Updated documentation reflecting changes into inductor model.
This commit is contained in:
parent
50d0397dc3
commit
7934e27102
201
doc/ngspice.texi
201
doc/ngspice.texi
|
|
@ -1759,6 +1759,7 @@ in the direction of voltage drop).
|
|||
* Semiconductor Capacitors::
|
||||
* Semiconductor Capacitor Model (C)::
|
||||
* Inductors::
|
||||
* Inductor model::
|
||||
* Coupled (Mutual) Inductors::
|
||||
* Switches::
|
||||
* Switch Model (SW/CSW)::
|
||||
|
|
@ -2060,7 +2061,7 @@ in a @command{.model} line, as in the example below:
|
|||
C1 15 5 cstd
|
||||
C2 2 7 cstd
|
||||
|
||||
.model cstd cap=3n
|
||||
.model cstd C cap=3n
|
||||
@end example
|
||||
|
||||
Both capacitors have a capacitance of 3nF.
|
||||
|
|
@ -2086,7 +2087,7 @@ example below:
|
|||
@example
|
||||
CEB 1 2 1u cap1 dtemp=5
|
||||
|
||||
.MODEL cap1 tc1=0.001
|
||||
.MODEL cap1 C tc1=0.001
|
||||
@end example
|
||||
|
||||
|
||||
|
|
@ -2311,13 +2312,14 @@ circuit temperature and @option{dtemp}, if present.
|
|||
If both @option{temp} and @option{dtemp} are specified, the latter is ignored.
|
||||
|
||||
|
||||
@node Inductors, Coupled (Mutual) Inductors, Semiconductor Capacitor Model (C), Elementary Devices
|
||||
@node Inductors, Inductor model, Semiconductor Capacitor Model (C), Elementary Devices
|
||||
@subsection Inductors
|
||||
|
||||
General form:
|
||||
|
||||
@example
|
||||
LYYYYYYY N+ N- VALUE <IC=INCOND>
|
||||
LYYYYYYY n+ n- <value> <mname> <m=val> <scale=val> <temp=val>
|
||||
+ <dtemp=val> <ic=init_condition>
|
||||
@end example
|
||||
|
||||
|
||||
|
|
@ -2328,15 +2330,191 @@ If both @option{temp} and @option{dtemp} are specified, the latter is ignored.
|
|||
LSHUNT 23 51 10U IC=15.7MA
|
||||
@end example
|
||||
|
||||
The inductor device implemented into ngspice has many enhancements over the
|
||||
orginal one. @option{n+} and @option{n-} are the positive and negative element
|
||||
nodes, respectively. @option{value} is the inductance in Henries.
|
||||
|
||||
N+ and N- are the positive and negative element nodes, respectively.
|
||||
VALUE is the inductance in Henries.
|
||||
Inductance can be specified in the instance line as in the examples above or
|
||||
in a @command{.model} line, as in the example below:
|
||||
|
||||
@example
|
||||
L1 15 5 indmod1
|
||||
L2 2 7 indmod1
|
||||
|
||||
.model indmod1 L ind=3n
|
||||
@end example
|
||||
|
||||
Both inductors have an inductance of 3nH.
|
||||
|
||||
The @option{m} parameter is the "multiplication factor", and can be used to
|
||||
simulate "m" instances of the same kind in parallel. This parameter affects
|
||||
all analyses.
|
||||
|
||||
The @option{scale} keyword let the designer choose a different scale for
|
||||
elements. This option is not yet very useful, it will fully implemented in the
|
||||
future to perform technology scaling. At present is here as a work in progress.
|
||||
|
||||
The operating temperature of instances can be set using the @option{temp}
|
||||
option. Ngspice simulates the circuit with all components at the same single
|
||||
temperature (the circuit temperature). To adjust the temperature of an
|
||||
inductor instance you can define its temperature difference from the rest of
|
||||
the circuit using @option{dtemp}.
|
||||
|
||||
If you want to simulate temperature dependence of an inductor, you need to
|
||||
specify its temperature coefficients, using a @command{.model} line, like in
|
||||
the example below:
|
||||
|
||||
@example
|
||||
Lload 1 2 1u ind1 dtemp=5
|
||||
|
||||
.MODEL ind1 L tc1=0.001
|
||||
@end example
|
||||
|
||||
The (optional) initial condition is the initial (timezero) value of
|
||||
inductor current (in Amps) that flows from N+, through the inductor, to
|
||||
N-. Note that the initial conditions (if any) apply only if the UIC
|
||||
option is specified on the .TRAN analysis line.
|
||||
inductor current (in Amps) that flows from @option{n+}, through the inductor,
|
||||
to @option{n-}. Note that the initial conditions (if any) apply only if the
|
||||
@option{UIC} option is specified on the @command{.tran} analysis line.
|
||||
|
||||
Ngspice calculates the nominal inductance as described below:
|
||||
|
||||
@tex
|
||||
$$
|
||||
L_{nom} = {{{\rm value} * {\rm scale}} \over m}
|
||||
$$
|
||||
@end tex
|
||||
@ifnottex
|
||||
@example
|
||||
Lnom = value * scale / m
|
||||
@end example
|
||||
@end ifnottex
|
||||
|
||||
|
||||
@node Inductor model, Coupled (Mutual) Inductors, Inductors, Elementary Devices
|
||||
@subsection Inductor model
|
||||
|
||||
The inductor model contains physical and geometrical information that may be used to
|
||||
compute the inductance in some special cases (solenoid, toroid) In the present
|
||||
form is not very useful, but may be extended in the future to accomodate
|
||||
silicon integrated inductors, an emerging technology.
|
||||
|
||||
@multitable @columnfractions .15 .4 .2 .1 .1
|
||||
@item name @tab parameter @tab units @tab default @tab example
|
||||
@item IND @tab model inductance
|
||||
@tab H @tab 0.0 @tab 1e-3
|
||||
@item CSECT @tab Cross section
|
||||
@tab meters@math{^2} @tab 0.0 @tab 1e-3
|
||||
@item LENGTH @tab Length
|
||||
@tab meters @tab 0.0 @tab 1e-2
|
||||
@item TC1 @tab first order temperature coeff.
|
||||
@tab F/°C @tab 0.0 @tab 0.001
|
||||
@item TC2 @tab second order temperature coeff.
|
||||
@tab F/°C@math{^2} @tab 0.0 @tab 0.0001
|
||||
@item TNOM @tab parameter measurement temperature
|
||||
@tab °C @tab 27 @tab 50
|
||||
@item N @tab number of turns
|
||||
@tab - @tab 0.0 @tab 10
|
||||
@item MU @tab relative magnetic permeability
|
||||
@tab H/meters @tab 0.0 @tab -
|
||||
@end multitable
|
||||
|
||||
The inductor has an indiuctance computed as:
|
||||
|
||||
If @option{value} is specified on the instance line then
|
||||
|
||||
@tex
|
||||
$$
|
||||
L_{nom} = {{{\rm value} * {\rm scale}} \over m}
|
||||
$$
|
||||
@end tex
|
||||
@ifnottex
|
||||
@example
|
||||
Lnom = value * scale / m
|
||||
@end example
|
||||
@end ifnottex
|
||||
|
||||
If model inductance is specified then
|
||||
|
||||
@tex
|
||||
$$
|
||||
L_{nom} = {{{\rm IND} * {\rm scale}} \over m}
|
||||
$$
|
||||
@end tex
|
||||
@ifnottex
|
||||
@example
|
||||
Lnom = IND * scale / m
|
||||
@end example
|
||||
@end ifnottex
|
||||
|
||||
If neither @option{value} nor @option{IND} are specified, then geometrical and
|
||||
physical parameters are take into account:
|
||||
|
||||
If @option{LENGTH} is not zero:
|
||||
|
||||
@tex
|
||||
|
||||
if {\rm MU } is specified:
|
||||
$$
|
||||
L_{nom} = {{{\rm MU} * \mu_0 * {\rm N}^2 * {\rm CSECT}} \over {\rm LENGTH} }
|
||||
$$
|
||||
|
||||
otherwise:
|
||||
|
||||
$$
|
||||
L_{nom} = {{ \mu_0 * {\rm N}^2 * {\rm CSECT}} \over {\rm LENGTH} }
|
||||
$$
|
||||
|
||||
with:
|
||||
$$
|
||||
\mu_{0} = 1.25663706143592e-6 {H \over m}
|
||||
$$
|
||||
|
||||
@end tex
|
||||
@ifnottex
|
||||
@example
|
||||
2
|
||||
MU * mu * N * CSECT
|
||||
0
|
||||
Lnom = ------------------- if MU is specified
|
||||
LENGTH
|
||||
|
||||
|
||||
2
|
||||
mu * N * CSECT
|
||||
0
|
||||
Lnom = -------------- if MU is not specified
|
||||
LENGTH
|
||||
|
||||
with:
|
||||
|
||||
mu = 1.25663706143592e-6 H/m
|
||||
0
|
||||
|
||||
@end example
|
||||
@end ifnottex
|
||||
|
||||
After the nominal inducatnce is calculated, it is adjusted for temperature
|
||||
by the formula:
|
||||
|
||||
@tex
|
||||
$$
|
||||
L(T) = L({\rm TNOM}) \Bigl( 1 + TC_1 (T - {\rm TNOM}) + TC_2 (T-{\rm TNOM})^2 \Bigr)
|
||||
$$
|
||||
where $L({\rm TNOM}) = L_{nom}$.
|
||||
@end tex
|
||||
@ifnottex
|
||||
@example
|
||||
2
|
||||
L(T) = L(TNOM) [1 + TC (T - TNOM) + TC (T - TNOM) ]
|
||||
1 2
|
||||
where L(TNOM) = Lnom
|
||||
@end example
|
||||
@end ifnottex
|
||||
|
||||
In the above formula, "T" represents the instance temperature, which can be
|
||||
explicitly using the @option{temp} keyword or os calculated using the
|
||||
circuit temperature and @option{dtemp}, if present.
|
||||
|
||||
If both @option{temp} and @option{dtemp} are specified, the latter is ignored.
|
||||
|
||||
|
||||
|
||||
|
|
@ -2346,7 +2524,7 @@ option is specified on the .TRAN analysis line.
|
|||
General form:
|
||||
|
||||
@example
|
||||
KXXXXXXX LYYYYYYY LZZZZZZZ VALUE
|
||||
KXXXXXXX LYYYYYYY LZZZZZZZ value
|
||||
@end example
|
||||
|
||||
|
||||
|
|
@ -2359,13 +2537,12 @@ option is specified on the .TRAN analysis line.
|
|||
|
||||
|
||||
LYYYYYYY and LZZZZZZZ are the names of the two coupled inductors, and
|
||||
VALUE is the coefficient of coupling, K, which must be greater than 0
|
||||
@option{value} is the coefficient of coupling, K, which must be greater than 0
|
||||
and less than or equal to 1. Using the 'dot' convention, place a 'dot'
|
||||
on the first node of each inductor.
|
||||
|
||||
|
||||
|
||||
|
||||
@node Switches, Switch Model (SW/CSW), Coupled (Mutual) Inductors, Elementary Devices
|
||||
@subsection Switches
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue