add examples for PSPICE -> ngspice transfer
This commit is contained in:
parent
09590047fe
commit
949299f2fc
|
|
@ -0,0 +1,93 @@
|
|||
TIMER 555
|
||||
* https://www.electro-tech-online.com/threads/spice-and-555-timer.5806/
|
||||
.SUBCKT UA555 32 30 19 23 33 1 21
|
||||
* TR O R F TH D V
|
||||
*
|
||||
* Taken from the Fairchild data book (1982) page 9-3
|
||||
*SYM=UA555
|
||||
*DWG=C:\SPICE\555\UA555.DWG
|
||||
Q4 25 2 3 QP
|
||||
Q5 0 6 3 QP
|
||||
Q6 6 6 8 QP
|
||||
R1 9 21 4.7K
|
||||
R2 3 21 830
|
||||
R3 8 21 4.7K
|
||||
Q7 2 33 5 QN
|
||||
Q8 2 5 17 QN
|
||||
Q9 6 4 17 QN
|
||||
Q10 6 23 4 QN
|
||||
Q11 12 20 10 QP
|
||||
R4 10 21 1K
|
||||
Q12 22 11 12 QP
|
||||
Q13 14 13 12 QP
|
||||
Q14 0 32 11 QP
|
||||
Q15 14 18 13 QP
|
||||
R5 14 0 100K
|
||||
R6 22 0 100K
|
||||
R7 17 0 10K
|
||||
Q16 1 15 0 QN
|
||||
Q17 15 19 31 QP
|
||||
R8 18 23 5K
|
||||
R9 18 0 5K
|
||||
R10 21 23 5K
|
||||
Q18 27 20 21 QP
|
||||
Q19 20 20 21 QP
|
||||
R11 20 31 5K
|
||||
D1 31 24 DA
|
||||
Q20 24 25 0 QN
|
||||
Q21 25 22 0 QN
|
||||
Q22 27 24 0 QN
|
||||
R12 25 27 4.7K
|
||||
R13 21 29 6.8K
|
||||
Q23 21 29 28 QN
|
||||
Q24 29 27 16 QN
|
||||
Q25 30 26 0 QN
|
||||
Q26 21 28 30 QN
|
||||
D2 30 29 DA
|
||||
R14 16 15 100
|
||||
R15 16 26 220
|
||||
R16 16 0 4.7K
|
||||
R17 28 30 3.9K
|
||||
Q3 2 2 9 QP
|
||||
.MODEL DA D (RS=40 IS=1.0E-14 CJO=1PF)
|
||||
.MODEL QP PNP (BF=20 BR=0.02 RC=4 RB=25 IS=1.0E-14 VA=50 NE=2)
|
||||
+ CJE=12.4P VJE=1.1 MJE=.5 CJC=4.02P VJC=.3 MJC=.3 TF=229P TR=159N)
|
||||
.MODEL QN NPN (IS=5.07F NF=1 BF=100 VAF=161 IKF=30M ISE=3.9P NE=2
|
||||
+ BR=4 NR=1 VAR=16 IKR=45M RE=1.03 RB=4.12 RC=.412 XTB=1.5
|
||||
+ CJE=12.4P VJE=1.1 MJE=.5 CJC=4.02P VJC=.3 MJC=.3 TF=229P TR=959P)
|
||||
.ENDS
|
||||
|
||||
**********
|
||||
* Sample Test Circuit for the LM555 Timer: Astable Mode
|
||||
* The LM555 timer model is designed for low frequency
|
||||
* applications, up to 100Hz.
|
||||
.INCLUDE TLC555.LIB
|
||||
.TRAN 10u 100MS
|
||||
.OPTIONS RELTOL=.0001
|
||||
.SAVE v(16) v(13) v(17)
|
||||
.SAVE v(1) v(4) v(3)
|
||||
|
||||
V2 2 0 5
|
||||
VReset res 0 DC 0 PULSE(0 5 1u 1u 1u 30m 50m)
|
||||
|
||||
R3 2 3 1k
|
||||
R4 3 4 5k
|
||||
C3 4 0 0.5u $ 0.15u
|
||||
X2 4 1 res 6 4 3 2 ua555
|
||||
* TR O R F TH D V
|
||||
RA 2 17 1k $ 5k
|
||||
RB 17 16 5k $ 3k
|
||||
C 16 0 0.5u $ 0.15u
|
||||
RL 2 13 1k
|
||||
X1 16 15 16 res 13 17 2 0 TLC555
|
||||
* THRES CONT TRIG RESET OUT DISC VCC GND
|
||||
|
||||
.control
|
||||
if $?batchmode
|
||||
else
|
||||
run
|
||||
plot v(16) v(13) v(17) v(1)+6 v(4)+6 v(3)+6
|
||||
end
|
||||
.endc
|
||||
|
||||
.END
|
||||
|
|
@ -0,0 +1,170 @@
|
|||
.SUBCKT MCP6041 1 2 3 4 5
|
||||
* | | | | |
|
||||
* | | | | Output
|
||||
* | | | Negative Supply
|
||||
* | | Positive Supply
|
||||
* | Inverting Input
|
||||
* Non-inverting Input
|
||||
*
|
||||
********************************************************************************
|
||||
* Software License Agreement *
|
||||
* *
|
||||
* The software supplied herewith by Microchip Technology Incorporated (the *
|
||||
* 'Company') is intended and supplied to you, the Company's customer, for use *
|
||||
* soley and exclusively on Microchip products. *
|
||||
* *
|
||||
* The software is owned by the Company and/or its supplier, and is protected *
|
||||
* under applicable copyright laws. All rights are reserved. Any use in *
|
||||
* violation of the foregoing restrictions may subject the user to criminal *
|
||||
* sanctions under applicable laws, as well as to civil liability for the *
|
||||
* breach of the terms and conditions of this license. *
|
||||
* *
|
||||
* THIS SOFTWARE IS PROVIDED IN AN 'AS IS' CONDITION. NO WARRANTIES, WHETHER *
|
||||
* EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED *
|
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO *
|
||||
* THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR *
|
||||
* SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. *
|
||||
********************************************************************************
|
||||
*
|
||||
* The following op-amps are covered by this model:
|
||||
* MCP6041,MCP6042,MCP6043,MCP6044
|
||||
*
|
||||
* Revision History:
|
||||
* REV A: 07-Sep-01, Created model
|
||||
* REV B: 27-Aug-06, Added over temperature, improved output stage,
|
||||
* fixed overdrive recovery time
|
||||
* REV C: 09-Apr-07, Adjusted quiescent current to match spec
|
||||
* REV D: 27-Jul-07, Modified output impedance at expense of comparator operation
|
||||
* to correct transient response with capacitive load
|
||||
*
|
||||
* Recommendations:
|
||||
* Use PSPICE (other simulators may require translation)
|
||||
* For a quick, effective design, use a combination of: data sheet
|
||||
* specs, bench testing, and simulations with this macromodel
|
||||
* For high impedance circuits, set GMIN=100F in the .OPTIONS statement
|
||||
*
|
||||
* Supported:
|
||||
* Typical performance for temperature range (-40 to 125) degrees Celsius
|
||||
* DC, AC, Transient, and Noise analyses.
|
||||
* Most specs, including: offsets, DC PSRR, DC CMRR, input impedance,
|
||||
* open loop gain, voltage ranges, supply current, ... , etc.
|
||||
* Temperature effects for Ibias, Iquiescent, Iout short circuit
|
||||
* current, Vsat on both rails, Slew Rate vs. Temp and P.S.
|
||||
*
|
||||
* Not Supported:
|
||||
* Chip select (MCP6043)
|
||||
* Some Variation in specs vs. Power Supply Voltage
|
||||
* Monte Carlo (Vos, Ib), Process variation
|
||||
* Distortion (detailed non-linear behavior)
|
||||
* Behavior outside normal operating region
|
||||
*
|
||||
* Input Stage
|
||||
V10 3 10 -500M
|
||||
R10 10 11 69k
|
||||
R11 10 12 69k
|
||||
C12 1 0 6P
|
||||
C11 11 12 95P
|
||||
E12 71 14 POLY(6) 20 0 21 0 22 0 23 0 26 0 27 0 2.00M 10 10 29 29 1 1
|
||||
G12 1 0 62 0 1m
|
||||
M12 11 14 15 15 NMI
|
||||
G13 1 2 62 0 20u
|
||||
M14 12 2 15 15 NMI
|
||||
G14 2 0 62 0 1m
|
||||
C14 2 0 6P
|
||||
I15 15 4 4U
|
||||
V16 16 4 -300M
|
||||
GD16 16 1 TABLE {V(16,1)} ((-100,-1p)(0,0)(1m,1u)(2m,1m))
|
||||
V13 3 13 -300M
|
||||
GD13 2 13 TABLE {V(2,13)} ((-100,-1p)(0,0)(1m,1u)(2m,1m))
|
||||
R71 1 0 20.0E12
|
||||
R72 2 0 20.0E12
|
||||
R73 1 2 20.0E12
|
||||
I80 1 2 500E-15
|
||||
*
|
||||
* Noise, PSRR, and CMRR
|
||||
I20 21 20 423U
|
||||
D20 20 0 DN1
|
||||
D21 0 21 DN1
|
||||
I22 22 23 1N
|
||||
R22 22 0 1k
|
||||
R23 0 23 1k
|
||||
G26 0 26 POLY(2) 3 0 4 0 0.00 -79.4U -39.8U
|
||||
R26 26 0 1
|
||||
G27 0 27 POLY(2) 1 0 2 0 0 26u 26u
|
||||
R27 27 0 1
|
||||
*
|
||||
* Open Loop Gain, Slew Rate
|
||||
G30 0 30 12 11 3.2
|
||||
R30 30 0 1.00K
|
||||
I31 0 31 DC 338
|
||||
R31 31 0 1 TC=2.25M,-15U
|
||||
GD31 30 0 TABLE {V(30,31)} ((-100,-1n)(0,0)(1m,0.1)(2m,2))
|
||||
I32 32 0 DC 535
|
||||
R32 32 0 1 TC=2.02M,-11U
|
||||
GD32 0 30 TABLE {V(30,32)} ((-2m,2)(-1m,0.1)(0,0)(100,-1n))
|
||||
G33 0 33 30 0 1m
|
||||
R33 33 0 3K
|
||||
G34 0 34 33 0 1
|
||||
R34 34 0 1K
|
||||
C34 34 0 100M
|
||||
G37 0 341 34 0 1m
|
||||
R341 341 0 1k
|
||||
C341 341 0 1.3N
|
||||
G371 0 37 341 0 1m
|
||||
R37 37 0 1K
|
||||
C37 37 0 3N
|
||||
G38 0 38 37 0 1m
|
||||
R38 39 0 1K
|
||||
L38 38 39 13M
|
||||
E38 35 0 38 0 1
|
||||
G35 33 0 TABLE {V(35,3)} ((-1,-1n)(0,0)(3.4k,1n))(3.5k,1))
|
||||
G36 33 0 TABLE {V(35,4)} ((-3.5k,-1)((-3.4k,-1n)(0,0)(1,1n))
|
||||
*
|
||||
* Output Stage
|
||||
R80 50 0 100MEG
|
||||
G50 0 50 57 96 2
|
||||
R58 57 96 0.50
|
||||
R57 57 0 101k
|
||||
C58 5 0 2.00P
|
||||
G57 0 57 POLY(3) 3 0 4 0 35 0 0 10U 1.49U 9.1U
|
||||
GD55 55 57 TABLE {V(55,57)} ((-2m,-1)(-1m,-1m)(0,0)(10,1n))
|
||||
GD56 57 56 TABLE {V(57,56)} ((-2m,-1)(-1m,-1m)(0,0)(10,1n))
|
||||
E55 55 0 POLY(2) 3 0 51 0 -0.7M 1 -40M
|
||||
E56 56 0 POLY(2) 4 0 52 0 0.6M 1 -55M
|
||||
R51 51 0 1k
|
||||
R52 52 0 1k
|
||||
GD51 50 51 TABLE {V(50,51)} ((-10,-1n)(0,0)(1m,1m)(2m,1))
|
||||
GD52 50 52 TABLE {V(50,52)} ((-2m,-1)(-1m,-1m)(0,0)(10,1n))
|
||||
G53 3 0 POLY(1) 51 0 -4U 1M
|
||||
G54 0 4 POLY(1) 52 0 -4U -1M
|
||||
*
|
||||
* Current Limit
|
||||
G99 96 5 99 0 1
|
||||
R98 0 98 1 TC=-6.9M
|
||||
G97 0 98 TABLE { V(96,5) } ((-11.0,-3.9M)(-1.00M,-3.87M)(0,0)(1.00M,3.23M)(11.0,3.26M))
|
||||
E97 99 0 VALUE { V(98)*((V(3)-V(4))*1.39 + -1.5)}
|
||||
D98 4 5 DESD
|
||||
D99 5 3 DESD
|
||||
*
|
||||
* Temperature / Voltage Sensitive IQuiscent
|
||||
R61 0 61 1 TC=2.52M,-4.31U
|
||||
G61 3 4 61 0 1
|
||||
G60 0 61 TABLE {V(3, 4)}
|
||||
+ ((0,0)(700M,5.3N)(770M,10.0N)(1.00,480N)
|
||||
+ (1.5,500N)(3.5,530N)(7.00,580N))
|
||||
*
|
||||
* Temperature Sensistive offset voltage
|
||||
I73 0 70 DC 1uA
|
||||
R74 0 70 1 TC=1.5
|
||||
E75 1 71 70 0 1
|
||||
*
|
||||
* Temp Sensistive IBias
|
||||
I62 0 62 DC 1uA
|
||||
R62 0 62 REXP 210U
|
||||
*
|
||||
* Models
|
||||
.MODEL NMI NMOS(L=2.00U W=42.0U KP=20.0U LEVEL=1 )
|
||||
.MODEL DESD D N=1 IS=1.00E-15
|
||||
.MODEL DN1 D IS=1P KF=0.2F AF=1
|
||||
.MODEL REXP RES TCE= 9
|
||||
.ENDS MCP6041
|
||||
|
|
@ -0,0 +1,27 @@
|
|||
Test MOS1
|
||||
|
||||
vb Nvf 0 0
|
||||
|
||||
vd Nvd 0 0
|
||||
vg Nvg 0 0
|
||||
|
||||
vs1 Nvs1 0 0
|
||||
vs2 Nvs2 0 0
|
||||
vs3 Nvs3 0 0
|
||||
|
||||
* W/L = 3
|
||||
M1 Nvd Nvg Nvs1 Nvf NMOS
|
||||
* W/L = 2
|
||||
M2 Nvd Nvg Nvs2 Nvf NMOS W=10u L=5u
|
||||
* W/L = 1
|
||||
M3 Nvd Nvg Nvs3 Nvf NMOS3
|
||||
|
||||
.MODEL NMOS NMOS (LEVEL = 1 L = 3u W = 9u)
|
||||
.MODEL NMOS3 NMOS (LEVEL = 1)
|
||||
|
||||
.control
|
||||
dc vd 0 5 0.1 vg 0 5 1
|
||||
plot vs1#branch vs2#branch vs3#branch
|
||||
.endc
|
||||
|
||||
.end
|
||||
|
|
@ -0,0 +1,376 @@
|
|||
* OPA171 - Rev. B
|
||||
* Created by Ian Williams; January 17, 2017
|
||||
* Created with Green-Williams-Lis Op Amp Macro-model Architecture
|
||||
* Copyright 2017 by Texas Instruments Corporation
|
||||
******************************************************
|
||||
* MACRO-MODEL SIMULATED PARAMETERS:
|
||||
******************************************************
|
||||
* OPEN-LOOP GAIN AND PHASE VS. FREQUENCY WITH RL, CL EFFECTS (Aol)
|
||||
* UNITY GAIN BANDWIDTH (GBW)
|
||||
* INPUT COMMON-MODE REJECTION RATIO VS. FREQUENCY (CMRR)
|
||||
* POWER SUPPLY REJECTION RATIO VS. FREQUENCY (PSRR)
|
||||
* DIFFERENTIAL INPUT IMPEDANCE (Zid)
|
||||
* COMMON-MODE INPUT IMPEDANCE (Zic)
|
||||
* OPEN-LOOP OUTPUT IMPEDANCE VS. FREQUENCY (Zo)
|
||||
* OUTPUT CURRENT THROUGH THE SUPPLY (Iout)
|
||||
* INPUT VOLTAGE NOISE DENSITY VS. FREQUENCY (en)
|
||||
* INPUT CURRENT NOISE DENSITY VS. FREQUENCY (in)
|
||||
* OUTPUT VOLTAGE SWING vs. OUTPUT CURRENT (Vo)
|
||||
* SHORT-CIRCUIT OUTPUT CURRENT (Isc)
|
||||
* QUIESCENT CURRENT (Iq)
|
||||
* SETTLING TIME VS. CAPACITIVE LOAD (ts)
|
||||
* SLEW RATE (SR)
|
||||
* SMALL SIGNAL OVERSHOOT VS. CAPACITIVE LOAD
|
||||
* LARGE SIGNAL RESPONSE
|
||||
* OVERLOAD RECOVERY TIME (tor)
|
||||
* INPUT BIAS CURRENT (Ib)
|
||||
* INPUT OFFSET CURRENT (Ios)
|
||||
* INPUT OFFSET VOLTAGE (Vos)
|
||||
* INPUT COMMON-MODE VOLTAGE RANGE (Vcm)
|
||||
* INPUT/OUTPUT ESD CELLS (ESDin, ESDout)
|
||||
******************************************************
|
||||
.subckt OPA171 IN+ IN- VCC VEE OUT
|
||||
******************************************************
|
||||
* MODEL DEFINITIONS:
|
||||
.model BB_SW VSWITCH(Ron=50 Roff=1e9 Von=700e-3 Voff=0)
|
||||
.model ESD_SW VSWITCH(Ron=50 Roff=1e9 Von=500e-3 Voff=100e-3)
|
||||
.model OL_SW VSWITCH(Ron=1e-3 Roff=1e9 Von=900e-3 Voff=800e-3)
|
||||
.model OR_SW VSWITCH(Ron=10e-3 Roff=1e9 Von=1e-3 Voff=0)
|
||||
.model R_NOISELESS RES(T_ABS=-273.15)
|
||||
******************************************************
|
||||
V_OS N041 en_n 214.023e-6
|
||||
R1 N043 N042 R_NOISELESS 1e-3
|
||||
R2 N049 ESDn R_NOISELESS 1e-3
|
||||
R3 N063 0 R_NOISELESS 1e12
|
||||
C1 N063 0 1
|
||||
R4 VCC_B N062 R_NOISELESS 1e-3
|
||||
C2 N062 0 1e-15
|
||||
C3 N064 0 1e-15
|
||||
R5 N064 VEE_B R_NOISELESS 1e-3
|
||||
G_PSR N043 N044 N005 N014 1e-3
|
||||
R6 MID N047 R_NOISELESS 1e9
|
||||
VCM_MIN N048 VEE_B -0.1
|
||||
R7 N048 MID R_NOISELESS 1e9
|
||||
VCM_MAX N047 VCC_B -2
|
||||
XVCM_CLAMP N044 MID N045 MID N047 N048 VCCS_EXT_LIM
|
||||
R8 N045 MID R_NOISELESS 1
|
||||
C4 VCM_CLAMP MID 1e-15
|
||||
R9 N045 VCM_CLAMP R_NOISELESS 1e-3
|
||||
V4 N061 OUT 0
|
||||
R10 MID N051 R_NOISELESS 1e9
|
||||
R11 MID N052 R_NOISELESS 1e9
|
||||
XIQp VIMON MID VCC MID VCCS_LIM_IQ
|
||||
XIQn MID VIMON VEE MID VCCS_LIM_IQ
|
||||
R12 VCC_B N016 R_NOISELESS 1e3
|
||||
R13 N029 VEE_B R_NOISELESS 1e3
|
||||
XCLAWp VIMON MID N016 VCC_B VCCS_LIM_CLAWp
|
||||
XCLAWn MID VIMON VEE_B N029 VCCS_LIM_CLAWn
|
||||
R14 VEE_CLP MID R_NOISELESS 1e3
|
||||
R15 MID VCC_CLP R_NOISELESS 1e3
|
||||
R16 N017 N016 R_NOISELESS 1e-3
|
||||
R17 N030 N029 R_NOISELESS 1e-3
|
||||
C5 MID N017 1e-15
|
||||
C6 N030 MID 1e-15
|
||||
R18 VOUT_S N052 R_NOISELESS 100
|
||||
C7 VOUT_S MID 1e-9
|
||||
G2 MID VCC_CLP N017 MID 1e-3
|
||||
G3 MID VEE_CLP N030 MID 1e-3
|
||||
XCL_AMP N013 N039 VIMON MID N020 N027 CLAMP_AMP_LO
|
||||
V_ISCp N013 MID 25
|
||||
V_ISCn N039 MID -35
|
||||
XOL_SENSE MID N068 OLN OLP OL_SENSE
|
||||
R19 N039 MID R_NOISELESS 1e9
|
||||
R20 N027 MID R_NOISELESS 1
|
||||
C8 N028 MID 1e-15
|
||||
R21 MID N020 R_NOISELESS 1
|
||||
R22 MID N013 R_NOISELESS 1e9
|
||||
C9 MID N021 1e-15
|
||||
XCLAW_AMP VCC_CLP VEE_CLP VOUT_S MID N018 N025 CLAMP_AMP_LO
|
||||
R23 VEE_CLP MID R_NOISELESS 1e9
|
||||
R24 N025 MID R_NOISELESS 1
|
||||
C10 N026 MID 1e-15
|
||||
R25 MID N018 R_NOISELESS 1
|
||||
R26 MID VCC_CLP R_NOISELESS 1e9
|
||||
C11 MID N019 1e-15
|
||||
XCL_SRC N021 N028 CL_CLAMP MID VCCS_LIM_4
|
||||
XCLAW_SRC N019 N026 CLAW_CLAMP MID VCCS_LIM_3
|
||||
R27 N018 N019 R_NOISELESS 1e-3
|
||||
R28 N026 N025 R_NOISELESS 1e-3
|
||||
R29 N020 N021 R_NOISELESS 1e-3
|
||||
R30 N028 N027 R_NOISELESS 1e-3
|
||||
R31 N068 MID R_NOISELESS 1
|
||||
R32 N068 SW_OL R_NOISELESS 100
|
||||
C12 SW_OL MID 10e-12
|
||||
R33 VIMON N051 R_NOISELESS 100
|
||||
C13 VIMON MID 1e-9
|
||||
C_DIFF en_p ESDn 3e-12
|
||||
C_CMn ESDn MID 3e-12
|
||||
C_CMp MID en_p 3e-12
|
||||
I_Q VCC VEE 475e-6
|
||||
I_B N044 MID 8e-12
|
||||
I_OS N049 MID 4e-12
|
||||
R36 N037 MID R_NOISELESS 1
|
||||
R37 N040 MID R_NOISELESS 1e9
|
||||
R38 MID N023 R_NOISELESS 1
|
||||
R39 MID N015 R_NOISELESS 1e9
|
||||
XGR_AMP N015 N040 N022 MID N023 N037 CLAMP_AMP_HI
|
||||
XGR_SRC N024 N038 CLAMP MID VCCS_LIM_GR
|
||||
C17 MID N024 1e-15
|
||||
C18 N038 MID 1e-15
|
||||
V_GRn N040 MID -50
|
||||
V_GRp N015 MID 50
|
||||
R40 N023 N024 R_NOISELESS 1e-3
|
||||
R41 N038 N037 R_NOISELESS 1e-3
|
||||
R42 VSENSE N022 R_NOISELESS 1e-3
|
||||
C19 MID N022 1e-15
|
||||
R43 MID VSENSE R_NOISELESS 1e3
|
||||
G_CMR N041 N042 N012 MID 1e-3
|
||||
G8 MID CLAW_CLAMP N050 MID 1e-3
|
||||
R45 MID CLAW_CLAMP R_NOISELESS 1e3
|
||||
G9 MID CL_CLAMP CLAW_CLAMP MID 1e-3
|
||||
R46 MID CL_CLAMP R_NOISELESS 1e3
|
||||
R47 N059 VCLP R_NOISELESS 100
|
||||
C24 MID VCLP 100e-12
|
||||
E4 N059 MID CL_CLAMP MID 1
|
||||
E5 N052 MID OUT MID 1
|
||||
H1 N051 MID V4 1e3
|
||||
S1 N054 N053 SW_OL MID OL_SW
|
||||
R52 MID en_p R_NOISELESS 1e9
|
||||
R53 ESDn MID R_NOISELESS 1e9
|
||||
R_CMR N042 N041 R_NOISELESS 1e3
|
||||
R59 N062 N063 R_NOISELESS 1e6
|
||||
R60 N063 N064 R_NOISELESS 1e6
|
||||
R_PSR N044 N043 R_NOISELESS 1e3
|
||||
G15 MID VSENSE CLAMP MID 1e-3
|
||||
V_ORp N036 VCLP 3
|
||||
V_ORn N031 VCLP -3
|
||||
V11 N033 N032 0
|
||||
V12 N034 N035 0
|
||||
H2 OLN MID V11 -1
|
||||
H3 OLP MID V12 1
|
||||
S2 VCC ESDn ESDn VCC ESD_SW
|
||||
S3 VCC en_p en_p VCC ESD_SW
|
||||
S4 ESDn VEE VEE ESDn ESD_SW
|
||||
S5 en_p VEE VEE en_p ESD_SW
|
||||
S6 VCC OUT OUT VCC ESD_SW
|
||||
S7 OUT VEE VEE OUT ESD_SW
|
||||
E1 MID 0 N063 0 1
|
||||
G16 0 VCC_B VCC 0 1
|
||||
G17 0 VEE_B VEE 0 1
|
||||
R88 VCC_B 0 R_NOISELESS 1
|
||||
R89 VEE_B 0 R_NOISELESS 1
|
||||
S8 N034 CLAMP CLAMP N034 OR_SW
|
||||
S9 CLAMP N033 N033 CLAMP OR_SW
|
||||
Xi_np en_n MID FEMT
|
||||
Xi_nn ESDn MID FEMT
|
||||
XVCCS_LIM_1 VCM_CLAMP N049 MID N046 VCCS_LIM_1
|
||||
XVCCS_LIM_2 N046 MID MID CLAMP VCCS_LIM_2
|
||||
R44 N046 MID R_NOISELESS 1e6
|
||||
R58 CLAMP MID R_NOISELESS 1e6
|
||||
C20 CLAMP MID 1.484e-7
|
||||
S10 en_p ESDn ESDn en_p BB_SW
|
||||
S11 ESDn en_p en_p ESDn BB_SW
|
||||
R34 en_p IN+ R_NOISELESS 10e-3
|
||||
R35 ESDn IN- R_NOISELESS 10e-3
|
||||
R48 MID N050 R_NOISELESS 1e6
|
||||
G1 MID N050 VSENSE MID 1e-6
|
||||
C14 N050 MID 7.4e-15
|
||||
Rx N061 N060 R_NOISELESS 1.65e4
|
||||
Rdummy N061 MID R_NOISELESS 1.65e3
|
||||
G_Zo MID N053 CL_CLAMP N061 172
|
||||
Rdc1 N053 MID R_NOISELESS 1
|
||||
R49 N053 N054 R_NOISELESS 1e5
|
||||
R50 N054 MID R_NOISELESS 1.266e3
|
||||
G4 MID N057 N054 MID 80
|
||||
C15 N054 N053 1.592e-6
|
||||
R51 N057 MID R_NOISELESS 1
|
||||
C16 N067 MID 1.929e-10
|
||||
R54 N067 N058 R_NOISELESS 10e3
|
||||
R55 N058 N057 R_NOISELESS 1.547e6
|
||||
C23 N007 N006 1.516e-12
|
||||
G_adjust1 MID N006 en_p MID 4.75e-4
|
||||
Rsrc1 N006 MID R_NOISELESS 1
|
||||
R56 N007 MID R_NOISELESS 2.104e5
|
||||
R57 N007 N006 R_NOISELESS 1e8
|
||||
G5 MID N008 N007 MID 1
|
||||
Rsrc2 N008 MID R_NOISELESS 1
|
||||
R61 N009 N008 R_NOISELESS 1e4
|
||||
C25 N009 N008 1.516e-8
|
||||
R62 N009 MID R_NOISELESS 2.104e1
|
||||
G6 MID N012 N009 MID 4.762e2
|
||||
Rsrc3 N012 MID R_NOISELESS 1
|
||||
C26 N011 N010 3.745e-10
|
||||
G_adjust2 MID N010 VEE_B MID 1.588e-1
|
||||
Rsrc4 N010 MID R_NOISELESS 1
|
||||
R63 N011 MID R_NOISELESS 6.296e2
|
||||
R64 N011 N010 R_NOISELESS 1e8
|
||||
G7 MID N014 N011 MID 1
|
||||
Rsrc5 N014 MID R_NOISELESS 1
|
||||
C27 N003 N004 2.792e-12
|
||||
G_adjust3 MID N004 VCC_B MID 3.772e-4
|
||||
Rsrc6 N004 MID R_NOISELESS 1
|
||||
R65 N003 MID R_NOISELESS 2.658e5
|
||||
R66 N003 N004 R_NOISELESS 1e8
|
||||
G10 MID N002 N003 MID 1
|
||||
Rsrc7 N002 MID R_NOISELESS 1
|
||||
R67 N001 N002 R_NOISELESS 1e4
|
||||
C28 N001 N002 2.792e-8
|
||||
R68 N001 MID R_NOISELESS 2.658e1
|
||||
G11 MID N005 N001 MID 3.772e2
|
||||
Rsrc8 N005 MID R_NOISELESS 1
|
||||
Xe_n N065 MID VNSE
|
||||
G12 MID N066 N065 N069 1
|
||||
R69 N066 N069 R_NOISELESS 1e6
|
||||
R70 N066 N069 R_NOISELESS 11.786e3
|
||||
C29 N066 N069 6.75e-12
|
||||
R71 N069 N070 R_NOISELESS 15e3
|
||||
C30 N070 MID 106e-12
|
||||
Rpd N070 MID R_NOISELESS 1e9
|
||||
E2 en_p en_n N066 MID 1
|
||||
G13 MID N055 N058 MID 1
|
||||
R72 N055 MID R_NOISELESS 1
|
||||
R73 N056 N055 R_NOISELESS 1e4
|
||||
R74 MID N056 R_NOISELESS 5
|
||||
C21 N056 N055 3.183e-13
|
||||
XVCCS_LIM_ZO N056 MID MID N060 VCCS_LIM_ZO
|
||||
R76 MID N060 R_NOISELESS 1
|
||||
G14 MID N032 N031 MID 1
|
||||
G18 MID N035 N036 MID 1
|
||||
R77 MID N032 R_NOISELESS 1
|
||||
R78 MID N035 R_NOISELESS 1
|
||||
.ends OPA171
|
||||
*
|
||||
.subckt CLAMP_AMP_HI VC+ VC- VIN COM VO+ VO-
|
||||
.param G=10
|
||||
GVo+ COM Vo+ Value = {IF(V(VIN,COM)>V(VC+,COM),((V(VIN,COM)-V(VC+,COM))*G),0)}
|
||||
GVo- COM Vo- Value = {IF(V(VIN,COM)<V(VC-,COM),((V(VC-,COM)-V(VIN,COM))*G),0)}
|
||||
.ends CLAMP_AMP_HI
|
||||
*
|
||||
.subckt OL_SENSE 1 2 3 4
|
||||
GSW+ 1 2 Value = {IF((V(3,1)>10e-3 | V(4,1)>10e-3),1,0)}
|
||||
.ends OL_SENSE
|
||||
*
|
||||
.subckt FEMT 1 2
|
||||
.param FLWF=1e-3
|
||||
.param NLFF=1
|
||||
.param NVRF=1
|
||||
.param GLFF={PWR(FLWF,0.25)*NLFF/1164}
|
||||
.param RNVF={1.184*PWR(NVRF,2)}
|
||||
.model DVNF D KF={PWR(FLWF,0.5)/1e11} IS=1.0e-16
|
||||
I1 0 7 10e-3
|
||||
I2 0 8 10e-3
|
||||
D1 7 0 DVNF
|
||||
D2 8 0 DVNF
|
||||
E1 3 6 7 8 {GLFF}
|
||||
R1 3 0 1e9
|
||||
R2 3 0 1e9
|
||||
R3 3 6 1e9
|
||||
E2 6 4 5 0 10
|
||||
R4 5 0 {RNVF}
|
||||
R5 5 0 {RNVF}
|
||||
R6 3 4 1e9
|
||||
R7 4 0 1e9
|
||||
G1 1 2 3 4 1e-6
|
||||
.ends FEMT
|
||||
*
|
||||
.subckt VCCS_EXT_LIM VIN+ VIN- IOUT- IOUT+ VP+ VP-
|
||||
.param Gain = 1
|
||||
G1 IOUT+ IOUT- VALUE={LIMIT(Gain*V(VIN+,VIN-),V(VP-,VIN-), V(VP+,VIN-))}
|
||||
.ends VCCS_EXT_LIM
|
||||
*
|
||||
.subckt VCCS_LIM_1 VC+ VC- IOUT+ IOUT-
|
||||
.param Gain = 1e-4
|
||||
.param Ipos = .5
|
||||
.param Ineg = -.5
|
||||
G1 IOUT+ IOUT- VALUE={LIMIT(Gain*V(VC+,VC-),Ineg,Ipos)}
|
||||
.ends VCCS_LIM_1
|
||||
*
|
||||
.subckt VCCS_LIM_2 VC+ VC- IOUT+ IOUT-
|
||||
.param Gain = 3.40e-2
|
||||
.param Ipos = 0.224
|
||||
.param Ineg = -0.224
|
||||
G1 IOUT+ IOUT- VALUE={LIMIT(Gain*V(VC+,VC-),Ineg,Ipos)}
|
||||
.ends VCCS_LIM_2
|
||||
*
|
||||
.subckt VCCS_LIM_3 VC+ VC- IOUT+ IOUT-
|
||||
.param Gain = 1
|
||||
.param Ipos = 100e-3
|
||||
.param Ineg = -100e-3
|
||||
G1 IOUT+ IOUT- VALUE={LIMIT(Gain*V(VC+,VC-),Ineg,Ipos)}
|
||||
.ends VCCS_LIM_3
|
||||
*
|
||||
.subckt VCCS_LIM_4 VC+ VC- IOUT+ IOUT-
|
||||
.param Gain = 1
|
||||
.param Ipos = 200e-3
|
||||
.param Ineg = -200e-3
|
||||
G1 IOUT+ IOUT- VALUE={LIMIT(Gain*V(VC+,VC-),Ineg,Ipos)}
|
||||
.ends VCCS_LIM_4
|
||||
*
|
||||
.subckt VCCS_LIM_CLAWn VC+ VC- IOUT+ IOUT-
|
||||
G1 IOUT+ IOUT- TABLE {abs(V(VC+,VC-))} =
|
||||
+(0, 1e-5)
|
||||
+(3.38, 3.1e-5)
|
||||
+(3.66, 3.2e-5)
|
||||
+(3.87, 7.8e-5)
|
||||
+(6.67, 5.64e-4)
|
||||
+(8, 8.48e-4)
|
||||
+(15, 2.23e-3)
|
||||
+(35, 6.3e-3)
|
||||
.ends VCCS_LIM_CLAWn
|
||||
*
|
||||
.subckt VCCS_LIM_IQ VC+ VC- IOUT+ IOUT-
|
||||
.param Gain = 1e-3
|
||||
G1 IOUT+ IOUT- VALUE={IF( (V(VC+,VC-)<=0),0,Gain*V(VC+,VC-) )}
|
||||
.ends VCCS_LIM_IQ
|
||||
*
|
||||
.subckt VNSE 1 2
|
||||
.param FLW=20
|
||||
.param NLF=45
|
||||
.param NVR=14
|
||||
.param GLF={PWR(FLW,0.25)*NLF/1164}
|
||||
.param RNV={1.184*PWR(NVR,2)}
|
||||
.model DVN D KF={PWR(FLW,0.5)/1E11} IS=1.0E-16
|
||||
I1 0 7 10E-3
|
||||
I2 0 8 10E-3
|
||||
D1 7 0 DVN
|
||||
D2 8 0 DVN
|
||||
E1 3 6 7 8 {GLF}
|
||||
R1 3 0 1E9
|
||||
R2 3 0 1E9
|
||||
R3 3 6 1E9
|
||||
E2 6 4 5 0 10
|
||||
R4 5 0 {RNV}
|
||||
R5 5 0 {RNV}
|
||||
R6 3 4 1E9
|
||||
R7 4 0 1E9
|
||||
E3 1 2 3 4 1
|
||||
.ends VNSE
|
||||
*
|
||||
.subckt CLAMP_AMP_LO VC+ VC- VIN COM VO+ VO-
|
||||
.param G=1
|
||||
GVo+ COM Vo+ Value = {IF(V(VIN,COM)>V(VC+,COM),((V(VIN,COM)-V(VC+,COM))*G),0)}
|
||||
GVo- COM Vo- Value = {IF(V(VIN,COM)<V(VC-,COM),((V(VC-,COM)-V(VIN,COM))*G),0)}
|
||||
.ends CLAMP_AMP_LO
|
||||
*
|
||||
.subckt VCCS_LIM_GR VC+ VC- IOUT+ IOUT-
|
||||
.param Gain = 1
|
||||
.param Ipos = 0.5
|
||||
.param Ineg = -0.5
|
||||
G1 IOUT+ IOUT- VALUE={LIMIT(Gain*V(VC+,VC-),Ineg,Ipos)}
|
||||
.ends VCCS_LIM_GR
|
||||
*
|
||||
.subckt VCCS_LIM_CLAWp VC+ VC- IOUT+ IOUT-
|
||||
G1 IOUT+ IOUT- TABLE {abs(V(VC+,VC-))} =
|
||||
+(0, 1e-5)
|
||||
+(7.1, 6.8e-4)
|
||||
+(14.64, 1.54e-3)
|
||||
+(25, 2.7e-3)
|
||||
.ends VCCS_LIM_CLAWp
|
||||
*
|
||||
.subckt VCCS_LIM_ZO VC+ VC- IOUT+ IOUT-
|
||||
.param Gain = 2e3
|
||||
.param Ipos = 1e3
|
||||
.param Ineg = -1.5e3
|
||||
G1 IOUT+ IOUT- VALUE={LIMIT(Gain*V(VC+,VC-),Ineg,Ipos)}
|
||||
.ends VCCS_LIM_ZO
|
||||
*
|
||||
|
|
@ -0,0 +1,36 @@
|
|||
Test OpAmp
|
||||
|
||||
*.OPTIONS RELTOL=.0001
|
||||
*.include MCP6041ng.lib
|
||||
.include MCP6041.txt
|
||||
|
||||
V1 vdd 0 2.2
|
||||
V2 vss 0 -2.2
|
||||
|
||||
Vin in 0 dc 0 sin(0 100m 500)
|
||||
|
||||
Rin in opin 1000k
|
||||
Rfb opout opin 10000k
|
||||
|
||||
*Eop opout 0 opin 0 -10000
|
||||
|
||||
Xop 0 opin vdd vss opout MCP6041
|
||||
* MCP6041 1 2 3 4 5
|
||||
* | | | | |
|
||||
* | | | | Output
|
||||
* | | | Negative Supply
|
||||
* | | Positive Supply
|
||||
* | Inverting Input
|
||||
* Non-inverting Input
|
||||
|
||||
*.dc Vin -2.2 2.2 0.1
|
||||
*.tran 0.1m 10m
|
||||
|
||||
.control
|
||||
dc Vin -0.2 0.2 0.01
|
||||
plot v(opout) v(opin)
|
||||
tran 0.1m 10m
|
||||
plot v(in) v(opin) v(opout)
|
||||
.endc
|
||||
|
||||
.end
|
||||
File diff suppressed because it is too large
Load Diff
|
|
@ -0,0 +1,24 @@
|
|||
Test Optimos PSPICE models
|
||||
|
||||
*Xopt Nvd Nvg Nvs Tj Tcase SPD50N03S2-07 dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0
|
||||
*Xopt Nvd Nvg Nvs Tj Tcase SPD30N03S2L-10 dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0
|
||||
Xopt Nvd Nvg Nvs Tj Tcase BSC0500NSI dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0 Ls=0.3n Ld=1n Lg=3n
|
||||
|
||||
vd 1 0 0
|
||||
rd 1 Nvd 6m
|
||||
vg Nvg 0 0
|
||||
vs Nvs 0 0
|
||||
|
||||
vtc tcase 0 25
|
||||
vjt tj 0 25
|
||||
|
||||
.include D:\Spice_general\tests\pspice-to-ngspice\OptiMOS5_30V_PSpice.lib $ OptiMOS_30V.lib
|
||||
|
||||
.control
|
||||
dc vd 0 3 0.1 vg 2.8 3.2 0.2
|
||||
dc vd 0 3 0.1 vg 3.5 5 0.5
|
||||
* plot similar to output characteristics in data sheet
|
||||
plot vs#branch vs v(Nvd) dc1.vs#branch vs dc1.v(Nvd) noretraceplot
|
||||
.endc
|
||||
|
||||
.end
|
||||
|
|
@ -0,0 +1,438 @@
|
|||
* TLC555
|
||||
*****************************************************************************
|
||||
* (C) Copyright 2011 Texas Instruments Incorporated. All rights reserved.
|
||||
*****************************************************************************
|
||||
** This model is designed as an aid for customers of Texas Instruments.
|
||||
** TI and its licensors and suppliers make no warranties, either expressed
|
||||
** or implied, with respect to this model, including the warranties of
|
||||
** merchantability or fitness for a particular purpose. The model is
|
||||
** provided solely on an "as is" basis. The entire risk as to its quality
|
||||
** and performance is with the customer.
|
||||
*****************************************************************************
|
||||
*
|
||||
* This model is subject to change without notice. Texas Instruments
|
||||
* Incorporated is not responsible for updating this model.
|
||||
*
|
||||
*****************************************************************************
|
||||
*
|
||||
** Released by: Analog eLab Design Center, Texas Instruments Inc.
|
||||
* Part: TLC555
|
||||
* Date: 13JUN2011
|
||||
* Model Type: ALL IN ONE
|
||||
* Simulator: PSPICE
|
||||
* Simulator Version: 16.0.0.p001
|
||||
* EVM Order Number: N/A
|
||||
* EVM Users Guide: N/A
|
||||
* Datasheet: SLFS043F - SEPTEMBER 1983 - REVISED FEBRUARY 2005
|
||||
*
|
||||
* Model Version: 1.0
|
||||
*
|
||||
*****************************************************************************
|
||||
*
|
||||
* Updates:
|
||||
*
|
||||
* Version 1.0 :
|
||||
* Release to Web
|
||||
*
|
||||
*****************************************************************************
|
||||
*
|
||||
* THIS MODEL IS APPLICABLE FOR TLC555 & TLC556
|
||||
*
|
||||
*****************************************************************************
|
||||
.SUBCKT TLC555 THRES CONT TRIG RESET OUT DISC VCC GND
|
||||
XD8 GND RESI D_Z18V
|
||||
XD7 GND RESET D_Z18V
|
||||
XR2 RESET RESI TLC55X_RWELL
|
||||
+ PARAMS: W=50u L=20u
|
||||
XD2 GND TRGI D_Z18V
|
||||
XD1 GND TRIG D_Z18V
|
||||
XR3 TRIG TRGI TLC55X_RWELL
|
||||
+ PARAMS: W=50u L=20u
|
||||
XD4 GND THRI D_Z18V
|
||||
XD3 GND THRES D_Z18V
|
||||
XR2_2 THRES THRI TLC55X_RWELL
|
||||
+ PARAMS: W=50u L=20u
|
||||
XD6 GND CONTI D_Z18V
|
||||
XD5 GND CONT D_Z18V
|
||||
XR2_3 CONT CONTI TLC55X_RWELL
|
||||
+ PARAMS: W=50u L=20u
|
||||
XMN15 GOUT GND QFF GND MDSWN
|
||||
+ PARAMS: W=100U L=10U M=7
|
||||
XMP15 GOUT VCC QFF GND MDSWP
|
||||
+ PARAMS: W=195U L=10U M=9
|
||||
XMN3 GND TRGO 23 IIMIRRN
|
||||
+ PARAMS: W1=170U L1=18U M1=1 W2=170U L2=18U M2=1 IDIN=1U
|
||||
XMN5 GND THRS 25 IIMIRRN
|
||||
+ PARAMS: W1=13U L1=26U M1=1 W2=52U L2=13U M2=2 IDIN=50N
|
||||
XMp9 VCC RESO 15 GND IMIRRP
|
||||
+ PARAMS: W=112U L=15U M=2 IO=2U
|
||||
XMp6 VCC 25 15 GND IMIRRP
|
||||
+ PARAMS: W=18U L=26U M=1 IO=100n
|
||||
XMp5 VCC TRGS 15 GND IMIRRP
|
||||
+ PARAMS: W=112U L=15U M=2 IO=2U
|
||||
XMp1 VCC THRO 29 IIMIRRP
|
||||
+ PARAMS: W1=172U L1=15U M1=1 W2=172U L2=15U M2=1 IDIN=1U
|
||||
XIB VCC GND 15 IBIAS
|
||||
XRSFF TRGO THRO RESO QFF 30 VCC GND RR1SFF
|
||||
+ PARAMS: VOUTH=1 VOUTL=0 RIN=1E12 DELAY=30N ROUT=10
|
||||
XMN9 TRGO RESO GND MSWN
|
||||
+ PARAMS: W=100U L=10U M=1
|
||||
XMN17 DISC GOUT GND GND TLC55X_NMOS_HV
|
||||
+ PARAMS: W=350U L=10U M=20
|
||||
XMN16 OUT GOUT GND GND TLC55X_NMOS_HV
|
||||
+ PARAMS: W=175U L=10U M=20
|
||||
XMP16 OUT GOUT VCC VCC TLC55X_PMOS_HV
|
||||
+ PARAMS: W=270u L=10u M=7
|
||||
XMN10 RESO RESI GND GND TLC55X_NMOS_HV_L1
|
||||
+ PARAMS: W=100u L=10u M=1
|
||||
XMN2 THRO THRI THRS GND TLC55X_NMOS_MV
|
||||
+ PARAMS: W=170u L=18u M=2
|
||||
XMP4 TRGO TRGI TRGS VCC TLC55X_PMOS_MV
|
||||
+ PARAMS: W=172u L=15u M=2
|
||||
XMP3 23 TRGC TRGS VCC TLC55X_PMOS_MV
|
||||
+ PARAMS: W=172u L=15u M=2
|
||||
XMPR1F GND GND 32 TRGC TLC55X_PMOS_LV
|
||||
+ PARAMS: W=20U L=15U M=1
|
||||
XMPR1E 32 32 TRGC TRGC TLC55X_PMOS_LV
|
||||
+ PARAMS: W=20U L=15U M=1
|
||||
XMPR1D TRGC TRGC 33 CONTI TLC55X_PMOS_LV
|
||||
+ PARAMS: W=20U L=15U M=1
|
||||
XMPR1C 33 33 CONTI CONTI TLC55X_PMOS_LV
|
||||
+ PARAMS: W=20U L=15U M=1
|
||||
XMPR1B CONTI CONTI 34 VCC TLC55X_PMOS_LV
|
||||
+ PARAMS: W=20u L=15u M=1
|
||||
XMPR1A 34 34 VCC VCC TLC55X_PMOS_LV
|
||||
+ PARAMS: W=20u L=15u M=1
|
||||
XMN1 29 CONTI THRS GND TLC55X_NMOS_MV
|
||||
+ PARAMS: W=170u L=18u M=2
|
||||
.ENDS TLC555
|
||||
|
||||
.SUBCKT TLC55X_NMOS_HV D G S B PARAMS: W = 100U L = 10U M = 1
|
||||
M1 D G S B TLC55X_NMOSD_HV W = {W} L = {L} M = {M} AD={W*LS} AS={W*LS} PD={W + 2*LS} PS={W + 2*LS}
|
||||
+ NRD={LS/W} NRS={LS/W}
|
||||
.ENDS
|
||||
*$
|
||||
.SUBCKT TLC55X_NMOS_HV_L1 D G S B PARAMS: W = 100U L = 10U M = 1
|
||||
M1 D G S B TLC55X_NMOSD_HV_L1 W = {W} L = {L} M = {M} AD={W*LS} AS={W*LS} PD={W + 2*LS} PS={W + 2*LS}
|
||||
+ NRD={LS/W} NRS={LS/W}
|
||||
.ENDS
|
||||
*$
|
||||
.SUBCKT TLC55X_NMOS_MV D G S B PARAMS: W = 100U L = 10U M = 1
|
||||
M1 D G S B TLC55X_NMOSD_MV W = {W} L = {L} M = {M} AD={W*LS} AS={W*LS} PD={W + 2*LS} PS={W + 2*LS}
|
||||
+ NRD={LS/W} NRS={LS/W}
|
||||
.ENDS
|
||||
*$
|
||||
.SUBCKT TLC55X_NMOS_LV D G S B PARAMS: W = 100U L = 10U M = 1
|
||||
M1 D G S B TLC55X_NMOSD_LV W = {W} L = {L} M = {M} AD={W*LS} AS={W*LS} PD={W + 2*LS} PS={W + 2*LS}
|
||||
+ NRD={LS/W} NRS={LS/W}
|
||||
.ENDS
|
||||
*$
|
||||
.MODEL TLC55X_NMOSD_HV NMOS LEVEL=3 L=10U W=100U KP={KPN} VTO={VTOHN} LAMBDA=2E-3 THETA=1.8E-01
|
||||
+ CJ={CJN} CJSW={CJSWN} CGSO={CGSON} CGDO={CGDON} RSH= 10 PB=0.65 LD= 70N TOX={TOX}
|
||||
*$
|
||||
.MODEL TLC55X_NMOSD_HV_L1 NMOS LEVEL=1 L=10U W=100U KP={KPN} VTO={VTOHN} LAMBDA=2E-3
|
||||
+ CJ={CJN} CJSW={CJSWN} CGSO={CGSON} CGDO={CGDON} RSH= 10 PB=0.65 LD= 70N TOX={TOX}
|
||||
*$
|
||||
.MODEL TLC55X_NMOSD_MV NMOS LEVEL=1 L=10U W=100U KP={KPN} VTO={VTOMN} LAMBDA=2E-3
|
||||
+ CJ={CJNCG} CJSW={CJSWNCG} CGSO={CGSONCG} CGDO={CGDONCG} PB=0.65 LD= 70N TOX={TOXCG}
|
||||
*+ RSH= 10
|
||||
*$
|
||||
.MODEL TLC55X_NMOSD_LV NMOS LEVEL=1 L=10U W=100U KP={KPN} VTO={VTON} LAMBDA=2E-3
|
||||
+ CJ={CJN} CJSW={CJSWN} CGSO={CGSON} CGDO={CGDON} PB=0.65 LD= 300N TOX={TOX}
|
||||
*+ RSH= 10
|
||||
*$
|
||||
.SUBCKT TLC55X_PMOS_HV D G S B PARAMS: W = 100U L = 10U M = 1
|
||||
M1 D G S B TLC55X_PMOSD_HV W = {W} L = {L} M = {M} AD={W*LS} AS={W*LS} PD={W + 2*LS} PS={W + 2*LS}
|
||||
+ NRD={LS/W} NRS={LS/W}
|
||||
.ENDS
|
||||
*$
|
||||
.SUBCKT TLC55X_PMOS_MV D G S B PARAMS: W = 100U L = 10U M = 1
|
||||
M1 D G S B TLC55X_PMOSD_MV W = {W} L = {L} M = {M} AD={W*LS} AS={W*LS} PD={W + 2*LS} PS={W + 2*LS}
|
||||
+ NRD={LS/W} NRS={LS/W}
|
||||
.ENDS
|
||||
*$
|
||||
.SUBCKT TLC55X_PMOS_LV D G S B PARAMS: W = 100U L = 10U M = 1
|
||||
M1 D G S B TLC55X_PMOSD_LV W = {W} L = {L} M = {M} AD={W*LS} AS={W*LS} PD={W + 2*LS} PS={W + 2*LS}
|
||||
+ NRD={LS/W} NRS={LS/W}
|
||||
.ENDS
|
||||
*$
|
||||
.MODEL TLC55X_PMOSD_HV PMOS LEVEL=3 L=10U W=100U KP={KPP} VTO={-VTOHP} LAMBDA=2E-3 THETA=2.2E-01
|
||||
+ CJ={CJP} CJSW={CJSWP} CGSO={CGSOP} CGDO={CGDOP} RSH=10 PB=0.65 LD=70N TOX={TOX}
|
||||
*$
|
||||
.MODEL TLC55X_PMOSD_MV PMOS LEVEL=1 L=10U W=100U KP={KPP} VTO={-VTOMP} LAMBDA=2E-3
|
||||
*+ CJ={CJP} CJSW={CJSWP} CGSO={CGSOP} CGDO={CGDOP} PB=0.65 LD=70N TOX={TOX}
|
||||
+ CJ={CJNCG} CJSW={CJSWNCG} CGSO={CGSONCG} CGDO={CGDONCG} PB=0.65 LD= 70N TOX={TOXCG}
|
||||
*+ RSH= 10
|
||||
*$
|
||||
.MODEL TLC55X_PMOSD_LV PMOS LEVEL=1 L=10U W=100U KP={KPP} VTO={-VTOP} LAMBDA=2E-3
|
||||
+ CJ={CJP} CJSW={CJSWP} CGSO={CGSOP} CGDO={CGDOP} PB=0.65 LD=300N TOX={TOX}
|
||||
*+ RSH= 10
|
||||
*$
|
||||
.SUBCKT TLC55X_RWELL 1 2 PARAMS: W = 10U L = 100U
|
||||
XR1 1 2 TLC55X_RWELLD PARAMS: W = {W} L = {L}
|
||||
.ENDS
|
||||
*$
|
||||
.SUBCKT TLC55X_RWELLD 1 2 PARAMS: W = 10U L = 100U
|
||||
R1 1 2 {RSW*L/W}
|
||||
.ENDS
|
||||
*$
|
||||
.SUBCKT TLC55X_RNSD 1 2 PARAMS: W = 10U L = 100U
|
||||
XR1 1 2 TLC55X_RNSD_D PARAMS: W = {W} L = {L}
|
||||
.ENDS
|
||||
*$
|
||||
.SUBCKT TLC55X_RNSD_D 1 2 PARAMS: W = 10U L = 100U
|
||||
R1 1 2 {RSN*L/W}
|
||||
.ENDS
|
||||
*$
|
||||
.SUBCKT TLC55X_RC 1 2 PARAMS: WW = 10U LW = 100U WNSD = 10U LNSD = 100U
|
||||
XR1 1 2 TLC55X_RC_D PARAMS: WW = {WW} LW = {LW} WNSD = {WNSD} LNSD = {LNSD}
|
||||
.ENDS
|
||||
*$
|
||||
.SUBCKT TLC55X_RC_D 1 2 PARAMS: WW = 10U LW = 100U WNSD = 10U LNSD = 100U
|
||||
R1 1 2 {RSW*LW/WW + RSN*LNSD/WNSD}
|
||||
.ENDS
|
||||
*
|
||||
.SUBCKT IBIAS VCC GND VIB
|
||||
*
|
||||
.PARAM M1 = 8
|
||||
.PARAM M2 = 5
|
||||
.PARAM MP = 1
|
||||
.PARAM WP = 13U
|
||||
.PARAM WN = 130U
|
||||
.PARAM LPE = {36U - LDP}
|
||||
.PARAM LNE = {13U - LDN}
|
||||
.PARAM BP = {MP*(WP/LPE)*(KPP/2)}
|
||||
.PARAM WW = 13U
|
||||
.PARAM LW = 213U
|
||||
.PARAM WNN = 25U
|
||||
.PARAM LNN = 87U
|
||||
.PARAM R1 = {(RSW*LW/WW + RSN*LNN/WNN)}
|
||||
.PARAM K2 = {M2*(WN/LNE)*(KPN/2)}
|
||||
.PARAM MR = {M2/M1}
|
||||
*
|
||||
R1 VIB GND {VBMUL}
|
||||
GB VCC VIB VALUE = {LIMIT( IF ( V(VCC,GND) > VTOHP, BP*PWR(V(VCC,GND)-VTOHP, 2), 0),
|
||||
+ (1 + 1*LAMBDA*(V(VCC,GND) - VTOHN))*PWR(( 1 - SQRT(MR/(1+2*LAMBDA*(V(VCC,GND) - VTOHP))) )/R1, 2)/K2, 0)}
|
||||
R2 VIB VCC {RPAR}
|
||||
.ENDS
|
||||
|
||||
.SUBCKT IMIRRP VCC IO VIB GND PARAMS: W = 100U L = 10U M = 1 IO = 1U
|
||||
*
|
||||
.PARAM MP = 1
|
||||
.PARAM WP = 13U
|
||||
.PARAM LPE = {36U - LDP}
|
||||
.PARAM LE = {L - LDP}
|
||||
.PARAM MR = { M*W/LE/(MP*WP/LPE)/VBMUL }
|
||||
.PARAM B1 = { (KPP/2*MP*WP/LPE)*VBMUL }
|
||||
.PARAM IS = 1E-12
|
||||
.PARAM N = {VTOHP/(VT*Log(1 + IO/IS))}
|
||||
*
|
||||
GB VCC IO VIB GND {MR}
|
||||
R1 VCC IO {RPAR}
|
||||
C1 VCC IO {M*(CBDJ*CJP*LS*W + CBDS*CJSWP*(2*LS + W))}
|
||||
V1 VCC 10 {VTOHP}
|
||||
D1 IO 10 DMOD1
|
||||
.MODEL DMOD1 D (IS={IS} N={N} )
|
||||
.ENDS
|
||||
|
||||
.SUBCKT IIMIRRP VCC IO II PARAMS: W1 = 100U L1 = 10U M1 = 1 W2 = 100U L2= 10U M2 = 2 IDIN = 1U
|
||||
*
|
||||
.PARAM L1E = {L1 - LDP}
|
||||
.PARAM L2E = {L2 - LDP}
|
||||
.PARAM B1 = {M1*(W1/L1)*(KPP/2)}
|
||||
.PARAM MR = {M2*W2/L2E/(M1*W1/L1E)}
|
||||
.PARAM RDS = {1/(2*SQRT(M2*(W2/L2E)*(KPP/2)*IDIN))}
|
||||
.PARAM IS = 1E-12
|
||||
.PARAM NP = {VTOP/(VT*Log(1 + IDIN/IS))}
|
||||
*
|
||||
FB VCC IO V1 {MR}
|
||||
R1 VCC IO {RPAR}
|
||||
C1 VCC IO {M2*(CBDJ*CJP*LS*W2 + CBDS*CJSWP*(2*LS + W2))}
|
||||
D1 IO 10 DMODP
|
||||
V1 VCC 10 {VTOP}
|
||||
R2 II 10 {RDS}
|
||||
C2 VCC II {M1*(CBDJ*CJP*LS*W1 + CBDS*CJSWP*(2*LS + W1)) + 2/3*COX*(M1*W1*L1E + M2*W2*L2E) + M1*CGSOP*W1}
|
||||
C3 II IO {CGDOP*W2}
|
||||
.MODEL DMODP D (IS={IS} N={NP} )
|
||||
.ENDS
|
||||
|
||||
.SUBCKT IIMIRRN GND IO II PARAMS: W1 = 100U L1 = 10U M1 = 1 W2 = 100U L2= 10U M2 = 2 IDIN = 1U
|
||||
*
|
||||
.PARAM L1E = {L1 - LDN}
|
||||
.PARAM L2E = {L2 - LDN}
|
||||
.PARAM B1 = {M1*(W1/L1)*(KPN/2)}
|
||||
.PARAM MR = { M2*W2/L2E/(M1*W1/L1E) }
|
||||
.PARAM RDS = {1/(2*SQRT(M2*(W2/L2E)*(KPN/2)*IDIN))}
|
||||
.PARAM IS = 1E-12
|
||||
.PARAM NN = {VTON/(VT*Log(1 + IDIN/IS))}
|
||||
*
|
||||
FB IO GND V1 {MR}
|
||||
R1 IO GND {RPAR}
|
||||
C1 IO GND {M2*(CBDJ*CJN*LS*W2 + CBDS*CJSWN*(2*LS + W2))}
|
||||
D1 10 IO DMODN
|
||||
V1 10 GND {VTON}
|
||||
R2 II 10 {RDS}
|
||||
C2 II GND {M1*(CBDJ*CJN*LS*W1 + CBDS*CJSWN*(2*LS + W1)) + 2/3*COX*(M1*W1*L1E + M2*W2*L2E) + M1*CGSON*W1}
|
||||
C3 II IO {M2*CGDON*W2}
|
||||
.MODEL DMODN D (IS={IS} N={NN} )
|
||||
.ENDS
|
||||
|
||||
.SUBCKT MDSWP D S DG GND PARAMS: W = 100U L = 10U M = 1
|
||||
*
|
||||
.PARAM LE = {L - LDP}
|
||||
*
|
||||
S1 D S DG GND SWN
|
||||
C1 D S {M*(CBDJ*CJP*LS*W + CBDS*CJSWP*(2*LS + W))}
|
||||
*D B
|
||||
.MODEL SWN VSWITCH ( VON = {0.49} VOFF = {0.55} RON={1/(2*M*(W/LE)*(KPP/2)*10)} ROFF={1G} )
|
||||
.ENDS
|
||||
|
||||
.SUBCKT MDSWN D S DG GND PARAMS: W = 100U L = 10U M = 1
|
||||
*
|
||||
.PARAM LE = {L - LDN}
|
||||
*
|
||||
S1 D S DG GND SWN
|
||||
C1 D S {M*(CBDJ*CJN*LS*W + CBDS*CJSWN*(2*LS + W))}
|
||||
*D B
|
||||
.MODEL SWN VSWITCH ( VON = {0.55} VOFF = {0.49} RON={1/(2*M*(W/LE)*(KPN/2)*10)} ROFF={1G} )
|
||||
.ENDS
|
||||
|
||||
.SUBCKT MSWN D G S PARAMS: W = 100U L = 10U M = 1
|
||||
*
|
||||
.PARAM LE = {L - LDN}
|
||||
*
|
||||
*C1 D S {M*(CBDJ*CJN*LS*W + CBDS*CJSWN*(2*LS + W))}
|
||||
*D B
|
||||
*C2 G S {M*2/3*COX*(W*LE) + CGSON*W}
|
||||
*C3 G D {CGDON*W}
|
||||
S1 D S G S SWN
|
||||
.MODEL SWN VSWITCH ( VON = {VTON+1} VOFF = {VTON} RON={1/(2*M*(W/L)*(KPN/2)*10)} ROFF={1G} )
|
||||
.ENDS
|
||||
*
|
||||
* CONNECTIONS: A
|
||||
* | C
|
||||
* | |
|
||||
.SUBCKT D_Z18V 1 2
|
||||
D1 1 2 DZ_18V
|
||||
.ENDS
|
||||
|
||||
.PARAM ISZ = 5P
|
||||
.PARAM NZ = {0.3/(VT*Log(1 + 5.0M/ISZ))}
|
||||
.MODEL DZ_18V D( IS={ISz} N={Nz} BV=18.0 IBV=5.0M EG={8*Nz*VT})
|
||||
|
||||
.SUBCKT RR1SFF S R R1 Q Q_ VCC GND
|
||||
+ PARAMS: VOUTH=5.0 VOUTL=0 RIN=1E12 DELAY=10N ROUT=10
|
||||
.PARAM W1 = 100U
|
||||
.PARAM L1 = 10U
|
||||
.PARAM W2 = 100U
|
||||
.PARAM L2= 10U
|
||||
.PARAM W3 = 10U
|
||||
.PARAM L3 = 25U
|
||||
.PARAM W4 = 10U
|
||||
.PARAM L4= 100U
|
||||
*
|
||||
XU1 Q GND S GND Q_ GND COMP2INPNORSD
|
||||
+ PARAMS: ROUT={ROUT} DELAYLH={1N} DELAYHL={1N} VOUTH={VOUTH} VOUTL={VOUTL}
|
||||
+ VTHRES1={0.5*(VOUTH-VOUTL)} VTHRES2={VTOCN}
|
||||
XU2 VCC R R1 GND Q_ GND Q VCC GND COMP3INPNORSD
|
||||
+ PARAMS: ROUT={ROUT} DELAYLH={15N} DELAYHL={1N} VOUTH={VOUTH} VOUTL={VOUTL}
|
||||
+ VTHRES1={VTOCP} VTHRES2={VTOCN} VTHRES3={0.49*(VOUTH-VOUTL)}
|
||||
*C1 S GND {0.5*COX*(W1*L1) + CGSON*W1}
|
||||
*C2 R VCC {0.5*COX*(W2*L2) + CGSOP*W2}
|
||||
*C3 R1 GND {0.5*COX*(W3*L3) + CGSON*W3}
|
||||
*C4 R1 VCC {0.5*COX*(W4*L4) + CGSOP*W4}
|
||||
.ENDS
|
||||
|
||||
.SUBCKT COMP2INPNORSD IN1+ IN1- IN2+ IN2- OUT GND
|
||||
+ PARAMS: ROUT=0 DELAYLH=0 DELAYHL=0 VOUTH=0 VOUTL=0 VTHRES1=0 VTHRES2=0
|
||||
*
|
||||
.PARAM TDELLH = {IF ( (DELAYLH < 1E-9) , 1E-9, DELAYLH ) }
|
||||
.PARAM TDELHL = {IF ( (DELAYHL < 1E-9) , 1E-9, DELAYHL ) }
|
||||
.PARAM RO = {IF ( (TDEL > 1E-15) & (ROUT < 1), 1, ROUT ) }
|
||||
.PARAM TDEL = {(TDELLH+TDELHL)/2}
|
||||
.PARAM COUT={TDEL/(0.693*(RO+1U))}
|
||||
.PARAM RDELLH = {TDELLH/(0.693*(COUT+1F))}
|
||||
.PARAM RDELHL = {TDELHL/(0.693*(COUT+1F))}
|
||||
|
||||
EOUT OUT GND VALUE= { IF ( (V(IN1+,IN1-) > {VTHRES1}) | (V(IN2+,IN2-) > {VTHRES2}),
|
||||
+ VOUTL + RDELLH*I(EOUT), VOUTH + RDELHL*I(EOUT) ) }
|
||||
COUT OUT GND {COUT}
|
||||
.ENDS COMP2INPNORSD
|
||||
|
||||
.SUBCKT COMP3INPNORSD IN1+ IN1- IN2+ IN2- IN3+ IN3- OUT VCC GND
|
||||
+ PARAMS: ROUT=0 DELAYLH=0 DELAYHL=0 VOUTH=0 VOUTL=0 VTHRES1=0 VHYST1=0 VTHRES2=0 VHYST2=0 VTHRES3=0 VHYST3=0
|
||||
*
|
||||
.PARAM TDELLH = {IF ( (DELAYLH < 1E-9) , 1E-9, DELAYLH ) }
|
||||
.PARAM TDELHL = {IF ( (DELAYHL < 1E-9) , 1E-9, DELAYHL ) }
|
||||
.PARAM RO = {IF ( (TDEL > 1E-15) & (ROUT < 1), 1, ROUT ) }
|
||||
.PARAM TDEL = {(TDELLH+TDELHL)/2}
|
||||
.PARAM COUT={TDEL/(0.693*(RO+1U))}
|
||||
.PARAM VREFN = {(15-VTOHN)}
|
||||
.PARAM VREFP = {(15-VTOHP)}
|
||||
.PARAM RDELLH = {TDELLH/(0.693*(COUT+1F))*VREFP}
|
||||
.PARAM RDELHL = {TDELHL/(0.693*(COUT+1F))*VREFN}
|
||||
*
|
||||
EOUT OUT GND VALUE= { IF ( (V(IN1+,IN1-) > {VTHRES1}) | (V(IN2+,IN2-) > {VTHRES2}) | (V(IN3+,IN3-) > {VTHRES3}),
|
||||
+ VOUTL + RDELLH*I(EOUT)*V(1,GND), VOUTH + RDELHL*I(EOUT)*V(1,GND) ) }
|
||||
E1 1 GND VALUE= { IF ( (V(VCC,GND) > {VTOHP+0.01}), 1/(V(VCC,GND)-VTOHP), 100 ) }
|
||||
COUT OUT GND {COUT}
|
||||
.ENDS COMP3INPNORSD
|
||||
|
||||
.SUBCKT 1N4148 1 2
|
||||
D1 1 2 D_1N4148_1
|
||||
.MODEL D_1N4148_1 D( IS=1N N=1.7 BV=75 IBV=5U RS=2M
|
||||
+ CJO=4P VJ=750M M=330M FC=500M TT=25.9N
|
||||
+ EG=1.11 XTI=3 KF=0 AF=1 )
|
||||
.ENDS
|
||||
|
||||
.PARAM LS = 1.0U
|
||||
.PARAM VTOP_ = 0.31
|
||||
.PARAM VTOP = 0.14
|
||||
.PARAM VTON = 0.14
|
||||
.PARAM VTOMP = 0.6
|
||||
.PARAM VTOMN = 0.55
|
||||
.PARAM VTOHP = 0.85
|
||||
.PARAM VTOHN = 0.80
|
||||
.PARAM LAMBDA = 2M
|
||||
.PARAM KPN = 6.0E-05
|
||||
.PARAM KPP = 3.0E-05
|
||||
.PARAM LDN = 0.07U
|
||||
.PARAM LDP = 0.07U
|
||||
.PARAM RSW = 1810
|
||||
.PARAM RSN = 1.41
|
||||
.PARAM VBMUL = 1E6
|
||||
.PARAM RPAR = 1T
|
||||
.PARAM CBDJ = 1
|
||||
.PARAM CBDS = 1
|
||||
.PARAM CN = 0.8
|
||||
*0.8U
|
||||
.PARAM CJN = {CN*180U}
|
||||
.PARAM CJP = {CN*300U}
|
||||
.PARAM CJSWN = {CN*1N}
|
||||
.PARAM CJSWP = {CN*2.2N}
|
||||
.PARAM XJN = 0.2U
|
||||
.PARAM CGSON = {CN*0.6 * XJN * COX}
|
||||
.PARAM CGDON = {CGSON}
|
||||
.PARAM XJP = 0.3U
|
||||
.PARAM CGSOP = {CN*0.6 * XJN * COX}
|
||||
.PARAM CGDOP = {CGSOP}
|
||||
.PARAM EPSSIO2 = {3.9*8.854214871E-12}
|
||||
.PARAM TOX = 1000E-10
|
||||
.PARAM COX = {EPSSIO2/TOX}
|
||||
.PARAM EC = 1.5E6
|
||||
.PARAM VTOCP = {VTOHP+0.05}
|
||||
.PARAM VTOCN = {VTOHN+0.05}
|
||||
*CG
|
||||
.PARAM CCG = 0.2
|
||||
.PARAM CJNCG = {CCG*180U}
|
||||
.PARAM CJPCG = {CCG*300U}
|
||||
.PARAM CJSWNCG = {CCG*1N}
|
||||
.PARAM CJSWPCG = {CCG*2.2N}
|
||||
.PARAM XJNCG = 0.2U
|
||||
.PARAM CGSONCG = {CCG*0.6 * XJNCG * COXCG}
|
||||
.PARAM CGDONCG = {CGSONCG}
|
||||
.PARAM XJPCG = 0.3U
|
||||
.PARAM CGSOPCG = {CCG*0.6 * XJNCG * COXCG}
|
||||
.PARAM CGDOPCG = {CGSOPCG}
|
||||
.PARAM TOXCG = 1000E-10
|
||||
.PARAM COXCG = {EPSSIO2/TOXCG}
|
||||
|
|
@ -0,0 +1,181 @@
|
|||
* AD22057N SPICE Macro-model
|
||||
* Description: Amplifier
|
||||
* Generic Desc: Bipolar, CSAmp, G=20, BiDir, Auto
|
||||
* Developed by: ARG / ADSC
|
||||
* Revision History: 08/10/2012 - Updated to new header style
|
||||
* 1.0 (11/1995)
|
||||
* Copyright 1995, 2012 by Analog Devices
|
||||
*
|
||||
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
|
||||
* indicates your acceptance of the terms and provisions in the License Statement.
|
||||
*
|
||||
* BEGIN Notes:
|
||||
*
|
||||
* Not Modeled:
|
||||
*
|
||||
* Parameters modeled include:
|
||||
* This version of the AD22057 model simulates the worst-case
|
||||
* parameters of the 'N' grade. The worst-case parameters
|
||||
* used correspond to those in the data sheet.
|
||||
*
|
||||
* END Notes
|
||||
*
|
||||
* Node assignments
|
||||
* non-inverting input
|
||||
* | inverting input
|
||||
* | | positive supply
|
||||
* | | | negative supply
|
||||
* | | | | A1 out
|
||||
* | | | | | A2 in
|
||||
* | | | | | | offset
|
||||
* | | | | | | | output
|
||||
* | | | | | | | |
|
||||
.SUBCKT AD22057N 1 2 99 50 30 31 40 49
|
||||
*
|
||||
* A1 INPUT ATTENUATORS, GAIN, AND OFFSET RESISTORS
|
||||
*
|
||||
R1 1 3 200K
|
||||
R2 2 4 200K
|
||||
RS1 3 16 1K
|
||||
RS2 4 18 1K
|
||||
R3 3 5 41K
|
||||
R4 4 6 41K
|
||||
R5 5 6 2.55919K TC=-600U
|
||||
R6 5 50 250
|
||||
R7 6 50 250
|
||||
R8 5 19 9K
|
||||
R9 6 7 10K
|
||||
R10 19 40 2K
|
||||
R11 19 50 2K
|
||||
R12 7 30 100K
|
||||
R16 7 50 10K
|
||||
C1 16 50 5P
|
||||
C2 17 50 5P
|
||||
*
|
||||
* A1 INPUT STAGE AND POLE AT 1MHZ
|
||||
*
|
||||
I1 99 8 7.55U
|
||||
Q1 11 16 9 QP 1
|
||||
Q2 12 17 10 QP 1
|
||||
R21 11 50 6.89671K
|
||||
R22 12 50 6.89671K
|
||||
R23 8 9 .335
|
||||
R24 8 10 .335
|
||||
C3 11 12 11.5P
|
||||
EOS 61 17 POLY(1) 33 0 -61.149U 1.2
|
||||
ETC 18 61 POLY(1) 60 0 -49.665M 1
|
||||
ITC 0 60 49.665U
|
||||
RTC 60 0 1E3 TC=-107U
|
||||
*
|
||||
* GAIN STAGE AND DOMINANT POLE AT 400HZ
|
||||
*
|
||||
EREF 98 50 POLY(2) 99 0 50 0 0 0.5 0.5
|
||||
G1 98 13 12 11 144.997U
|
||||
R25 13 98 6.89671E6
|
||||
C4 13 98 57.6923P
|
||||
D1 13 99 DX
|
||||
D2 50 13 DX
|
||||
*
|
||||
* COMMON MODE STAGE WITH ZERO AT 1KHZ
|
||||
*
|
||||
ECM 32 0 POLY(2) 1 0 2 0 0 0.5 0.5
|
||||
R28 32 33 1E6
|
||||
R29 33 0 10
|
||||
CCM 32 33 159P
|
||||
*
|
||||
* NEGATIVE ZERO AT 0.6MHZ
|
||||
*
|
||||
E1 23 98 13 98 1E6
|
||||
R26 23 24 1E3
|
||||
R27 24 98 1E-3
|
||||
FNZ 23 24 VNZ -1
|
||||
ENZ 25 98 23 24 1
|
||||
VNZ 26 98 DC 0
|
||||
CNZ 25 26 265P
|
||||
*
|
||||
* POLE AT 5MHZ
|
||||
*
|
||||
G2 98 20 24 98 1E-6
|
||||
R30 20 98 1E6
|
||||
C5 20 98 32F
|
||||
*
|
||||
* A1 OUTPUT STAGE
|
||||
*
|
||||
EIN1 99 27 POLY(1) 20 98 1.5072 1.124
|
||||
Q216 50 27 28 QP375 3.444
|
||||
Q218 7 29 99 QP350 9.913
|
||||
R31 28 29 27K
|
||||
I2 99 29 4.75U
|
||||
*
|
||||
* A2 INPUT STAGE
|
||||
*
|
||||
I3 99 34 2.516667U
|
||||
Q3 35 31 37 QP 1
|
||||
Q4 36 39 38 QP 1
|
||||
R32 35 50 106.103K
|
||||
R33 36 50 106.103K
|
||||
R34 34 37 85.414K
|
||||
R35 34 38 85.414K
|
||||
R13 40 41 20K
|
||||
R14 41 50 20K
|
||||
R15 41 49 10K
|
||||
R17 39 41 95K
|
||||
*
|
||||
* A2 1ST GAIN STAGE AND SLEW RATE
|
||||
*
|
||||
G3 98 42 36 35 30.159U
|
||||
R36 42 98 1E6
|
||||
E2 99 43 POLY(1) 99 98 -0.473 1
|
||||
E3 44 50 POLY(1) 98 50 -0.473 1
|
||||
D3 42 43 DX
|
||||
D4 44 42 DX
|
||||
*
|
||||
* A2 2ND GAIN STAGE AND DOMINANT POLE AT 12HZ
|
||||
*
|
||||
G4 98 45 42 98 2.5U
|
||||
R37 45 98 132.629E6
|
||||
C7 45 98 100P
|
||||
D5 45 59 DX
|
||||
D6 55 45 DX
|
||||
VC1 59 99 5
|
||||
VC2 50 55 5
|
||||
*
|
||||
* NEGATIVE ZERO AT 1MHZ
|
||||
*
|
||||
E4 51 98 45 98 1E6
|
||||
R38 51 52 1E6
|
||||
R39 52 98 1
|
||||
FNZ2 51 52 VNZ2 -1
|
||||
ENZ2 53 98 51 52 1
|
||||
VNZ2 54 98 0
|
||||
CNZ2 53 54 159F
|
||||
*
|
||||
* A2 OUTPUT STAGE
|
||||
*
|
||||
ISY 99 50 469U
|
||||
EIN2 99 56 POLY(1) 52 98 1.6901 112.132E-3
|
||||
RIN 46 56 10K
|
||||
Q316 50 46 47 QP375 1.778
|
||||
Q310 50 47 48 QP375 5.925
|
||||
Q318 49 48 57 50 QP350 9.913
|
||||
I4 99 47 4.75U
|
||||
I5 99 48 9.5U
|
||||
VSC 99 57 0
|
||||
FSC 58 99 VSC 1
|
||||
QSC 46 58 99 QP350 1
|
||||
RSC 99 58 89
|
||||
*
|
||||
* MODELS USED
|
||||
*
|
||||
.MODEL QP350 PNP(IS=1.4E-15 BF=70 CJE=.012P CJC=.06P RE=20 RB=350
|
||||
+RC=200)
|
||||
.MODEL QP375 PNP(IS=1.4E-15 CJE=.01P CJC=.05P RE=20 RC=400 RB=100)
|
||||
.MODEL QP AKO:QP350 PNP(BF=150 VA=100)
|
||||
.MODEL DX D(CJO=1F RS=.1)
|
||||
.ENDS
|
||||
|
||||
.MODEL QP351 PNP(IS=1.4E-15 BF=70 CJE=.012P CJC=.06P RE=20 RB=350
|
||||
+RC=200)
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,40 @@
|
|||
OpAmp Test
|
||||
|
||||
vddp vp 0 15
|
||||
vddn vn 0 0
|
||||
voff off 0 -1
|
||||
|
||||
*vin in 0 0
|
||||
|
||||
.include ad22057n.cir
|
||||
|
||||
* Node assignments
|
||||
* non-inverting input
|
||||
* | inverting input
|
||||
* | | positive supply
|
||||
* | | | negative supply
|
||||
* | | | | A1 out
|
||||
* | | | | | A2 in
|
||||
* | | | | | | offset
|
||||
* | | | | | | | output
|
||||
* | | | | | | | |
|
||||
*SUBCKT AD22057N 1 2 99 50 30 31 40 49
|
||||
Xopmap in 0 vp vn a1 a1 off outo AD22057N
|
||||
|
||||
Rout outo a1 200k
|
||||
Ca1 a1 0 500p
|
||||
|
||||
.dc vin 0.1 0.2 0.01
|
||||
|
||||
vin in 0 DC 0 PULSE(0.1 0.2 200uS 200uS 200uS 5m 10m)
|
||||
.tran 10u 10m
|
||||
|
||||
.control
|
||||
run
|
||||
plot dc1.v(outo) vs dc1.v(in)
|
||||
plot v(in) v(a1) v(outo)
|
||||
.endc
|
||||
|
||||
|
||||
.end
|
||||
|
||||
|
|
@ -0,0 +1,197 @@
|
|||
OpAmp Test
|
||||
|
||||
vddp vp 0 3
|
||||
vddn vn 0 -3
|
||||
|
||||
*vin in 0 0
|
||||
|
||||
* OPA171 IN+ IN- VCC VEE OUT
|
||||
.include OPA171.txt
|
||||
|
||||
Xopmap 0 ino vp vn outo OPA171
|
||||
|
||||
*Xopmap 0 ino outo vp vn CLC409
|
||||
Rin in ino 1k
|
||||
Rfb ino outo 3k
|
||||
|
||||
*.dc vin -1 1 0.1
|
||||
|
||||
vin in 0 DC 0 PULSE(-0.5 0.5 2uS 200NS 200NS 5uS 10uS)
|
||||
.tran 100n 10u
|
||||
|
||||
.options vntol=10u
|
||||
.control
|
||||
run
|
||||
plot v(in) v(outo)
|
||||
.endc
|
||||
|
||||
|
||||
*
|
||||
* This is a Very Wide band, Low Distortion Monolithic
|
||||
* Current Feedback Op Amp.
|
||||
*
|
||||
* Version 1, Rev. A, Date 04-09-92, By RRS
|
||||
*
|
||||
* Connections: Non-Inverting Input
|
||||
* | Inverting Input
|
||||
* | | Output
|
||||
* | | | +Vcc
|
||||
* | | | | -Vcc
|
||||
* | | | | |
|
||||
.SUBCKT CLC409 3 2 6 7 4
|
||||
*
|
||||
* DC BIAS MIRROR
|
||||
*
|
||||
R1 7 4 28K
|
||||
R2 7 9 271
|
||||
R3 10 4 335
|
||||
*
|
||||
G1 7 11 POLY(2) 7 9 7 4 0 3.15M 21.5U
|
||||
C3 11 0 128F
|
||||
*
|
||||
G2 14 4 POLY(1) 10 4 0 2.95M
|
||||
C4 14 0 104F
|
||||
*
|
||||
* INPUT VOLTAGE BUFFER
|
||||
*
|
||||
E1 3 17 POLY(1) 35 0 1.0M 1.673
|
||||
C6 17 0 1.00P
|
||||
*
|
||||
Q1 10 17 12 QINP
|
||||
D3 11 12 DY
|
||||
Q2 9 17 13 QINN
|
||||
D4 13 14 DY
|
||||
*
|
||||
G3 2 0 POLY(1) 36 0 0 9.282M
|
||||
C10 2 0 2.9P
|
||||
*
|
||||
D5 22 2 DY
|
||||
Q3 21 11 22 QINN
|
||||
D6 2 23 DY
|
||||
Q4 24 14 23 QINP
|
||||
*
|
||||
* CURRENT MIRROR GAIN BLOCKS
|
||||
*
|
||||
R10 7 20 640
|
||||
V1 20 21 1.9
|
||||
C8 21 28 294F
|
||||
G4 7 28 POLY(1) 7 20 0 4.3M
|
||||
R15 7 28 102K
|
||||
C13 28 0 641F
|
||||
D1 28 26 DX
|
||||
V3 7 26 1.65
|
||||
G6 7 30 POLY(1) 7 20 0 2.74M
|
||||
C15 30 0 676F
|
||||
*
|
||||
R13 25 4 640
|
||||
V2 24 25 1.85
|
||||
C12 24 29 294F
|
||||
G5 29 4 POLY(1) 25 4 0 4.5M
|
||||
R16 29 4 761K
|
||||
C14 29 0 312F
|
||||
D2 27 29 DX
|
||||
V4 27 4 1.55
|
||||
G7 31 4 POLY(1) 25 4 0 6.74M
|
||||
C16 31 0 330F
|
||||
*
|
||||
* OUTPUT STAGE AND COMPENSATION CAPACITORS
|
||||
*
|
||||
R14 28 29 45.0
|
||||
Q5 4 29 30 QOUTP1
|
||||
Q6 7 28 31 QOUTN1
|
||||
*
|
||||
C9 21 33 .935P
|
||||
C11 24 33 .935P
|
||||
C17 33 0 4.00P
|
||||
R19 33 6 10
|
||||
*
|
||||
Q7 7 30 33 QOUTN2
|
||||
Q8 4 31 33 QOUTP2
|
||||
*
|
||||
* NOISE BLOCKS
|
||||
*
|
||||
R20 35 0 122
|
||||
R21 35 0 122
|
||||
*
|
||||
R22 36 0 122
|
||||
R23 36 0 122
|
||||
*
|
||||
* MODELS
|
||||
*
|
||||
.MODEL DX D TT=200N
|
||||
.MODEL DY D IS=0.166F
|
||||
*
|
||||
.MODEL QINN NPN
|
||||
+ IS =0.166f BF =3.239E+02 NF =1.000E+00 VAF=8.457E+01
|
||||
+ IKF=2.462E-02 ISE=2.956E-17 NE =1.197E+00 BR =3.719E+01
|
||||
+ NR =1.000E+00 VAR=1.696E+00 IKR=3.964E-02 ISC=1.835E-19
|
||||
+ NC =1.700E+00 RB =118 IRB=0.000E+00 RBM=65.1
|
||||
+ RC =2.645E+01 CJE=1.632E-13 VJE=7.973E-01
|
||||
+ MJE=4.950E-01 TF =1.948E-11 XTF=1.873E+01 VTF=2.825E+00
|
||||
+ ITF=5.955E-02 PTF=0.000E+00 CJC=1.720E-13 VJC=8.046E-01
|
||||
+ MJC=4.931E-01 XCJC=589m TR =4.212E-10 CJS=629f
|
||||
+ MJS=0 KF =2.000E-12 AF =1.000E+00 FC =9.765E-01
|
||||
*
|
||||
.MODEL QOUTN1 NPN
|
||||
+ IS =3.954E-16 BF =3.239E+02 NF =1.000E+00 VAF=8.457E+01
|
||||
+ IKF=4.590E-02 ISE=5.512E-17 NE =1.197E+00 BR =3.719E+01
|
||||
+ NR =1.000E+00 VAR=1.696E+00 IKR=7.392E-02 ISC=3.087E-19
|
||||
+ NC =1.700E+00 RB =3.645E+01 IRB=0.000E+00 RBM=8.077E+00
|
||||
+ RE =3.010E-01 RC =2.702E+01 CJE=2.962E-13
|
||||
+ MJE=4.950E-01 TF =1.904E-11 XTF=1.873E+01 VTF=2.825E+00
|
||||
+ ITF=1.110E-01 PTF=0.000E+00 CJC=2.846E-13 VJC=8.046E-01
|
||||
+ MJC=4.931E-01 XCJC=1.562E-01 TR =5.832E-10 CJS=5.015E-13
|
||||
+ VJS=5.723E-01 MJS=4.105E-01 KF =2.000E-12 AF =1.000E+00
|
||||
+ FC =9.765E-01
|
||||
*
|
||||
.MODEL QOUTN2 NPN
|
||||
+ IS =9.386E-16 BF =3.239E+02 NF =1.000E+00 VAF=8.457E+01
|
||||
+ IKF=1.089E-01 ISE=1.308E-16 NE =1.197E+00 BR =3.956E+01
|
||||
+ NR =1.000E+00 VAR=1.696E+00 IKR=7.392E-02 ISC=1.378E-18
|
||||
+ NC =1.700E+00 RB =65.4 IRB=0.000E+00 RBM=1.683E+00
|
||||
+ RC =1.857E+01 CJE=7.030E-13 VJE=7.973E-01
|
||||
+ MJE=4.950E-01 TF =1.875E-11 XTF=1.873E+01 VTF=2.825E+00
|
||||
+ ITF=2.635E-01 PTF=0.000E+00 CJC=6.172E-13 VJC=8.046E-01
|
||||
+ MJC=4.931E-01 XCJC=860m TR =1.069E-09 CJS=1.028E-12
|
||||
+ VJS=5.723E-01 MJS=4.105E-01 KF =2.000E-12 AF =1.000E+00
|
||||
+ FC =9.765E-01
|
||||
*
|
||||
.MODEL QINP PNP
|
||||
+ IS =0.166f BF =7.165E+01 NF =1.000E+00 VAF=2.000E+01
|
||||
+ IKF=1.882E-02 ISE=6.380E-16 NE =1.366E+00 BR =1.833E+01
|
||||
+ NR =1.000E+00 VAR=1.805E+00 IKR=1.321E-01 ISC=3.666E-18
|
||||
+ NC =1.634E+00 RB =78.8 IRB=0.000E+00 RBM=57.6
|
||||
+ RC =3.739E+01 CJE=1.588E-13 VJE=7.975E-01
|
||||
+ MJE=5.000E-01 TF =3.156E-11 XTF=5.386E+00 VTF=2.713E+00
|
||||
+ ITF=5.084E-02 PTF=0.000E+00 CJC=2.725E-13 VJC=7.130E-01
|
||||
+ MJC=4.200E-01 XCJC=741m TR =7.500E-11 CJS=515f
|
||||
+ MJS=0 KF =2.000E-12 AF =1.000E+00 FC =8.803E-01
|
||||
*
|
||||
.MODEL QOUTP1 PNP
|
||||
+ IS =2.399E-16 BF =7.165E+01 NF =1.000E+00 VAF=3.439E+01
|
||||
+ IKF=3.509E-02 ISE=1.190E-15 NE =1.366E+00 BR =1.900E+01
|
||||
+ NR =1.000E+00 VAR=1.805E+00 IKR=2.464E-01 ISC=6.745E-18
|
||||
+ NC =1.634E+00 RB =1.542E+01 IRB=0.000E+00 RBM=4.059E+00
|
||||
+ RC =4.174E+01 CJE=2.962E-13 VJE=7.975E-01
|
||||
+ MJE=5.000E-01 TF =3.107E-11 XTF=5.386E+00 VTF=2.713E+00
|
||||
+ ITF=9.481E-02 PTF=0.000E+00 CJC=4.508E-13 VJC=7.130E-01
|
||||
+ MJC=4.200E-01 XCJC=1.562E-01 TR =9.500E-11 CJS=1.045E-12
|
||||
+ VJS=6.691E-01 MJS=3.950E-01 KF =2.000E-12 AF =1.000E+00
|
||||
+ FC =8.803E-01
|
||||
*
|
||||
.MODEL QOUTP2 PNP
|
||||
+ IS =5.693E-16 BF =7.165E+01 NF =1.000E+00 VAF=3.439E+01
|
||||
+ IKF=8.328E-02 ISE=5.742E-15 NE =1.366E+00 BR =1.923E+01
|
||||
+ NR =1.000E+00 VAR=1.805E+00 IKR=5.848E-01 ISC=1.586E-17
|
||||
+ NC =1.634E+00 RB =56.5 IRB=0.000E+00 RBM=51.7
|
||||
+ RC =1.767E+00 CJE=7.030E-13 VJE=7.975E-01
|
||||
+ MJE=5.000E-01 TF =3.073E-11 XTF=5.386E+00 VTF=2.713E+00
|
||||
+ ITF=2.250E-01 PTF=0.000E+00 CJC=9.776E-13 VJC=7.130E-01
|
||||
+ MJC=4.200E-01 XCJC=923m TR =1.450E-10 CJS=1.637E-12
|
||||
+ VJS=6.691E-01 MJS=3.950E-01 KF =2.000E-12 AF =1.000E+00
|
||||
+ FC =8.803E-01
|
||||
*
|
||||
.ENDS CLC409
|
||||
|
||||
.end
|
||||
|
||||
|
|
@ -0,0 +1,32 @@
|
|||
Relaxation oscillator
|
||||
* ST AN4071, Fig. 26
|
||||
* www.st.com/resource/en/application_note/dm00050759.pdf
|
||||
|
||||
.include Opamps_Comparators_ST.lib
|
||||
XICOMP2 VM1 VP1 VS1 VCCP VCCN TS302X
|
||||
* http://www.st.com/resource/en/cad_symbol_library/opamps_comparators_st.zip
|
||||
|
||||
vdd vccp 0 5
|
||||
vss vccn 0 0
|
||||
|
||||
R1 vs1 vm1 10k
|
||||
R2 vp1 0 10k
|
||||
R3 vp1 vccp 10k
|
||||
R4 vs1 vp1 10k
|
||||
|
||||
C1 vm1 0 1n
|
||||
|
||||
.tran 100n 500u uic
|
||||
|
||||
.option rshunt=1e12
|
||||
|
||||
.control
|
||||
save vs1 vm1 vp1
|
||||
run
|
||||
plot vs1 vm1 vp1
|
||||
linearize vs1
|
||||
fft vs1
|
||||
plot mag(vs1) xlimit 1k 100k
|
||||
.endc
|
||||
|
||||
.end
|
||||
|
|
@ -0,0 +1,13 @@
|
|||
remcirc test
|
||||
v1 1 0 1
|
||||
v2 2 0 1
|
||||
v3 3 0 1
|
||||
.include rtest.lib
|
||||
|
||||
.control
|
||||
repeat 1000
|
||||
reset
|
||||
end
|
||||
.endc
|
||||
|
||||
.end
|
||||
|
|
@ -0,0 +1,4 @@
|
|||
R1 1 0 res
|
||||
R2 2 0 res
|
||||
R3 3 0 res
|
||||
.model res r r=1
|
||||
Loading…
Reference in New Issue