put the
* check that the frequency is complex vector not to abort.
*/
/* Original problematic code
* for (i = 0; i < length; i++)
* scale[i] = pl->pl_scale->v_realdata[i];
*/
/* Original problematic code
* for (i = 0; i < length; i++)
* scale[i] = pl->pl_scale->v_realdata[i];
*/
/* Modified to deal with complex frequency vector */
if (pl->pl_scale->v_type == VF_COMPLEX)
for (i = 0; i < length; i++)
scale[i] = realpart(pl->pl_scale->v_compdata[i]);
else
for (i = 0; i < length; i++)
scale[i] = pl->pl_scale->v_realdata[i];
/* Modified to deal with complex frequency vector */
if (pl->pl_scale->v_type == VF_COMPLEX)
for (i = 0; i < length; i++)
scale[i] = realpart(pl->pl_scale->v_compdata[i]);
else
for (i = 0; i < length; i++)
scale[i] = pl->pl_scale->v_realdata[i];
for (base = 0; base < length; base += grouping)
{
k = 0;
for (i = degree; i < grouping; i += 1)
{
if (!ft_polyfit(scale + i - degree + base,
indata + i - degree + base, coefs, degree, scratch))
{
fprintf(stderr, "ft_polyfit @ %d failed\n", i + base);
}
ft_polyderiv(coefs, degree);
/* for loop gets the beginning part */
for (j = k; j <= i - degree / 2; j++)
for (base = 0; base < length; base += grouping)
{
/* Seems the same problem because the frequency vector is complex
* and the real part of the complex should be accessed because if we
* run x = pl-> pl_scale-> v_realdata [base + j]; the execution will
* abort.
*/
k = 0;
for (i = degree; i < grouping; i += 1)
{
if (!ft_polyfit(scale + i - degree + base,
indata + i - degree + base, coefs, degree, scratch))
{
fprintf(stderr, "ft_polyfit @ %d failed\n", i + base);
}
ft_polyderiv(coefs, degree);
if (pl->pl_scale->v_type == VF_COMPLEX)
x = realpart(pl->pl_scale->v_compdata[j+base]); /* For complex scale vector */
else
x = pl->pl_scale->v_realdata[j + base]; /* For real scale vector */
/* for loop gets the beginning part */
for (j = k; j <= i - degree / 2; j++)
{
/* Seems the same problem because the frequency vector is complex
* and the real part of the complex should be accessed because if we
* run x = pl-> pl_scale-> v_realdata [base + j]; the execution will
* abort.
*/
outdata[j + base] = ft_peval(x, coefs, degree - 1);
}
k = j;
}
if (pl->pl_scale->v_type == VF_COMPLEX)
x = realpart(pl->pl_scale->v_compdata[j+base]); /* For complex scale vector */
else
x = pl->pl_scale->v_realdata[j + base]; /* For real scale vector */
for (j = k; j < length; j++)
{
/* Again the same error */
/* x = pl->pl_scale->v_realdata[j + base]; */
if (pl->pl_scale->v_type == VF_COMPLEX)
x = realpart(pl->pl_scale->v_compdata[j+base]); /* For complex scale vector */
else
x = pl->pl_scale->v_realdata[j + base]; /* For real scale vector */
outdata[j + base] = ft_peval(x, coefs, degree - 1);
}
k = j;
}
outdata[j + base] = ft_peval(x, coefs, degree - 1);
}
}
for (j = k; j < length; j++)
{
/* Again the same error */
/* x = pl->pl_scale->v_realdata[j + base]; */
if (pl->pl_scale->v_type == VF_COMPLEX)
x = realpart(pl->pl_scale->v_compdata[j+base]); /* For complex scale vector */
else
x = pl->pl_scale->v_realdata[j + base]; /* For real scale vector */
outdata[j + base] = ft_peval(x, coefs, degree - 1);
}
}
tfree(coefs);
tfree(scale); /* XXX */
return (char *) outdata;
}
tfree(coefs);
tfree(scale); /* XXX */
return (char *) outdata;
}
}
@ -433,20 +437,20 @@ cx_group_delay(void *data, short int type, int length, int *newlength, short int
/* Check to see if we have the frequency vector for the derivative */
if (!eq(pl->pl_scale->v_name, "frequency"))
{
fprintf(cp_err, "Internal error: cx_group_delay: need frequency based complex vector.\n");
return (NULL);
fprintf(cp_err, "Internal error: cx_group_delay: need frequency based complex vector.\n");
return (NULL);
}
if (type == VF_COMPLEX)
for (i = 0; i < length; i++)
{
v_phase[i] = radtodeg(cph(cc[i]));
}
for (i = 0; i < length; i++)
{
v_phase[i] = radtodeg(cph(cc[i]));
}
else
{
fprintf(cp_err, "Signal must be complex to calculate group delay\n");
return (NULL);
fprintf(cp_err, "Signal must be complex to calculate group delay\n");
return (NULL);
}
@ -456,7 +460,7 @@ cx_group_delay(void *data, short int type, int length, int *newlength, short int
* datos = (double *) datos_aux;
*/
datos = (double *)cx_deriv((char *)v_phase, type, length, newlength, newtype, pl, newpl, grouping);
/* With this global variable I will change how to obtain the group delay because
* it is defined as:
*
@ -469,29 +473,28 @@ cx_group_delay(void *data, short int type, int length, int *newlength, short int
*/
if(cx_degrees)
{
adjust_final=1.0/360;
}
else
{
adjust_final=1.0/(2*M_PI);
}
{
adjust_final=1.0/360;
}
else
{
adjust_final=1.0/(2*M_PI);
}
for (i = 0; i < length; i++)
{
group_delay[i] = -datos[i]*adjust_final;
group_delay[i] = -datos[i]*adjust_final;
}
/* Adjust to Real because the result is Real */
*newtype = VF_REAL;
/* Set the type of Vector to "Time" because the speed of group units' s'
* The different types of vectors are INCLUDE \ Fte_cons.h
*/
pl->pl_dvecs->v_type= SV_TIME;
return ((char *) group_delay);
return ((char *) group_delay);
}