rebase old dio_rev_rec branch

This commit is contained in:
dwarning 2025-08-31 18:13:44 +02:00
parent 2a942a2161
commit 64a433ebaa
14 changed files with 788 additions and 667 deletions

View File

@ -16,7 +16,6 @@ IFparm DIOpTable[] = { /* parameters */
IOPAU("ic", DIO_IC, IF_REAL, "Initial device voltage"),
IOPU("area", DIO_AREA, IF_REAL, "Area factor"),
IOPU("pj", DIO_PJ, IF_REAL, "Perimeter factor"),
IOPUR("perim", DIO_PJ, IF_REAL, "Perimeter factor"),
IOPU("w", DIO_W, IF_REAL, "Diode width"),
IOPU("l", DIO_L, IF_REAL, "Diode length"),
IOPU("m", DIO_M, IF_REAL, "Multiplier"),
@ -50,7 +49,6 @@ IFparm DIOmPTable[] = { /* model parameters */
IOP( "is", DIO_MOD_IS, IF_REAL, "Saturation current"),
IOPR( "js", DIO_MOD_IS, IF_REAL, "Saturation current"),
IOP( "jsw", DIO_MOD_JSW, IF_REAL, "Sidewall Saturation current"),
IOPR( "isw", DIO_MOD_JSW, IF_REAL, "Sidewall Saturation current"),
IOPU( "tnom",DIO_MOD_TNOM,IF_REAL, "Parameter measurement temperature"),
IOPUR("tref",DIO_MOD_TNOM,IF_REAL, "Parameter measurement temperature"),
@ -75,21 +73,17 @@ IFparm DIOmPTable[] = { /* model parameters */
IOP( "cjp", DIO_MOD_CJSW, IF_REAL, "Sidewall junction capacitance"),
IOPR( "cjsw", DIO_MOD_CJSW, IF_REAL, "Sidewall junction capacitance"),
IOP( "php", DIO_MOD_VJSW, IF_REAL, "Sidewall junction potential"),
IOPR( "vjsw", DIO_MOD_VJSW, IF_REAL, "Sidewall junction potential"),
IOP( "mjsw", DIO_MOD_MJSW, IF_REAL, "Sidewall Grading coefficient"),
IOP( "ikf", DIO_MOD_IKF, IF_REAL, "Forward Knee current"),
IOPR( "ik", DIO_MOD_IKF, IF_REAL, "Forward Knee current"),
IOP( "ikr", DIO_MOD_IKR, IF_REAL, "Reverse Knee current"),
IOP( "nbv", DIO_MOD_NBV, IF_REAL, "Breakdown Emission Coefficient"),
IOPR( "nz", DIO_MOD_NBV, IF_REAL, "Breakdown Emission Coefficient"),
IOP("area", DIO_MOD_AREA, IF_REAL, "Area factor"),
IOP( "pj", DIO_MOD_PJ, IF_REAL, "Perimeter factor"),
IOP( "tlev", DIO_MOD_TLEV, IF_INTEGER, "Diode temperature equation selector"),
IOP( "tlevc", DIO_MOD_TLEVC, IF_INTEGER, "Diode temperature equation selector"),
IOP( "eg", DIO_MOD_EG, IF_REAL, "Activation energy"),
IOP( "gap1", DIO_MOD_GAP1, IF_REAL, "First bandgap correction factor"),
IOP( "gap2", DIO_MOD_GAP2, IF_REAL, "Second bandgap correction factor"),
IOP( "xti", DIO_MOD_XTI, IF_REAL, "Saturation current temperature exp."),
IOP( "cta", DIO_MOD_CTA, IF_REAL, "Area junction temperature coefficient"),
IOPR( "ctc", DIO_MOD_CTA, IF_REAL, "Area junction capacitance temperature coefficient"),
@ -110,16 +104,13 @@ IFparm DIOmPTable[] = { /* model parameters */
IOP( "fc", DIO_MOD_FC, IF_REAL, "Forward bias junction fit parameter"),
IOP( "fcs", DIO_MOD_FCS, IF_REAL, "Forward bias sidewall junction fit parameter"),
IOP( "bv", DIO_MOD_BV, IF_REAL, "Reverse breakdown voltage"),
IOPR( "vb", DIO_MOD_BV, IF_REAL, "Reverse breakdown voltage (level=3)"),
IOPR( "vrb", DIO_MOD_BV, IF_REAL, "Reverse breakdown voltage (level=3)"),
IOPR( "var", DIO_MOD_BV, IF_REAL, "Reverse breakdown voltage (level=3)"),
IOP( "ibv", DIO_MOD_IBV, IF_REAL, "Current at reverse breakdown voltage"),
IOPR( "ib", DIO_MOD_IBV, IF_REAL, "Current at reverse breakdown voltage"),
IOP( "tcv", DIO_MOD_TCV, IF_REAL, "Reverse breakdown voltage temperature coefficient"),
IOPR("tbv1", DIO_MOD_TCV, IF_REAL, "Reverse breakdown voltage temperature coefficient"),
OPU( "cond", DIO_MOD_COND,IF_REAL, "Ohmic conductance"),
IOP( "isr", DIO_MOD_ISR, IF_REAL, "Recombination saturation current"),
IOP( "nr", DIO_MOD_NR, IF_REAL, "Recombination current emission coefficient"),
IOP( "vp", DIO_MOD_VP, IF_REAL, "Soft reverse recovery parameter"),
/* SOA parameters */
IOP( "fv_max", DIO_MOD_FV_MAX, IF_REAL, "maximum voltage in forward direction"),
@ -140,7 +131,6 @@ IFparm DIOmPTable[] = { /* model parameters */
IOP( "xoi", DIO_MOD_XOI, IF_REAL, "Thickness of the polysilicon to bulk oxide (level=3)"),
IOP( "xm", DIO_MOD_XM, IF_REAL, "Masking and etching effects in metal (level=3)"),
IOP( "xp", DIO_MOD_XP, IF_REAL, "Masking and etching effects in polysilicon (level=3)"),
IOP( "xw", DIO_MOD_XW, IF_REAL, "Masking and etching effects (level=3)"),
IP( "d", DIO_MOD_D, IF_FLAG, "Diode model")
};

View File

@ -41,19 +41,19 @@ typedef struct sDIOinstance {
const int DIOtempNode; /* number of the temperature node of the diode */
int DIOposPrimeNode; /* number of positive prime node of diode */
double *DIOposPosPrimePtr; /* pointer to sparse matrix at
double *DIOposPosPrimePtr; /* pointer to sparse matrix at
* (positive,positive prime) */
double *DIOnegPosPrimePtr; /* pointer to sparse matrix at
double *DIOnegPosPrimePtr; /* pointer to sparse matrix at
* (negative,positive prime) */
double *DIOposPrimePosPtr; /* pointer to sparse matrix at
double *DIOposPrimePosPtr; /* pointer to sparse matrix at
* (positive prime,positive) */
double *DIOposPrimeNegPtr; /* pointer to sparse matrix at
double *DIOposPrimeNegPtr; /* pointer to sparse matrix at
* (positive prime,negative) */
double *DIOposPosPtr; /* pointer to sparse matrix at
double *DIOposPosPtr; /* pointer to sparse matrix at
* (positive,positive) */
double *DIOnegNegPtr; /* pointer to sparse matrix at
double *DIOnegNegPtr; /* pointer to sparse matrix at
* (negative,negative) */
double *DIOposPrimePosPrimePtr; /* pointer to sparse matrix at
double *DIOposPrimePosPrimePtr; /* pointer to sparse matrix at
* (positive prime,positive prime) */
/* self heating */
@ -131,7 +131,7 @@ typedef struct sDIOinstance {
double DIOtVcrit; /* temperature adjusted V crit */
double DIOtF1; /* temperature adjusted f1 */
double DIOtBrkdwnV; /* temperature adjusted breakdown voltage */
double DIOtF2; /* coeff. for capacitance equation precomputation */
double DIOtF3; /* coeff. for capacitance equation precomputation */
double DIOtF2SW; /* coeff. for capacitance equation precomputation */
@ -210,7 +210,7 @@ typedef struct sDIOinstance {
#define DIOsenGeq DIOsens /* stores the perturbed values of geq */
#define DIOsenCeq DIOsens + 3 /* stores the perturbed values of ceq */
#define DIOdphidp DIOsens + 6
#define DIOdphidp DIOsens + 6
#define DIOvoltage DIOstate
@ -218,16 +218,21 @@ typedef struct sDIOinstance {
#define DIOconduct DIOstate+2
#define DIOcapCharge DIOstate+3
#define DIOcapCurrent DIOstate+4
#define DIOdiffCharge DIOstate+5
#define DIOdiffCurrent DIOstate+6
#define DIOdiffCap DIOstate+7
#define DIOoldCurr DIOstate+8
#define DIOoldCond DIOstate+9
#define DIOqth DIOstate+5 /* thermal capacitor charge */
#define DIOcqth DIOstate+6 /* thermal capacitor current */
#define DIOqth DIOstate+10 /* thermal capacitor charge */
#define DIOcqth DIOstate+11 /* thermal capacitor current */
#define DIOdeltemp DIOstate+7 /* thermal voltage over rth0 */
#define DIOdIdio_dT DIOstate+8
#define DIOdeltemp DIOstate+12 /* thermal voltage over rth0 */
#define DIOdIdio_dT DIOstate+13
#define DIOnumStates 9
#define DIOnumStates 14
#define DIOsensxp DIOstate+9 /* charge sensitivities and their derivatives.
#define DIOsensxp DIOstate+14 /* charge sensitivities and their derivatives.
* +10 for the derivatives - pointer to the
* beginning of the array */
@ -272,8 +277,6 @@ typedef struct sDIOmodel { /* model structure for a diode */
unsigned DIOtlevGiven : 1;
unsigned DIOtlevcGiven : 1;
unsigned DIOactivationEnergyGiven : 1;
unsigned DIOfirstBGcorrFactorGiven : 1;
unsigned DIOsecndBGcorrFactorGiven : 1;
unsigned DIOsaturationCurrentExpGiven : 1;
unsigned DIOctaGiven : 1;
unsigned DIOctpGiven : 1;
@ -302,6 +305,7 @@ typedef struct sDIOmodel { /* model structure for a diode */
unsigned DIOte_maxGiven : 1;
unsigned DIOrecSatCurGiven : 1;
unsigned DIOrecEmissionCoeffGiven : 1;
unsigned DIOsoftRevRecParamGiven : 1;
unsigned DIOrth0Given :1;
unsigned DIOcth0Given :1;
@ -314,13 +318,12 @@ typedef struct sDIOmodel { /* model structure for a diode */
unsigned DIOpolyOxideThickGiven : 1; /* Thickness of the polysilicon to bulk oxide (level=3) */
unsigned DIOmetalMaskOffsetGiven : 1; /* Masking and etching effects in metal (level=3)") */
unsigned DIOpolyMaskOffsetGiven : 1; /* Masking and etching effects in polysilicon (level=3) */
unsigned DIOmaskOffsetGiven : 1; /* Masking and etching effects (level=3) */
int DIOlevel; /* level selector */
double DIOsatCur; /* saturation current */
double DIOsatSWCur; /* Sidewall saturation current */
double DIOresist; /* ohmic series resistance */
double DIOresist; /* ohmic series resistance */
double DIOresistTemp1; /* series resistance 1st order temp. coeff. */
double DIOresistTemp2; /* series resistance 2nd order temp. coeff. */
double DIOconductance; /* conductance corresponding to ohmic R */
@ -344,8 +347,6 @@ typedef struct sDIOmodel { /* model structure for a diode */
int DIOtlev; /* Diode temperature equation selector */
int DIOtlevc; /* Diode temperature equation selector */
double DIOactivationEnergy; /* activation energy (EG) */
double DIOfirstBGcorrFactor; /* First bandgap correction factor */
double DIOsecndBGcorrFactor; /* Second bandgap correction factor */
double DIOsaturationCurrentExp; /* Saturation current exponential (XTI) */
double DIOcta; /* Area junction temperature coefficient */
double DIOctp; /* Perimeter junction temperature coefficient */
@ -375,6 +376,7 @@ typedef struct sDIOmodel { /* model structure for a diode */
double DIOte_max; /* maximum temperature */
double DIOrecSatCur; /* Recombination saturation current */
double DIOrecEmissionCoeff; /* Recombination emission coefficient */
double DIOsoftRevRecParam; /* Soft reverse recovery parameter */
double DIOrth0;
double DIOcth0;
@ -387,7 +389,6 @@ typedef struct sDIOmodel { /* model structure for a diode */
double DIOpolyOxideThick; /* Thickness of the polysilicon to bulk oxide (level=3) */
double DIOmetalMaskOffset; /* Masking and etching effects in metal (level=3)") */
double DIOpolyMaskOffset; /* Masking and etching effects in polysilicon (level=3) */
double DIOmaskOffset; /* Masking and etching effects (level=3) */
} DIOmodel;
@ -434,8 +435,6 @@ enum {
DIO_MOD_VJ,
DIO_MOD_M,
DIO_MOD_EG,
DIO_MOD_GAP1,
DIO_MOD_GAP2,
DIO_MOD_XTI,
DIO_MOD_FC,
DIO_MOD_BV,
@ -481,6 +480,7 @@ enum {
DIO_MOD_PD_MAX,
DIO_MOD_ISR,
DIO_MOD_NR,
DIO_MOD_VP,
DIO_MOD_RTH0,
DIO_MOD_CTH0,
@ -492,7 +492,6 @@ enum {
DIO_MOD_XOI,
DIO_MOD_XM,
DIO_MOD_XP,
DIO_MOD_XW,
};
void DIOtempUpdate(DIOmodel *inModel, DIOinstance *here, double Temp, CKTcircuit *ckt);

View File

@ -60,7 +60,7 @@ DIOdSetup(DIOmodel *model, CKTcircuit *ckt)
* This is an old analysis anyway....
*/
csat=here->DIOtSatCur+here->DIOtSatSWCur; // area and multiplier are already counted in tSatCur and tSatSWCur
csat=(here->DIOtSatCur*here->DIOarea+here->DIOtSatSWCur*here->DIOpj)*here->DIOm;
vt = CONSTKoverQ * here->DIOtemp;
vte=model->DIOemissionCoeff * vt;
vd = *(ckt->CKTrhsOld + (here->DIOposPrimeNode)) -
@ -113,7 +113,7 @@ DIOdSetup(DIOmodel *model, CKTcircuit *ckt)
/*
* junction charge storage elements
*/
czero=here->DIOtJctCap; // area and multiplier are already counted in DIOtJctCap
czero=here->DIOtJctCap*here->DIOarea*here->DIOm;
if (czero != 0.0) {
if (vd < here->DIOtDepCap){
arg=1-vd/model->DIOjunctionPot;
@ -143,7 +143,7 @@ DIOdSetup(DIOmodel *model, CKTcircuit *ckt)
{
cjunc1 = cjunc2 = cjunc3 = 0.0;
}
czeroSW=+here->DIOtJctSWCap; // pj and multiplier are already counted in DIOtJctSWCap
czeroSW=+here->DIOtJctSWCap*here->DIOpj*here->DIOm;
if (czeroSW != 0.0) {
if (vd < here->DIOtDepCap){
arg=1-vd/model->DIOjunctionSWPot;

View File

@ -27,8 +27,3 @@ extern int DIOnoise(int,int,GENmodel*,CKTcircuit*,Ndata*,double*);
extern int DIOdSetup(DIOmodel*,CKTcircuit*);
extern int DIOsoaCheck(CKTcircuit *, GENmodel *);
#ifdef KLU
extern int DIObindCSC (GENmodel*, CKTcircuit*) ;
extern int DIObindCSCComplex (GENmodel*, CKTcircuit*) ;
extern int DIObindCSCComplexToReal (GENmodel*, CKTcircuit*) ;
#endif

View File

@ -67,12 +67,6 @@ SPICEdev DIOinfo = {
.DEVdump = NULL,
.DEVacct = NULL,
#endif
#ifdef KLU
.DEVbindCSC = DIObindCSC,
.DEVbindCSCComplex = DIObindCSCComplex,
.DEVbindCSCComplexToReal = DIObindCSCComplexToReal,
#endif
};

View File

@ -23,30 +23,19 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
DIOmodel *model = (DIOmodel*)inModel;
DIOinstance *here;
double arg;
double argsw;
double capd;
double cd, cdb, cdsw, cdb_dT, cdsw_dT;
double cd;
double cdeq;
double cdhat;
double ceq;
double csat; /* area-scaled saturation current */
double csatsw; /* perimeter-scaled saturation current */
double czero;
double czof2;
double argSW;
double czeroSW;
double czof2SW;
double sargSW;
double sqrt_ikr;
double sqrt_ikf;
double ikf_area_m;
double ikr_area_m;
double delvd; /* change in diode voltage temporary */
double evd;
double evrev;
double gd, gdb, gdsw, gen_fac, gen_fac_vd;
double t1, evd_rec, cdb_rec, gdb_rec, cdb_rec_dT;
double gd;
double geq;
double gspr; /* area-scaled conductance */
double sarg;
@ -56,16 +45,13 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
double vd; /* current diode voltage */
double vdtemp;
double vt; /* K t / Q */
double vte, vtesw, vtetun, vtebrk;
int Check_dio=0, Check_th;
double vte, vtebrk;
int Check=0;
int error;
int SenCond=0; /* sensitivity condition */
double diffcharge, deplcharge, deplchargeSW, diffcap, deplcap, deplcapSW;
double deldelTemp, delTemp, Temp;
double ceqqth=0.0, Ith=0.0, gcTt=0.0, vrs=0.0;
double dIdio_dT, dIth_dVdio=0.0, dIrs_dT=0.0, dIth_dVrs=0.0, dIth_dT=0.0;
double argsw_dT, csat_dT, csatsw_dT;
double diffcharge, deplcharge, diffcap, deplcap;
double tt;
double vp;
/* loop through all the diode models */
for( ; model != NULL; model = DIOnextModel(model)) {
@ -74,17 +60,10 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
for (here = DIOinstances(model); here != NULL ;
here=DIOnextInstance(here)) {
int selfheat = ((here->DIOtempNode > 0) && (here->DIOthermal) && (model->DIOrth0Given));
/*
* this routine loads diodes for dc and transient analyses.
*/
if (selfheat)
Check_th = 1;
else
Check_th = 0;
if(ckt->CKTsenInfo){
if((ckt->CKTsenInfo->SENstatus == PERTURBATION)
&& (here->DIOsenPertFlag == OFF))continue;
@ -95,14 +74,13 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
#endif /* SENSDEBUG */
}
cdsw = 0.0;
cdsw_dT = 0.0;
gdsw = 0.0;
delTemp = 0.0;
csat = here->DIOtSatCur;
gspr = here->DIOtConductance;
vt = CONSTKoverQ * here->DIOtemp;
vte = model->DIOemissionCoeff * vt;
vtebrk = model->DIObrkdEmissionCoeff * vt;
gspr = here->DIOtConductance;
tt = here->DIOtTransitTime;
vp = model->DIOsoftRevRecParam;
/*
* initialization
*/
@ -116,10 +94,8 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
if((ckt->CKTsenInfo->SENmode == TRANSEN)&&
(ckt->CKTmode & MODEINITTRAN)) {
vd = *(ckt->CKTstate1 + here->DIOvoltage);
delTemp = *(ckt->CKTstate1 + here->DIOdeltemp);
} else{
vd = *(ckt->CKTstate0 + here->DIOvoltage);
delTemp = *(ckt->CKTstate0 + here->DIOdeltemp);
}
#ifdef SENSDEBUG
@ -128,25 +104,20 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
goto next1;
}
Check_dio=1;
Check=1;
if(ckt->CKTmode & MODEINITSMSIG) {
vd= *(ckt->CKTstate0 + here->DIOvoltage);
delTemp = *(ckt->CKTstate0 + here->DIOdeltemp);
} else if (ckt->CKTmode & MODEINITTRAN) {
vd= *(ckt->CKTstate1 + here->DIOvoltage);
delTemp = *(ckt->CKTstate1 + here->DIOdeltemp);
} else if ( (ckt->CKTmode & MODEINITJCT) &&
(ckt->CKTmode & MODETRANOP) && (ckt->CKTmode & MODEUIC) ) {
vd=here->DIOinitCond;
} else if ( (ckt->CKTmode & MODEINITJCT) && here->DIOoff) {
vd=0;
delTemp = 0.0;
} else if ( ckt->CKTmode & MODEINITJCT) {
vd=here->DIOtVcrit;
delTemp = 0.0;
} else if ( ckt->CKTmode & MODEINITFIX && here->DIOoff) {
vd=0;
delTemp = 0.0;
} else {
#ifndef PREDICTOR
if (ckt->CKTmode & MODEINITPRED) {
@ -157,34 +128,16 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
*(ckt->CKTstate1 + here->DIOcurrent);
*(ckt->CKTstate0 + here->DIOconduct) =
*(ckt->CKTstate1 + here->DIOconduct);
*(ckt->CKTstate0 + here->DIOdeltemp) =
*(ckt->CKTstate1 + here->DIOdeltemp);
delTemp = DEVpred(ckt,here->DIOdeltemp);
*(ckt->CKTstate0 + here->DIOdIdio_dT) =
*(ckt->CKTstate1 + here->DIOdIdio_dT);
*(ckt->CKTstate0+here->DIOqth) =
*(ckt->CKTstate1+here->DIOqth);
} else {
#endif /* PREDICTOR */
vd = *(ckt->CKTrhsOld+here->DIOposPrimeNode)-
*(ckt->CKTrhsOld + here->DIOnegNode);
if (selfheat)
delTemp = *(ckt->CKTrhsOld + here->DIOtempNode);
else
delTemp = 0.0;
*(ckt->CKTstate0+here->DIOqth) = model->DIOcth0 * delTemp;
if((ckt->CKTmode & MODEINITTRAN)) {
*(ckt->CKTstate1+here->DIOqth) =
*(ckt->CKTstate0+here->DIOqth);
}
#ifndef PREDICTOR
}
#endif /* PREDICTOR */
delvd=vd- *(ckt->CKTstate0 + here->DIOvoltage);
deldelTemp = delTemp - *(ckt->CKTstate0 + here->DIOdeltemp);
cdhat= *(ckt->CKTstate0 + here->DIOcurrent) +
*(ckt->CKTstate0 + here->DIOconduct) * delvd +
*(ckt->CKTstate0 + here->DIOdIdio_dT) * deldelTemp;
*(ckt->CKTstate0 + here->DIOconduct) * delvd;
/*
* bypass if solution has not changed
*/
@ -198,17 +151,10 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
ckt->CKTabstol;
if (fabs(cdhat- *(ckt->CKTstate0 + here->DIOcurrent))
< tol) {
if ((here->DIOtempNode == 0) ||
(fabs(deldelTemp) < (ckt->CKTreltol * MAX(fabs(delTemp),
fabs(*(ckt->CKTstate0+here->DIOdeltemp)))+
ckt->CKTvoltTol*1e4))) {
vd= *(ckt->CKTstate0 + here->DIOvoltage);
cd= *(ckt->CKTstate0 + here->DIOcurrent);
gd= *(ckt->CKTstate0 + here->DIOconduct);
delTemp = *(ckt->CKTstate0 + here->DIOdeltemp);
dIdio_dT= *(ckt->CKTstate0 + here->DIOdIdio_dT);
goto load;
}
}
}
}
@ -222,192 +168,62 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
vdtemp = DEVpnjlim(vdtemp,
-(*(ckt->CKTstate0 + here->DIOvoltage) +
here->DIOtBrkdwnV),vtebrk,
here->DIOtVcrit,&Check_dio);
here->DIOtVcrit,&Check);
vd = -(vdtemp+here->DIOtBrkdwnV);
} else {
vd = DEVpnjlim(vd,*(ckt->CKTstate0 + here->DIOvoltage),
vte,here->DIOtVcrit,&Check_dio);
vte,here->DIOtVcrit,&Check);
}
if (selfheat)
delTemp = DEVlimitlog(delTemp,
*(ckt->CKTstate0 + here->DIOdeltemp), 100, &Check_th);
else
delTemp = 0.0;
}
/*
* compute dc current and derivitives
*/
next1:
if (selfheat) {
Temp = here->DIOtemp + delTemp;
DIOtempUpdate(model, here, Temp, ckt);
vt = CONSTKoverQ * Temp;
vte = model->DIOemissionCoeff * vt;
vtebrk = model->DIObrkdEmissionCoeff * vt;
next1:
if (vd >= -3*vte) {
evd = exp(vd/vte);
cd = csat*(evd-1);
gd = csat*evd/vte;
} else if((!(model->DIObreakdownVoltageGiven)) ||
vd >= -here->DIOtBrkdwnV) {
arg = 3*vte/(vd*CONSTe);
arg = arg * arg * arg;
cd = -csat*(1+arg);
gd = csat*3*arg/vd;
} else {
Temp = here->DIOtemp;
}
csat = here->DIOtSatCur;
csat_dT = here->DIOtSatCur_dT;
csatsw = here->DIOtSatSWCur;
csatsw_dT = here->DIOtSatSWCur_dT;
gspr = here->DIOtConductance;
if (model->DIOsatSWCurGiven) { /* sidewall current */
if (model->DIOswEmissionCoeffGiven) { /* current with own characteristic */
vtesw = model->DIOswEmissionCoeff * vt;
if (vd >= -3*vtesw) { /* forward */
evd = exp(vd/vtesw);
cdsw = csatsw*(evd-1);
gdsw = csatsw*evd/vtesw;
cdsw_dT = csatsw_dT * (evd - 1) - csatsw * vd * evd / (vtesw * Temp);
} else if((!(model->DIObreakdownVoltageGiven)) ||
vd >= -here->DIOtBrkdwnV) { /* reverse */
argsw = 3*vtesw/(vd*CONSTe);
argsw = argsw * argsw * argsw;
argsw_dT = 3 * argsw / Temp;
cdsw = -csatsw*(1+argsw);
gdsw = csatsw*3*argsw/vd;
cdsw_dT = -csatsw_dT - (csatsw_dT*argsw + csatsw*argsw_dT);
} else { /* breakdown */
double evrev_dT;
evrev = exp(-(here->DIOtBrkdwnV+vd)/vtebrk);
evrev_dT = (here->DIOtBrkdwnV+vd)*evrev/(vtebrk*Temp);
cdsw = -csatsw*evrev;
gdsw = csatsw*evrev/vtebrk;
cdsw_dT = -(csatsw_dT*evrev + csatsw*evrev_dT);
}
} else { /* merge saturation currents and use same characteristic as bottom diode */
csat = csat + csatsw;
csat_dT = csat_dT + csatsw_dT;
cdsw_dT = 0.0;
}
evrev = exp(-(here->DIOtBrkdwnV+vd)/vtebrk);
cd = -csat*evrev;
gd = csat*evrev/vtebrk;
}
/*
* temperature dependent diode saturation current and derivative
*/
if (vd >= -3*vte) { /* bottom current forward */
evd = exp(vd/vte);
cdb = csat*(evd-1);
gdb = csat*evd/vte;
cdb_dT = csat_dT * (evd - 1) - csat * vd * evd / (vte * Temp);
if (model->DIOrecSatCurGiven) { /* recombination current */
double vterec = model->DIOrecEmissionCoeff*vt;
evd_rec = exp(vd/(vterec));
cdb_rec = here->DIOtRecSatCur*(evd_rec-1);
gdb_rec = here->DIOtRecSatCur*evd_rec/vterec;
cdb_rec_dT = here->DIOtRecSatCur_dT * (evd_rec - 1)
-here->DIOtRecSatCur * vd * evd_rec / (vterec*Temp);
t1 = pow((1-vd/here->DIOtJctPot), 2) + 0.005;
gen_fac = pow(t1, here->DIOtGradingCoeff/2);
gen_fac_vd = -here->DIOtGradingCoeff * (1-vd/here->DIOtJctPot)
* pow(t1, (here->DIOtGradingCoeff/2-1));
cdb_rec = cdb_rec * gen_fac;
gdb_rec = gdb_rec * gen_fac + cdb_rec * gen_fac_vd;
cdb = cdb + cdb_rec;
gdb = gdb + gdb_rec;
cdb_dT = cdb_dT + cdb_rec_dT*gen_fac;
}
} else if((!(model->DIObreakdownVoltageGiven)) ||
vd >= -here->DIOtBrkdwnV) { /* reverse */
double darg_dT;
arg = 3*vte/(vd*CONSTe);
arg = arg * arg * arg;
darg_dT = 3 * arg / Temp;
cdb = -csat*(1+arg);
gdb = csat*3*arg/vd;
cdb_dT = -csat_dT - (csat_dT*arg + csat*darg_dT);
} else { /* breakdown */
double evrev_dT;
evrev = exp(-(here->DIOtBrkdwnV+vd)/vtebrk);
evrev_dT = (here->DIOtBrkdwnV+vd)*evrev/(vtebrk*Temp);
cdb = -csat*evrev;
gdb = csat*evrev/vtebrk;
cdb_dT = -(csat_dT*evrev + csat*evrev_dT);
if (ckt->CKTmode & MODEINITTRAN) {
*(ckt->CKTstate1 + here->DIOoldCurr) = cd;
*(ckt->CKTstate1 + here->DIOoldCond) = gd;
*(ckt->CKTstate2 + here->DIOoldCurr) = cd;
*(ckt->CKTstate2 + here->DIOoldCond) = gd;
}
if (model->DIOtunSatSWCurGiven) { /* tunnel sidewall current */
vtetun = model->DIOtunEmissionCoeff * vt;
evd = exp(-vd/vtetun);
cdsw = cdsw - here->DIOtTunSatSWCur * (evd - 1);
gdsw = gdsw + here->DIOtTunSatSWCur * evd / vtetun;
cdsw_dT = cdsw_dT - here->DIOtTunSatSWCur_dT * (evd - 1)
- here->DIOtTunSatSWCur * vd * evd / (vtetun * Temp);
}
if (model->DIOtunSatCurGiven) { /* tunnel bottom current */
vtetun = model->DIOtunEmissionCoeff * vt;
evd = exp(-vd/vtetun);
cdb = cdb - here->DIOtTunSatCur * (evd - 1);
gdb = gdb + here->DIOtTunSatCur * evd / vtetun;
cdb_dT = cdb_dT - here->DIOtTunSatCur_dT * (evd - 1)
- here->DIOtTunSatCur * vd * evd / (vtetun * Temp);
}
cd = cdb + cdsw;
gd = gdb + gdsw;
dIdio_dT = cdb_dT + cdsw_dT;
if (vd >= -3*vte) { /* limit forward */
if( (model->DIOforwardKneeCurrentGiven) && (cd > 1.0e-18) ) {
ikf_area_m = here->DIOforwardKneeCurrent;
sqrt_ikf = sqrt(cd/ikf_area_m);
gd = ((1+sqrt_ikf)*gd - cd*gd/(2*sqrt_ikf*ikf_area_m))/(1+2*sqrt_ikf + cd/ikf_area_m) + ckt->CKTgmin;
cd = cd/(1+sqrt_ikf) + ckt->CKTgmin*vd;
} else {
gd = gd + ckt->CKTgmin;
cd = cd + ckt->CKTgmin*vd;
}
} else { /* limit reverse */
if( (model->DIOreverseKneeCurrentGiven) && (cd < -1.0e-18) ) {
ikr_area_m = here->DIOreverseKneeCurrent;
sqrt_ikr = sqrt(cd/(-ikr_area_m));
gd = ((1+sqrt_ikr)*gd + cd*gd/(2*sqrt_ikr*ikr_area_m))/(1+2*sqrt_ikr - cd/ikr_area_m) + ckt->CKTgmin;
cd = cd/(1+sqrt_ikr) + ckt->CKTgmin*vd;
} else {
gd = gd + ckt->CKTgmin;
cd = cd + ckt->CKTgmin*vd;
}
else {
//cd = (*(ckt->CKTstate1 + here->DIOoldCurr) - (ckt->CKTdelta)*cd) / (1 + (ckt->CKTdelta)*vp);
//gd = (*(ckt->CKTstate1 + here->DIOoldCond) - (ckt->CKTdelta)*gd) / (1 + (ckt->CKTdelta)*vp);
//cd = (1 - vp)*cd + vp*(*(ckt->CKTstate1 + here->DIOoldCurr))*(ckt->CKTdelta);
//gd = (1 - vp)*gd + vp*(*(ckt->CKTstate1 + here->DIOoldCond))*(ckt->CKTdelta);
}
*/
if ((ckt->CKTmode & (MODEDCTRANCURVE | MODETRAN | MODEAC | MODEINITSMSIG)) ||
((ckt->CKTmode & MODETRANOP) && (ckt->CKTmode & MODEUIC))) {
/*
* charge storage elements
*/
/* junction(depletion) charge */
czero=here->DIOtJctCap;
if (vd < here->DIOtDepCap){
arg=1-vd/here->DIOtJctPot;
@ -420,26 +236,106 @@ next1:
(here->DIOtGradingCoeff/(here->DIOtJctPot+here->DIOtJctPot))*(vd*vd-here->DIOtDepCap*here->DIOtDepCap));
deplcap = czof2*(here->DIOtF3+here->DIOtGradingCoeff*vd/here->DIOtJctPot);
}
czeroSW=here->DIOtJctSWCap;
if (vd < here->DIOtDepSWCap){
argSW=1-vd/here->DIOtJctSWPot;
sargSW=exp(-model->DIOgradingSWCoeff*log(argSW));
deplchargeSW = here->DIOtJctSWPot*czeroSW*(1-argSW*sargSW)/(1-model->DIOgradingSWCoeff);
deplcapSW = czeroSW*sargSW;
} else {
czof2SW=czeroSW/here->DIOtF2SW;
deplchargeSW = czeroSW*here->DIOtF1+czof2SW*(here->DIOtF3SW*(vd-here->DIOtDepSWCap)+
(model->DIOgradingSWCoeff/(here->DIOtJctSWPot+here->DIOtJctSWPot))*(vd*vd-here->DIOtDepSWCap*here->DIOtDepSWCap));
deplcapSW = czof2SW*(here->DIOtF3SW+model->DIOgradingSWCoeff*vd/here->DIOtJctSWPot);
/* diffusion charge */
if (ckt->CKTmode & MODEINITTRAN) {
diffcharge = tt * cd;
diffcap = tt * gd;
*(ckt->CKTstate2 + here->DIOdiffCharge) = diffcharge;
*(ckt->CKTstate2 + here->DIOdiffCap) = diffcap;
*(ckt->CKTstate1 + here->DIOdiffCharge) = diffcharge;
*(ckt->CKTstate1 + here->DIOdiffCap) = diffcap;
*(ckt->CKTstate1 + here->DIOoldCurr) = cd;
*(ckt->CKTstate1 + here->DIOoldCond) = gd;
}
else {
double dt = ckt->CKTdelta;
/*
//Fixed-point iteration
double diffcharge_old, diffcap_old;
//Forward Euler predictor
diffcharge = (*(ckt->CKTstate1 + here->DIOdiffCharge))*(1 - dt / (tt*vp)) + (dt*(*(ckt->CKTstate1 + here->DIOoldCurr)) / vp);
diffcap = (*(ckt->CKTstate1 + here->DIOdiffCap))*(1 - dt / (tt*vp)) + (dt*(*(ckt->CKTstate1 + here->DIOoldCond)) / vp);
do {
diffcharge_old = diffcharge;
diffcharge = (*(ckt->CKTstate1 + here->DIOdiffCharge)) + ((dt / vp)*(cd - (diffcharge_old / tt)));
} while (fabs(diffcharge - diffcharge_old) > 1e-12);
do {
diffcap_old = diffcap;
diffcap = (*(ckt->CKTstate1 + here->DIOdiffCap)) + ((dt / vp)*(gd - (diffcap_old / tt)));
} while (fabs(diffcap - diffcap_old) > 1e-12);
*/
/*
//Newton's method
double diffcharge_old, diffcap_old;
//Forward Euler predictor
diffcharge = (*(ckt->CKTstate1 + here->DIOdiffCharge))*(1 - dt / (tt*vp)) + (dt*(*(ckt->CKTstate1 + here->DIOoldCurr)) / vp);
diffcap = (*(ckt->CKTstate1 + here->DIOdiffCap))*(1 - dt / (tt*vp)) + (dt*(*(ckt->CKTstate1 + here->DIOoldCond)) / vp);
do {
diffcharge_old = diffcharge;
diffcharge = diffcharge_old + ((tt*vp*(*(ckt->CKTstate1 + here->DIOdiffCharge)) + tt*dt*cd - diffcharge_old*(dt + tt*vp)) / (dt + tt*vp));
} while (fabs(diffcharge - diffcharge_old) > 1e-12);
do {
diffcap_old = diffcap;
diffcap = diffcap_old + ((tt*vp*(*(ckt->CKTstate1 + here->DIOdiffCap)) + tt * dt*gd - diffcap_old * (dt + tt*vp)) / (dt + tt*vp));
} while (fabs(diffcap - diffcap_old) > 1e-12);
*/
//Backward Difference Operator
//diffcharge = tt * (cd - vp * (((*(ckt->CKTstate1 + here->DIOdiffCharge)) - (*(ckt->CKTstate2 + here->DIOdiffCharge))) / (ckt->CKTdeltaOld[1])));
//diffcap = tt * (gd - vp * (((*(ckt->CKTstate1 + here->DIOdiffCap)) - (*(ckt->CKTstate2 + here->DIOdiffCap))) / (ckt->CKTdeltaOld[1])));
//Standard Diffy-Q w/ trap integral
//diffcharge = (dt / (2.0*vt))*(exp(-dt / (tt*vt))*(*(ckt->CKTstate1 + here->DIOoldCurr)) + cd) + exp(-dt / (tt*vt))*(*(ckt->CKTstate1 + here->DIOdiffCharge));
//diffcap = (dt / (2.0*vt))*(exp(-dt / (tt*vt))*(*(ckt->CKTstate1 + here->DIOoldCond)) + gd) + exp(-dt / (tt*vt))*(*(ckt->CKTstate1 + here->DIOdiffCap));
//Forward Euler
//diffcharge = ((*(ckt->CKTstate1 + here->DIOdiffCharge))*(tt*vp - dt) + dt*tt*cd) / (tt*vp);
//diffcap = ((*(ckt->CKTstate1 + here->DIOdiffCap))*(tt*vp - dt) + dt*tt*gd) / (tt*vp);
//Backward Euler
//diffcharge = tt*((vp*(*(ckt->CKTstate1 + here->DIOdiffCharge)) + dt*cd) / (tt*vp + dt));
//diffcap = tt*((vp*(*(ckt->CKTstate1 + here->DIOdiffCap)) + dt*gd) / (tt*vp + dt));
//Trap
diffcharge = ((*(ckt->CKTstate1 + here->DIOdiffCharge))*(2.0*tt*vp - dt) + dt*tt*((*(ckt->CKTstate1 + here->DIOoldCurr)) + cd)) / (2.0*tt*vp + dt);
diffcap = ((*(ckt->CKTstate1 + here->DIOdiffCap))*(2.0*tt*vp - dt) + dt*tt*((*(ckt->CKTstate1 + here->DIOoldCond)) + gd)) / (2.0*tt*vp + dt);
//Gear
//diffcharge = tt*((vp*(4.0*(*(ckt->CKTstate1 + here->DIOdiffCharge)) - (*(ckt->CKTstate2 + here->DIOdiffCharge))) + 2.0*dt*cd) / (3.0*tt*vp + 2.0*dt));
//diffcap = tt*((vp*(4.0*(*(ckt->CKTstate1 + here->DIOdiffCap)) - (*(ckt->CKTstate2 + here->DIOdiffCap))) + 2.0*dt*gd) / (3.0*tt*vp + 2.0*dt));
//Nothing
//diffcharge = tt * cd;
//diffcap = tt * gd;
}
diffcharge = here->DIOtTransitTime*cd;
*(ckt->CKTstate0 + here->DIOdiffCharge) = diffcharge;
*(ckt->CKTstate0 + here->DIOdiffCap) = diffcap;
*(ckt->CKTstate0 + here->DIOoldCurr) = cd;
*(ckt->CKTstate0 + here->DIOoldCond) = gd;
//printf("Time: %e\n", ckt->CKTtime);
//printf("Charge: %e\n", diffcharge);
//printf("Cap: %e\n", diffcap);
//printf("Curr: %e\n", cd);
//printf("Cond: %e\n", gd);
//printf("DelCharge: %e\n", diffcharge-(*(ckt->CKTstate1 + here->DIOdiffCharge)));
//printf("DelCap: %e\n", diffcap-(*(ckt->CKTstate1 + here->DIOdiffCap)));
//printf("DelCurr: %e\n", cd-(*(ckt->CKTstate1 + here->DIOoldCurr)));
//printf("DelCond: %e\n\n", gd-(*(ckt->CKTstate1 + here->DIOoldCond)));
//diffcharge = here->DIOtTransitTime*cd;
*(ckt->CKTstate0 + here->DIOcapCharge) =
diffcharge + deplcharge + deplchargeSW;
diffcharge + deplcharge;
diffcap = here->DIOtTransitTime*gd;
//diffcap = here->DIOtTransitTime*gd;
capd = diffcap + deplcap + deplcapSW + here->DIOcmetal + here->DIOcpoly;
capd = diffcap + deplcap + here->DIOcmetal + here->DIOcpoly;
here->DIOcap = capd;
@ -454,7 +350,6 @@ next1:
if(SenCond){
*(ckt->CKTstate0 + here->DIOcurrent) = cd;
*(ckt->CKTstate0 + here->DIOconduct) = gd;
*(ckt->CKTstate0 + here->DIOdIdio_dT) = dIdio_dT;
#ifdef SENSDEBUG
printf("storing small signal parameters\n");
printf("cd = %.7e,vd = %.7e\n",cd,vd);
@ -490,15 +385,6 @@ next1:
*(ckt->CKTstate1 + here->DIOcapCurrent) =
*(ckt->CKTstate0 + here->DIOcapCurrent);
}
if (selfheat)
{
error = NIintegrate(ckt, &gcTt, &ceqqth, model->DIOcth0, here->DIOqth);
if (error) return(error);
if (ckt->CKTmode & MODEINITTRAN) {
*(ckt->CKTstate1 + here->DIOcqth) =
*(ckt->CKTstate0 + here->DIOcqth);
}
}
}
}
@ -508,7 +394,7 @@ next1:
* check convergence
*/
if ( (!(ckt->CKTmode & MODEINITFIX)) || (!(here->DIOoff)) ) {
if ((Check_th == 1) || (Check_dio == 1)) {
if (Check == 1) {
ckt->CKTnoncon++;
ckt->CKTtroubleElt = (GENinstance *) here;
}
@ -516,44 +402,18 @@ next1:
next2: *(ckt->CKTstate0 + here->DIOvoltage) = vd;
*(ckt->CKTstate0 + here->DIOcurrent) = cd;
*(ckt->CKTstate0 + here->DIOconduct) = gd;
*(ckt->CKTstate0 + here->DIOdeltemp) = delTemp;
*(ckt->CKTstate0 + here->DIOdIdio_dT) = dIdio_dT;
if(SenCond) continue;
#ifndef NOBYPASS
load:
#endif
if (selfheat) {
double dIrs_dVrs, dIrs_dgspr, dIth_dIrs;
vrs = *(ckt->CKTrhsOld + here->DIOposNode) - *(ckt->CKTrhsOld + here->DIOposPrimeNode);
Ith = vd*cd + vrs*vrs*gspr; /* Diode dissipated power */
dIrs_dVrs = gspr;
dIrs_dgspr = vrs;
dIrs_dT = dIrs_dgspr * here->DIOtConductance_dT;
dIth_dVrs = vrs*gspr;
dIth_dIrs = vrs;
dIth_dVrs = dIth_dVrs + dIth_dIrs*dIrs_dVrs;
dIth_dT = dIth_dIrs*dIrs_dT + dIdio_dT*vd;
dIth_dVdio = cd + vd*gd;
here->DIOdIth_dVrs = dIth_dVrs;
here->DIOdIth_dVdio = dIth_dVdio;
here->DIOdIth_dT = dIth_dT;
here->DIOgcTt = gcTt;
here->DIOdIrs_dT = dIrs_dT;
}
/*
* load current vector
*/
cdeq=cd-gd*vd;
*(ckt->CKTrhs + here->DIOnegNode) += cdeq;
*(ckt->CKTrhs + here->DIOposPrimeNode) -= cdeq;
if (selfheat) {
*(ckt->CKTrhs + here->DIOposNode) += dIrs_dT*delTemp;
*(ckt->CKTrhs + here->DIOposPrimeNode) += dIdio_dT*delTemp - dIrs_dT*delTemp;
*(ckt->CKTrhs + here->DIOnegNode) += -dIdio_dT*delTemp;
*(ckt->CKTrhs + here->DIOtempNode) += Ith - dIth_dVdio*vd - dIth_dVrs*vrs - dIth_dT*delTemp - ceqqth;
}
/*
* load matrix
*/
@ -564,15 +424,6 @@ next2: *(ckt->CKTstate0 + here->DIOvoltage) = vd;
*(here->DIOnegPosPrimePtr) -= gd;
*(here->DIOposPrimePosPtr) -= gspr;
*(here->DIOposPrimeNegPtr) -= gd;
if (selfheat) {
(*(here->DIOtempPosPtr) += -dIth_dVrs);
(*(here->DIOtempPosPrimePtr) += -dIth_dVdio + dIth_dVrs);
(*(here->DIOtempNegPtr) += dIth_dVdio);
(*(here->DIOtempTempPtr) += -dIth_dT + 1/model->DIOrth0 + gcTt);
(*(here->DIOposTempPtr) += dIrs_dT);
(*(here->DIOposPrimeTempPtr) += dIdio_dT - dIrs_dT);
(*(here->DIOnegTempPtr) += -dIdio_dT);
}
}
}
return(OK);

View File

@ -0,0 +1,372 @@
/**********
Copyright 1990 Regents of the University of California. All rights reserved.
Author: 1985 Thomas L. Quarles
Modified: 2000 AlansFixes
Modified by Paolo Nenzi 2003, Dietmar Warning 2012 and Ste Kulov 2021
**********/
#include "ngspice/ngspice.h"
#include "ngspice/devdefs.h"
#include "ngspice/cktdefs.h"
#include "diodefs.h"
#include "ngspice/const.h"
#include "ngspice/trandefs.h"
#include "ngspice/sperror.h"
#include "ngspice/suffix.h"
int
DIOload(GENmodel *inModel, CKTcircuit *ckt)
/* actually load the current resistance value into the
* sparse matrix previously provided
*/
{
DIOmodel *model = (DIOmodel*)inModel;
DIOinstance *here;
double arg;
double cd;
double cdeq;
double cdhat;
double ceq;
double csat; /* area-scaled saturation current */
double czero;
double czof2;
double delvd; /* change in diode voltage temporary */
double evd;
double evrev;
double gd;
double geq;
double gspr; /* area-scaled conductance */
double sarg;
#ifndef NOBYPASS
double tol; /* temporary for tolerence calculations */
#endif
double vd; /* current diode voltage */
double vdtemp;
double vt; /* K t / Q */
double vte, vtebrk;
int Check=0;
int error;
int SenCond=0; /* sensitivity condition */
double diffcharge, deplcharge, diffcap, deplcap;
double tt;
double vp;
/* loop through all the diode models */
for( ; model != NULL; model = DIOnextModel(model)) {
vp = model->DIOsoftRevRecParam;
/* loop through all the instances of the model */
for (here = DIOinstances(model); here != NULL ;
here=DIOnextInstance(here)) {
/*
* this routine loads diodes for dc and transient analyses.
*/
if(ckt->CKTsenInfo){
if((ckt->CKTsenInfo->SENstatus == PERTURBATION)
&& (here->DIOsenPertFlag == OFF))continue;
SenCond = here->DIOsenPertFlag;
#ifdef SENSDEBUG
printf("DIOload \n");
#endif /* SENSDEBUG */
}
csat = here->DIOtSatCur;
gspr = here->DIOtConductance;
vt = CONSTKoverQ * here->DIOtemp;
vte = model->DIOemissionCoeff * vt;
vtebrk = model->DIObrkdEmissionCoeff * vt;
tt = here->DIOtTransitTime;
/*
* initialization
*/
if(SenCond){
#ifdef SENSDEBUG
printf("DIOsenPertFlag = ON \n");
#endif /* SENSDEBUG */
if((ckt->CKTsenInfo->SENmode == TRANSEN)&&
(ckt->CKTmode & MODEINITTRAN)) {
vd = *(ckt->CKTstate1 + here->DIOvoltage);
} else{
vd = *(ckt->CKTstate0 + here->DIOvoltage);
}
#ifdef SENSDEBUG
printf("vd = %.7e \n",vd);
#endif /* SENSDEBUG */
goto next1;
}
Check=1;
if(ckt->CKTmode & MODEINITSMSIG) {
vd= *(ckt->CKTstate0 + here->DIOvoltage);
} else if (ckt->CKTmode & MODEINITTRAN) {
vd= *(ckt->CKTstate1 + here->DIOvoltage);
} else if ( (ckt->CKTmode & MODEINITJCT) &&
(ckt->CKTmode & MODETRANOP) && (ckt->CKTmode & MODEUIC) ) {
vd=here->DIOinitCond;
} else if ( (ckt->CKTmode & MODEINITJCT) && here->DIOoff) {
vd=0;
} else if ( ckt->CKTmode & MODEINITJCT) {
vd=here->DIOtVcrit;
} else if ( ckt->CKTmode & MODEINITFIX && here->DIOoff) {
vd=0;
} else {
#ifndef PREDICTOR
if (ckt->CKTmode & MODEINITPRED) {
*(ckt->CKTstate0 + here->DIOvoltage) =
*(ckt->CKTstate1 + here->DIOvoltage);
vd = DEVpred(ckt,here->DIOvoltage);
*(ckt->CKTstate0 + here->DIOcurrent) =
*(ckt->CKTstate1 + here->DIOcurrent);
*(ckt->CKTstate0 + here->DIOconduct) =
*(ckt->CKTstate1 + here->DIOconduct);
} else {
#endif /* PREDICTOR */
vd = *(ckt->CKTrhsOld+here->DIOposPrimeNode)-
*(ckt->CKTrhsOld + here->DIOnegNode);
#ifndef PREDICTOR
}
#endif /* PREDICTOR */
delvd=vd- *(ckt->CKTstate0 + here->DIOvoltage);
cdhat= *(ckt->CKTstate0 + here->DIOcurrent) +
*(ckt->CKTstate0 + here->DIOconduct) * delvd;
/*
* bypass if solution has not changed
*/
#ifndef NOBYPASS
if ((!(ckt->CKTmode & MODEINITPRED)) && (ckt->CKTbypass)) {
tol=ckt->CKTvoltTol + ckt->CKTreltol*
MAX(fabs(vd),fabs(*(ckt->CKTstate0 +here->DIOvoltage)));
if (fabs(delvd) < tol){
tol=ckt->CKTreltol* MAX(fabs(cdhat),
fabs(*(ckt->CKTstate0 + here->DIOcurrent)))+
ckt->CKTabstol;
if (fabs(cdhat- *(ckt->CKTstate0 + here->DIOcurrent))
< tol) {
vd= *(ckt->CKTstate0 + here->DIOvoltage);
cd= *(ckt->CKTstate0 + here->DIOcurrent);
gd= *(ckt->CKTstate0 + here->DIOconduct);
goto load;
}
}
}
#endif /* NOBYPASS */
/*
* limit new junction voltage
*/
if ( (model->DIObreakdownVoltageGiven) &&
(vd < MIN(0,-here->DIOtBrkdwnV+10*vtebrk))) {
vdtemp = -(vd+here->DIOtBrkdwnV);
vdtemp = DEVpnjlim(vdtemp,
-(*(ckt->CKTstate0 + here->DIOvoltage) +
here->DIOtBrkdwnV),vtebrk,
here->DIOtVcrit,&Check);
vd = -(vdtemp+here->DIOtBrkdwnV);
} else {
vd = DEVpnjlim(vd,*(ckt->CKTstate0 + here->DIOvoltage),
vte,here->DIOtVcrit,&Check);
}
}
/*
* compute dc current and derivitives
*/
next1:
if (vd >= -3*vte) { /* forward */
evd = exp(vd/vte);
cd = csat*(evd-1);
gd = csat*evd/vte;
} else if((!(model->DIObreakdownVoltageGiven)) ||
vd >= -here->DIOtBrkdwnV) { /* reverse */
arg = 3*vte/(vd*CONSTe);
arg = arg * arg * arg;
cd = -csat*(1+arg);
gd = csat*3*arg/vd;
} else { /* breakdown */
evrev = exp(-(here->DIOtBrkdwnV+vd)/vtebrk);
cd = -csat*evrev;
gd = csat*evrev/vtebrk;
}
gd = gd + ckt->CKTgmin;
cd = cd + ckt->CKTgmin*vd;
if ((ckt->CKTmode & (MODEDCTRANCURVE | MODETRAN | MODEAC | MODEINITSMSIG)) ||
((ckt->CKTmode & MODETRANOP) && (ckt->CKTmode & MODEUIC))) {
/*
* charge storage elements
*/
czero=here->DIOtJctCap;
if (vd < here->DIOtDepCap){
arg=1-vd/here->DIOtJctPot;
sarg=exp(-here->DIOtGradingCoeff*log(arg));
deplcharge = here->DIOtJctPot*czero*(1-arg*sarg)/(1-here->DIOtGradingCoeff);
deplcap = czero*sarg;
} else {
czof2=czero/here->DIOtF2;
deplcharge = czero*here->DIOtF1+czof2*(here->DIOtF3*(vd-here->DIOtDepCap)+
(here->DIOtGradingCoeff/(here->DIOtJctPot+here->DIOtJctPot))*(vd*vd-here->DIOtDepCap*here->DIOtDepCap));
deplcap = czof2*(here->DIOtF3+here->DIOtGradingCoeff*vd/here->DIOtJctPot);
}
if (model->DIOsoftRevRecParamGiven) {
if (ckt->CKTmode & MODEINITTRAN) {
diffcharge = tt * cd;
diffcap = tt * gd;
*(ckt->CKTstate2 + here->DIOdiffCharge) = diffcharge;
*(ckt->CKTstate2 + here->DIOdiffCap) = diffcap;
*(ckt->CKTstate1 + here->DIOdiffCharge) = diffcharge;
*(ckt->CKTstate1 + here->DIOdiffCap) = diffcap;
*(ckt->CKTstate1 + here->DIOoldCurr) = cd;
*(ckt->CKTstate1 + here->DIOoldCond) = gd;
}
else {
double dt = 1*ckt->CKTdelta;
//Backward Euler
// Qk+1 = tt (VP Qk + h Ik+1) / (tt VP + h)
diffcharge = tt*((vp*(*(ckt->CKTstate1 + here->DIOdiffCharge)) + dt*cd) / (tt*vp + dt));
diffcap = tt*((vp*(*(ckt->CKTstate1 + here->DIOdiffCap)) + dt*gd) / (tt*vp + dt));
//Trap
// Qk+1 = (Qk (2 tt VP - h) + h tt (Ik + Ik+1)) / (2 tt VP + h)
//diffcharge = ((*(ckt->CKTstate1 + here->DIOdiffCharge))*(2.0*tt*vp - dt) + dt*tt*((*(ckt->CKTstate1 + here->DIOoldCurr)) + cd)) / (2.0*tt*vp + dt);
//diffcap = ((*(ckt->CKTstate1 + here->DIOdiffCap))*(2.0*tt*vp - dt) + dt*tt*((*(ckt->CKTstate1 + here->DIOoldCond)) + gd)) / (2.0*tt*vp + dt);
//Gear
// Qk+1 = tt ((VP (4 Qk - Qk-1) + 2 h Ik+1) / (3 tt VP + 2 h))
//diffcharge = tt*((vp*(4.0*(*(ckt->CKTstate1 + here->DIOdiffCharge)) - (*(ckt->CKTstate2 + here->DIOdiffCharge))) + 2.0*dt*cd) / (3.0*tt*vp + 2.0*dt));
//diffcap = tt*((vp*(4.0*(*(ckt->CKTstate1 + here->DIOdiffCap)) - (*(ckt->CKTstate2 + here->DIOdiffCap))) + 2.0*dt*gd) / (3.0*tt*vp + 2.0*dt));
}
*(ckt->CKTstate0 + here->DIOdiffCap) = diffcap;
*(ckt->CKTstate0 + here->DIOoldCurr) = cd;
*(ckt->CKTstate0 + here->DIOoldCond) = gd;
//printf("time: %e vd: %e\n", ckt->CKTtime, vd);
//printf("%e %e %e %e %e %e\n", ckt->CKTtime, ckt->CKTdelta, diffcharge, diffcap, cd, gd);
} else {
diffcharge = tt*cd;
diffcap = tt*gd;
}
*(ckt->CKTstate0 + here->DIOcapCharge) = deplcharge;
*(ckt->CKTstate0 + here->DIOdiffCharge) = diffcharge;
here->DIOcap = deplcap + diffcap;
/*
* store small-signal parameters
*/
if( (!(ckt->CKTmode & MODETRANOP)) ||
(!(ckt->CKTmode & MODEUIC)) ) {
if (ckt->CKTmode & MODEINITSMSIG){
*(ckt->CKTstate0 + here->DIOcapCurrent) = deplcap + diffcap;
if(SenCond){
*(ckt->CKTstate0 + here->DIOcurrent) = cd;
*(ckt->CKTstate0 + here->DIOconduct) = gd;
#ifdef SENSDEBUG
printf("storing small signal parameters\n");
printf("cd = %.7e,vd = %.7e\n",cd,vd);
printf("capd = %.7e ,gd = %.7e \n",deplcap+diffcap,gd);
#endif /* SENSDEBUG */
}
continue;
}
/*
* transient analysis
*/
if(SenCond && (ckt->CKTsenInfo->SENmode == TRANSEN)){
*(ckt->CKTstate0 + here->DIOcurrent) = cd;
#ifdef SENSDEBUG
printf("storing parameters for transient sensitivity\n"
);
printf("qd = %.7e, capd = %.7e,cd = %.7e\n",
*(ckt->CKTstate0 + here->DIOcapCharge),deplcap+diffcap,cd);
#endif /* SENSDEBUG */
continue;
}
if (ckt->CKTmode & MODEINITTRAN) {
*(ckt->CKTstate1 + here->DIOcapCharge) =
*(ckt->CKTstate0 + here->DIOcapCharge);
*(ckt->CKTstate1 + here->DIOdiffCharge) =
*(ckt->CKTstate0 + here->DIOdiffCharge);
}
error = NIintegrate(ckt,&geq,&ceq,deplcap,here->DIOcapCharge);
if(error) return(error);
gd=gd+geq;
cd=cd+*(ckt->CKTstate0 + here->DIOcapCurrent);
error = NIintegrate(ckt,&geq,&ceq,diffcap,here->DIOdiffCharge);
if(error) return(error);
gd=gd+geq;
cd=cd+*(ckt->CKTstate0 + here->DIOdiffCurrent);
if (ckt->CKTmode & MODEINITTRAN) {
*(ckt->CKTstate1 + here->DIOcapCurrent) =
*(ckt->CKTstate0 + here->DIOcapCurrent);
*(ckt->CKTstate1 + here->DIOdiffCurrent) =
*(ckt->CKTstate0 + here->DIOdiffCurrent);
}
}
}
if(SenCond) goto next2;
/*
* check convergence
*/
if ( (!(ckt->CKTmode & MODEINITFIX)) || (!(here->DIOoff)) ) {
if (Check == 1) {
ckt->CKTnoncon++;
ckt->CKTtroubleElt = (GENinstance *) here;
}
}
next2: *(ckt->CKTstate0 + here->DIOvoltage) = vd;
*(ckt->CKTstate0 + here->DIOcurrent) = cd;
*(ckt->CKTstate0 + here->DIOconduct) = gd;
if(SenCond) continue;
#ifndef NOBYPASS
load:
#endif
/*
* load current vector
*/
cdeq=cd-gd*vd;
*(ckt->CKTrhs + here->DIOnegNode) += cdeq;
*(ckt->CKTrhs + here->DIOposPrimeNode) -= cdeq;
/*
* load matrix
*/
*(here->DIOposPosPtr) += gspr;
*(here->DIOnegNegPtr) += gd;
*(here->DIOposPrimePosPrimePtr) += (gd + gspr);
*(here->DIOposPosPrimePtr) -= gspr;
*(here->DIOnegPosPrimePtr) -= gd;
*(here->DIOposPrimePosPtr) -= gspr;
*(here->DIOposPrimeNegPtr) -= gd;
}
}
return(OK);
}

View File

@ -106,12 +106,6 @@ DIOmAsk (CKTcircuit *ckt, GENmodel *inModel, int which, IFvalue *value)
case DIO_MOD_EG:
value->rValue = model->DIOactivationEnergy;
return (OK);
case DIO_MOD_GAP1:
value->rValue = model->DIOfirstBGcorrFactor;
return (OK);
case DIO_MOD_GAP2:
value->rValue = model->DIOsecndBGcorrFactor;
return (OK);
case DIO_MOD_XTI:
value->rValue = model->DIOsaturationCurrentExp;
return(OK);
@ -193,6 +187,9 @@ DIOmAsk (CKTcircuit *ckt, GENmodel *inModel, int which, IFvalue *value)
case DIO_MOD_NR:
value->rValue = model->DIOrecEmissionCoeff;
return(OK);
case DIO_MOD_VP:
value->rValue = model->DIOsoftRevRecParam;
return(OK);
case DIO_MOD_RTH0:
value->rValue = model->DIOrth0;
return(OK);
@ -224,9 +221,6 @@ DIOmAsk (CKTcircuit *ckt, GENmodel *inModel, int which, IFvalue *value)
case DIO_MOD_XP:
value->rValue = model->DIOpolyMaskOffset;
return(OK);
case DIO_MOD_XW:
value->rValue = model->DIOmaskOffset;
return(OK);
default:
return(E_BADPARM);

View File

@ -133,14 +133,6 @@ DIOmParam(int param, IFvalue *value, GENmodel *inModel)
model->DIOactivationEnergy = value->rValue;
model->DIOactivationEnergyGiven = TRUE;
break;
case DIO_MOD_GAP1:
model->DIOfirstBGcorrFactor = value->rValue;
model->DIOfirstBGcorrFactorGiven = TRUE;
break;
case DIO_MOD_GAP2:
model->DIOsecndBGcorrFactor = value->rValue;
model->DIOsecndBGcorrFactorGiven = TRUE;
break;
case DIO_MOD_XTI:
model->DIOsaturationCurrentExp = value->rValue;
model->DIOsaturationCurrentExpGiven = TRUE;
@ -237,6 +229,10 @@ DIOmParam(int param, IFvalue *value, GENmodel *inModel)
model->DIOrecEmissionCoeff = value->rValue;
model->DIOrecEmissionCoeffGiven = TRUE;
break;
case DIO_MOD_VP:
model->DIOsoftRevRecParam = value->rValue;
model->DIOsoftRevRecParamGiven = TRUE;
break;
case DIO_MOD_RTH0:
model->DIOrth0 = value->rValue;
model->DIOrth0Given = TRUE;
@ -278,10 +274,6 @@ DIOmParam(int param, IFvalue *value, GENmodel *inModel)
model->DIOpolyMaskOffset = value->rValue;
model->DIOpolyMaskOffsetGiven = TRUE;
break;
case DIO_MOD_XW:
model->DIOmaskOffset = value->rValue;
model->DIOmaskOffsetGiven = TRUE;
break;
case DIO_MOD_D:
/* no action - we already know we are a diode, but this */

View File

@ -12,22 +12,23 @@ Modified by Dietmar Warning 2003
#include "ngspice/suffix.h"
/*
*DIOnoise (mode, operation, firstModel, ckt, data, OnDens)
* This routine names and evaluates all of the noise sources
* associated with diodes. It starts with the model *firstModel and
* traverses all of its instancess. It then proceeds to any other
* models on the linked list. The total output noise density
* generated by all of the diodes is summed with the variable
* "OnDens".
* DIOnoise (mode, operation, firstModel, ckt, data, OnDens)
* This routine names and evaluates all of the noise sources
* associated with diodes. It starts with the model *firstModel and
* traverses all of its instancess. It then proceeds to any other
* models on the linked list. The total output noise density
* generated by all of the diodes is summed with the variable
* "OnDens".
*/
int
DIOnoise(int mode, int operation, GENmodel *genmodel, CKTcircuit *ckt,
Ndata *data, double *OnDens)
{
NOISEAN *job = (NOISEAN*) ckt->CKTcurJob;
DIOmodel *firstModel = (DIOmodel*) genmodel;
int
DIOnoise (int mode, int operation, GENmodel *genmodel, CKTcircuit *ckt,
Ndata *data, double *OnDens)
{
NOISEAN *job = (NOISEAN *) ckt->CKTcurJob;
DIOmodel *firstModel = (DIOmodel *) genmodel;
DIOmodel *model;
DIOinstance *inst;
double tempOnoise;
@ -35,152 +36,141 @@ DIOnoise(int mode, int operation, GENmodel *genmodel, CKTcircuit *ckt,
double noizDens[DIONSRCS];
double lnNdens[DIONSRCS];
int i;
double dtemp;
/* define the names of the noise sources */
static char *DIOnNames[DIONSRCS] = {
/* Note that we have to keep the order
consistent with thestrchr definitions in DIOdefs.h */
"_rs", /* noise due to rs */
"_id", /* noise due to id */
"_1overf", /* flicker (1/f) noise */
"" /* total diode noise */
static char *DIOnNames[DIONSRCS] = { /* Note that we have to keep the order */
"_rs", /* noise due to rs */ /* consistent with thestrchr definitions */
"_id", /* noise due to id */ /* in DIOdefs.h */
"_1overf", /* flicker (1/f) noise */
"" /* total diode noise */
};
for (model = firstModel; model != NULL; model = DIOnextModel(model)) {
for (inst = DIOinstances(model); inst != NULL; inst = DIOnextInstance(inst)) {
for (model=firstModel; model != NULL; model=DIOnextModel(model)) {
for (inst=DIOinstances(model); inst != NULL; inst=DIOnextInstance(inst)) {
switch (operation) {
switch (operation) {
case N_OPEN:
case N_OPEN:
/* see if we have to to produce a summary report */
/* if so, name all the noise generators */
/* see if we have to to produce a summary report */
/* if so, name all the noise generators */
if (job->NStpsSm != 0) {
switch (mode) {
if (job->NStpsSm != 0) {
switch (mode) {
case N_DENS:
for (i = 0; i < DIONSRCS; i++) {
NOISE_ADD_OUTVAR(ckt, data, "onoise_%s%s", inst->DIOname, DIOnNames[i]);
}
break;
case N_DENS:
for (i=0; i < DIONSRCS; i++) {
NOISE_ADD_OUTVAR(ckt, data, "onoise_%s%s", inst->DIOname, DIOnNames[i]);
}
break;
case INT_NOIZ:
for (i = 0; i < DIONSRCS; i++) {
NOISE_ADD_OUTVAR(ckt, data, "onoise_total_%s%s", inst->DIOname, DIOnNames[i]);
NOISE_ADD_OUTVAR(ckt, data, "inoise_total_%s%s", inst->DIOname, DIOnNames[i]);
}
break;
}
}
break;
case INT_NOIZ:
for (i=0; i < DIONSRCS; i++) {
NOISE_ADD_OUTVAR(ckt, data, "onoise_total_%s%s", inst->DIOname, DIOnNames[i]);
NOISE_ADD_OUTVAR(ckt, data, "inoise_total_%s%s", inst->DIOname, DIOnNames[i]);
}
break;
}
}
break;
case N_CALC:
switch (mode) {
case N_CALC:
switch (mode) {
case N_DENS:
case N_DENS:
NevalSrc(&noizDens[DIORSNOIZ],&lnNdens[DIORSNOIZ],
ckt,THERMNOISE,inst->DIOposPrimeNode,inst->DIOposNode,
inst->DIOtConductance * inst->DIOarea * inst->DIOm);
NevalSrc(&noizDens[DIOIDNOIZ],&lnNdens[DIOIDNOIZ],
ckt,SHOTNOISE,inst->DIOposPrimeNode, inst->DIOnegNode,
*(ckt->CKTstate0 + inst->DIOcurrent));
if (inst->DIOtempGiven)
dtemp = inst->DIOtemp - ckt->CKTtemp + (model->DIOnomTemp-CONSTCtoK);
else
dtemp = inst->DIOdtemp;
NevalSrc(&noizDens[DIOFLNOIZ], NULL, ckt,
N_GAIN,inst->DIOposPrimeNode, inst->DIOnegNode,
(double)0.0);
noizDens[DIOFLNOIZ] *= model->DIOfNcoef *
exp(model->DIOfNexp *
log(MAX(fabs(*(ckt->CKTstate0 + inst->DIOcurrent)/inst->DIOm),N_MINLOG))) /
data->freq * inst->DIOm;
lnNdens[DIOFLNOIZ] =
log(MAX(noizDens[DIOFLNOIZ],N_MINLOG));
NevalSrcInstanceTemp(&noizDens[DIORSNOIZ],&lnNdens[DIORSNOIZ],
ckt, THERMNOISE, inst->DIOposPrimeNode, inst->DIOposNode,
inst->DIOtConductance, dtemp);
noizDens[DIOTOTNOIZ] = noizDens[DIORSNOIZ] +
noizDens[DIOIDNOIZ] +
noizDens[DIOFLNOIZ];
lnNdens[DIOTOTNOIZ] =
log(MAX(noizDens[DIOTOTNOIZ], N_MINLOG));
NevalSrc(&noizDens[DIOIDNOIZ],&lnNdens[DIOIDNOIZ],
ckt, SHOTNOISE, inst->DIOposPrimeNode, inst->DIOnegNode,
*(ckt->CKTstate0 + inst->DIOcurrent));
*OnDens += noizDens[DIOTOTNOIZ];
NevalSrc(&noizDens[DIOFLNOIZ], NULL, ckt,
N_GAIN, inst->DIOposPrimeNode, inst->DIOnegNode,
(double) 0.0);
noizDens[DIOFLNOIZ] *= model->DIOfNcoef *
exp(model->DIOfNexp *
log(MAX(fabs(*(ckt->CKTstate0 + inst->DIOcurrent) / inst->DIOm), N_MINLOG))) /
data->freq * inst->DIOm;
lnNdens[DIOFLNOIZ] =
log(MAX(noizDens[DIOFLNOIZ], N_MINLOG));
if (data->delFreq == 0.0) {
noizDens[DIOTOTNOIZ] = noizDens[DIORSNOIZ] +
noizDens[DIOIDNOIZ] +
noizDens[DIOFLNOIZ];
lnNdens[DIOTOTNOIZ] =
log(MAX(noizDens[DIOTOTNOIZ], N_MINLOG));
/* if we haven't done any previous integration, we need to */
/* initialize our "history" variables */
*OnDens += noizDens[DIOTOTNOIZ];
for (i=0; i < DIONSRCS; i++) {
inst->DIOnVar[LNLSTDENS][i] = lnNdens[i];
}
if (data->delFreq == 0.0) {
/* clear out our integration variables if it's the first pass */
/* if we haven't done any previous integration, we need to */
/* initialize our "history" variables */
if (data->freq == job->NstartFreq) {
for (i=0; i < DIONSRCS; i++) {
inst->DIOnVar[OUTNOIZ][i] = 0.0;
inst->DIOnVar[INNOIZ][i] = 0.0;
}
}
} else { /* data->delFreq != 0.0 (we have to integrate) */
for (i = 0; i < DIONSRCS; i++) {
inst->DIOnVar[LNLSTDENS][i] = lnNdens[i];
}
/* To insure accurracy, we have to integrate each component separately */
/* clear out our integration variables if it's the first pass */
if (data->freq == job->NstartFreq) {
for (i = 0; i < DIONSRCS; i++) {
inst->DIOnVar[OUTNOIZ][i] = 0.0;
inst->DIOnVar[INNOIZ][i] = 0.0;
}
}
} else {
/* data->delFreq != 0.0 (we have to integrate) */
/* To insure accurracy, we have to integrate each component separately */
for (i = 0; i < DIONSRCS; i++) {
if (i != DIOTOTNOIZ) {
tempOnoise = Nintegrate(noizDens[i], lnNdens[i],
inst->DIOnVar[LNLSTDENS][i], data);
tempInoise = Nintegrate(noizDens[i] * data->GainSqInv,
lnNdens[i] + data->lnGainInv,
inst->DIOnVar[LNLSTDENS][i] + data->lnGainInv,
data);
inst->DIOnVar[LNLSTDENS][i] = lnNdens[i];
data->outNoiz += tempOnoise;
data->inNoise += tempInoise;
if (job->NStpsSm != 0) {
inst->DIOnVar[OUTNOIZ][i] += tempOnoise;
inst->DIOnVar[OUTNOIZ][DIOTOTNOIZ] += tempOnoise;
inst->DIOnVar[INNOIZ][i] += tempInoise;
inst->DIOnVar[INNOIZ][DIOTOTNOIZ] += tempInoise;
for (i=0; i < DIONSRCS; i++) {
if (i != DIOTOTNOIZ) {
tempOnoise = Nintegrate(noizDens[i], lnNdens[i],
inst->DIOnVar[LNLSTDENS][i], data);
tempInoise = Nintegrate(noizDens[i] * data->GainSqInv ,
lnNdens[i] + data->lnGainInv,
inst->DIOnVar[LNLSTDENS][i] + data->lnGainInv,
data);
inst->DIOnVar[LNLSTDENS][i] = lnNdens[i];
data->outNoiz += tempOnoise;
data->inNoise += tempInoise;
if (job->NStpsSm != 0) {
inst->DIOnVar[OUTNOIZ][i] += tempOnoise;
inst->DIOnVar[OUTNOIZ][DIOTOTNOIZ] += tempOnoise;
inst->DIOnVar[INNOIZ][i] += tempInoise;
inst->DIOnVar[INNOIZ][DIOTOTNOIZ] += tempInoise;
}
}
}
}
if (data->prtSummary) {
for (i = 0; i < DIONSRCS; i++) {
/* print a summary report */
data->outpVector[data->outNumber++] = noizDens[i];
}
}
break;
}
}
}
if (data->prtSummary) {
for (i=0; i < DIONSRCS; i++) { /* print a summary report */
data->outpVector[data->outNumber++] = noizDens[i];
}
}
break;
case INT_NOIZ:
/* already calculated, just output */
if (job->NStpsSm != 0) {
for (i = 0; i < DIONSRCS; i++) {
data->outpVector[data->outNumber++] = inst->DIOnVar[OUTNOIZ][i];
data->outpVector[data->outNumber++] = inst->DIOnVar[INNOIZ][i];
}
} /* if */
break;
} /* switch (mode) */
break;
case INT_NOIZ: /* already calculated, just output */
if (job->NStpsSm != 0) {
for (i=0; i < DIONSRCS; i++) {
data->outpVector[data->outNumber++] = inst->DIOnVar[OUTNOIZ][i];
data->outpVector[data->outNumber++] = inst->DIOnVar[INNOIZ][i];
}
} /* if */
break;
} /* switch (mode) */
break;
case N_CLOSE:
return (OK); /* do nothing, the main calling routine will close */
break; /* the plots */
} /* switch (operation) */
} /* for inst */
} /* for model */
case N_CLOSE:
return (OK); /* do nothing, the main calling routine will close */
break; /* the plots */
} /* switch (operation) */
} /* for inst */
} /* for model */
return(OK);
}
return (OK);
}

View File

@ -172,7 +172,7 @@ pertvd: /* Perturbation of Diode Voltage */
*(here->DIOsenCeq + 2)= *(ckt->CKTstate0 + here->DIOcapCurrent);
*(ckt->CKTstate0 + here->DIOvoltage) = A0;
}
gspr=here->DIOtConductance;
gspr=here->DIOtConductance*here->DIOarea;
geq = *(here->DIOsenGeq + 2);
xceq = *(here->DIOsenCeq + 2) * ckt->CKTomega;

View File

@ -16,7 +16,6 @@ Modified by Paolo Nenzi 2003 and Dietmar Warning 2012
#include "ngspice/sperror.h"
#include "ngspice/suffix.h"
#include "ngspice/fteext.h"
#include "ngspice/compatmode.h"
int
DIOsetup(SMPmatrix *matrix, GENmodel *inModel, CKTcircuit *ckt, int *states)
@ -79,20 +78,7 @@ DIOsetup(SMPmatrix *matrix, GENmodel *inModel, CKTcircuit *ckt, int *states)
model->DIOtranTimeTemp2 = 0.0;
}
if(!model->DIOjunctionCapGiven) {
if (newcompat.ps || newcompat.lt) {
double cdiode = 0.;
/* to improve convergence (sometimes) */
if (cp_getvar("diode_cj0", CP_REAL, &cdiode, 0) && cdiode > 0) {
model->DIOjunctionCap = cdiode;
if (ft_ngdebug)
fprintf(stderr, "Diode junction capacitance in model %s set to %e F\n", model->gen.GENmodName, cdiode);
}
else
model->DIOjunctionCap = 0.0;
}
else {
model->DIOjunctionCap = 0.0;
}
model->DIOjunctionCap = 0;
}
if(!model->DIOjunctionSWCapGiven) {
model->DIOjunctionSWCap = 0;
@ -103,19 +89,11 @@ DIOsetup(SMPmatrix *matrix, GENmodel *inModel, CKTcircuit *ckt, int *states)
if(!model->DIOgradingSWCoeffGiven) {
model->DIOgradingSWCoeff = .33;
}
if(model->DIOforwardKneeCurrentGiven) {
if (model->DIOforwardKneeCurrent < ckt->CKTepsmin) {
model->DIOforwardKneeCurrentGiven = FALSE;
fprintf(stderr, "Warning: %s: IKF too small - model effect disabled!\n",
model->DIOmodName);
}
if(!model->DIOforwardKneeCurrentGiven) {
model->DIOforwardKneeCurrent = 0.0;
}
if(model->DIOreverseKneeCurrentGiven) {
if (model->DIOreverseKneeCurrent < ckt->CKTepsmin) {
model->DIOreverseKneeCurrentGiven = FALSE;
fprintf(stderr, "Warning: %s: IKR too small - model effect disabled!\n",
model->DIOmodName);
}
if(!model->DIOreverseKneeCurrentGiven) {
model->DIOreverseKneeCurrent = 0.0;
}
if(!model->DIObrkdEmissionCoeffGiven) {
model->DIObrkdEmissionCoeff = model->DIOemissionCoeff;
@ -127,17 +105,7 @@ DIOsetup(SMPmatrix *matrix, GENmodel *inModel, CKTcircuit *ckt, int *states)
model->DIOtlevc = 0;
}
if(!model->DIOactivationEnergyGiven) {
if(model->DIOtlev == 2) {
model->DIOactivationEnergy = 1.16;
} else {
model->DIOactivationEnergy = 1.11;
}
}
if(!model->DIOfirstBGcorrFactorGiven) {
model->DIOfirstBGcorrFactor = 7.02e-4;
}
if(!model->DIOsecndBGcorrFactorGiven) {
model->DIOsecndBGcorrFactor = 1108.0;
model->DIOactivationEnergy = 1.11;
}
if(!model->DIOsaturationCurrentExpGiven) {
model->DIOsaturationCurrentExp = 3;
@ -206,11 +174,14 @@ DIOsetup(SMPmatrix *matrix, GENmodel *inModel, CKTcircuit *ckt, int *states)
model->DIOte_max = 1e99;
}
if(!model->DIOrecEmissionCoeffGiven) {
model->DIOrecEmissionCoeff = 2;
model->DIOrecEmissionCoeff = 1;
}
if(!model->DIOrecSatCurGiven) {
model->DIOrecSatCur = 1e-14;
}
if (!model->DIOsoftRevRecParamGiven) {
model->DIOsoftRevRecParam = 0.0;
}
/* set lower limit of saturation current */
if (model->DIOsatCur < ckt->CKTepsmin)
@ -221,20 +192,7 @@ DIOsetup(SMPmatrix *matrix, GENmodel *inModel, CKTcircuit *ckt, int *states)
}
if((!model->DIOresistGiven) || (model->DIOresist==0)) {
if (newcompat.ps || newcompat.lt) {
double rsdiode = 0.;
/* to improve convergence (sometimes) */
if (cp_getvar("diode_rser", CP_REAL, &rsdiode, 0) && rsdiode > 0) {
model->DIOconductance = 1./rsdiode;
model->DIOresist = rsdiode;
if (ft_ngdebug)
fprintf(stderr, "Diode series resistance in model %s set to %e Ohm\n", model->gen.GENmodName, rsdiode);
}
else
model->DIOconductance = 0.0;
}
else
model->DIOconductance = 0.0;
model->DIOconductance = 0.0;
} else {
model->DIOconductance = 1/model->DIOresist;
}
@ -270,9 +228,6 @@ DIOsetup(SMPmatrix *matrix, GENmodel *inModel, CKTcircuit *ckt, int *states)
if(!model->DIOpolyMaskOffsetGiven) {
model->DIOpolyMaskOffset = 0.0;
}
if(!model->DIOmaskOffsetGiven) {
model->DIOmaskOffset = 0.0;
}
/* loop through all the instances of the model */
for (here = DIOinstances(model); here != NULL ;
@ -296,41 +251,45 @@ DIOsetup(SMPmatrix *matrix, GENmodel *inModel, CKTcircuit *ckt, int *states)
here->DIOm = 1;
}
here->DIOcmetal = 0.0;
here->DIOcpoly = 0.0;
here->DIOarea = here->DIOarea * here->DIOm;
here->DIOpj = here->DIOpj * here->DIOm;
here->DIOcmetal = 0.0;
here->DIOcpoly = 0.0;
if (model->DIOlevel == 3) {
double wm, lm, wp, lp;
if((here->DIOwGiven) && (here->DIOlGiven)) {
here->DIOarea = (here->DIOw+model->DIOmaskOffset) * (here->DIOl+model->DIOmaskOffset) * here->DIOm * scale * scale;
here->DIOpj = (2 * (here->DIOw+model->DIOmaskOffset) + 2 * (here->DIOl+model->DIOmaskOffset)) * here->DIOm * scale;
here->DIOarea = here->DIOw * here->DIOl * here->DIOm;
here->DIOpj = (2 * here->DIOw + 2 * here->DIOl) * here->DIOm;
}
if (here->DIOwidthMetalGiven)
here->DIOarea = here->DIOarea * scale * scale;
here->DIOpj = here->DIOpj * scale;
if (here->DIOwidthMetalGiven)
wm = here->DIOwidthMetal;
else
wm = model->DIOwidthMetal;
if (here->DIOlengthMetalGiven)
if (here->DIOlengthMetalGiven)
lm = here->DIOlengthMetal;
else
lm = model->DIOlengthMetal;
if (here->DIOwidthPolyGiven)
if (here->DIOwidthPolyGiven)
wp = here->DIOwidthPoly;
else
wp = model->DIOwidthPoly;
if (here->DIOlengthPolyGiven)
if (here->DIOlengthPolyGiven)
lp = here->DIOlengthPoly;
else
lp = model->DIOlengthPoly;
here->DIOcmetal = CONSTepsSiO2 / model->DIOmetalOxideThick * here->DIOm
* (wm * scale + model->DIOmetalMaskOffset)
* (wm * scale + model->DIOmetalMaskOffset)
* (lm * scale + model->DIOmetalMaskOffset);
here->DIOcpoly = CONSTepsSiO2 / model->DIOpolyOxideThick * here->DIOm
* (wp * scale + model->DIOpolyMaskOffset)
* (wp * scale + model->DIOpolyMaskOffset)
* (lp * scale + model->DIOpolyMaskOffset);
}
here->DIOforwardKneeCurrent = model->DIOforwardKneeCurrent * here->DIOarea * here->DIOm;
here->DIOreverseKneeCurrent = model->DIOreverseKneeCurrent * here->DIOarea * here->DIOm;
here->DIOjunctionCap = model->DIOjunctionCap * here->DIOarea * here->DIOm;
here->DIOjunctionSWCap = model->DIOjunctionSWCap * here->DIOpj * here->DIOm;
here->DIOforwardKneeCurrent = model->DIOforwardKneeCurrent * here->DIOarea;
here->DIOreverseKneeCurrent = model->DIOreverseKneeCurrent * here->DIOarea;
here->DIOjunctionCap = model->DIOjunctionCap * here->DIOarea;
here->DIOjunctionSWCap = model->DIOjunctionSWCap * here->DIOpj;
here->DIOstate = *states;
*states += DIOnumStates;

View File

@ -33,46 +33,44 @@ void DIOtempUpdate(DIOmodel *inModel, DIOinstance *here, double Temp, CKTcircuit
double egfet1,arg1,fact1,pbfact1,pbo,gmaold,pboSW,gmaSWold;
double fact2,pbfact,arg,egfet,gmanew,gmaSWnew;
double arg1_dT, arg2, arg2_dT;
double lnTRatio, egfet_dT = 0.0, arg0, vte_dT, vts_dT, vtt_dT, vtr_dT;
double gclimit;
if (!cp_getvar("DIOgradingCoeffMax", CP_REAL, &gclimit, 0))
gclimit = 0.9;
vt = CONSTKoverQ * Temp;
vte = model->DIOemissionCoeff * vt;
vte_dT = CONSTKoverQ * model->DIOemissionCoeff;
vts = model->DIOswEmissionCoeff * vt;
vts_dT = CONSTKoverQ * model->DIOswEmissionCoeff;
vtt = model->DIOtunEmissionCoeff * vt;
vtt_dT = CONSTKoverQ * model->DIOtunEmissionCoeff;
vtr = model->DIOrecEmissionCoeff * vt;
vtr_dT = CONSTKoverQ * model->DIOrecEmissionCoeff;
vtnom = CONSTKoverQ * model->DIOnomTemp;
dt = Temp - model->DIOnomTemp;
lnTRatio = log(Temp / model->DIOnomTemp);
/* Junction grading temperature adjust */
factor = 1.0 + (model->DIOgradCoeffTemp1 * dt)
+ (model->DIOgradCoeffTemp2 * dt * dt);
here->DIOtGradingCoeff = model->DIOgradingCoeff * factor;
/* limit temperature adjusted grading coeff
* to max of .9, or set new limit with variable DIOgradingCoeffMax
*/
if(here->DIOtGradingCoeff>gclimit) {
SPfrontEnd->IFerrorf (ERR_WARNING,
"%s: temperature adjusted grading coefficient too large, limited to %g",
here->DIOname, gclimit);
here->DIOtGradingCoeff=gclimit;
}
/* this part gets really ugly - I won't even try to
* explain these equations */
if ((model->DIOtlev == 0) || (model->DIOtlev == 1)) {
egfet = 1.16-(7.02e-4*Temp*Temp)/
(Temp+1108);
egfet1 = 1.16 - (7.02e-4*model->DIOnomTemp*model->DIOnomTemp)/
(model->DIOnomTemp+1108);
} else {
egfet = model->DIOactivationEnergy-(model->DIOfirstBGcorrFactor*Temp*Temp)/
(Temp+model->DIOsecndBGcorrFactor);
egfet_dT = (model->DIOfirstBGcorrFactor*Temp*Temp)/
((Temp+model->DIOsecndBGcorrFactor)*(Temp+model->DIOsecndBGcorrFactor))
- 2*model->DIOfirstBGcorrFactor*Temp/(Temp+model->DIOsecndBGcorrFactor);
egfet1 = model->DIOactivationEnergy - (model->DIOfirstBGcorrFactor*model->DIOnomTemp*model->DIOnomTemp)/
(model->DIOnomTemp+model->DIOsecndBGcorrFactor);
}
fact2 = Temp/REFTEMP;
egfet = 1.16-(7.02e-4*Temp*Temp)/
(Temp+1108);
arg = -egfet/(2*CONSTboltz*Temp) +
1.1150877/(CONSTboltz*(REFTEMP+REFTEMP));
pbfact = -2*vt*(1.5*log(fact2)+CHARGE*arg);
egfet1 = 1.16 - (7.02e-4*model->DIOnomTemp*model->DIOnomTemp)/
(model->DIOnomTemp+1108);
arg1 = -egfet1/(CONSTboltz*2*model->DIOnomTemp) +
1.1150877/(2*CONSTboltz*REFTEMP);
fact1 = model->DIOnomTemp/REFTEMP;
@ -110,77 +108,45 @@ void DIOtempUpdate(DIOmodel *inModel, DIOinstance *here, double Temp, CKTcircuit
(1+model->DIOctp*(Temp-REFTEMP));
}
if ((model->DIOtlev == 0) || (model->DIOtlev == 1)) {
arg1 = ((Temp / model->DIOnomTemp) - 1) * model->DIOactivationEnergy / vte;
arg1_dT = model->DIOactivationEnergy / (vte*model->DIOnomTemp)
- model->DIOactivationEnergy*(Temp/model->DIOnomTemp -1)/(vte*Temp);
arg2 = model->DIOsaturationCurrentExp / model->DIOemissionCoeff * lnTRatio;
arg2_dT = model->DIOsaturationCurrentExp / model->DIOemissionCoeff / Temp;
here->DIOtSatCur = model->DIOsatCur * here->DIOarea * here->DIOm * exp(arg1 + arg2);
here->DIOtSatCur_dT = here->DIOtSatCur * (arg1_dT + arg2_dT);
arg1 = ((Temp / model->DIOnomTemp) - 1) * model->DIOactivationEnergy / vte;
arg1_dT = model->DIOactivationEnergy / (vte*model->DIOnomTemp)
- model->DIOactivationEnergy*(Temp/model->DIOnomTemp -1)/(vte*Temp);
arg2 = model->DIOsaturationCurrentExp / model->DIOemissionCoeff * log(Temp / model->DIOnomTemp);
arg2_dT = model->DIOsaturationCurrentExp / model->DIOemissionCoeff / Temp;
here->DIOtSatCur = here->DIOm * model->DIOsatCur * here->DIOarea * exp(arg1 + arg2);
here->DIOtSatCur_dT = here->DIOm * model->DIOsatCur * here->DIOarea * exp(arg1 + arg2) * (arg1_dT + arg2_dT);
arg1 = ((Temp / model->DIOnomTemp) - 1) * model->DIOactivationEnergy / vts;
arg1_dT = model->DIOactivationEnergy / (vts*model->DIOnomTemp)
- model->DIOactivationEnergy*(Temp/model->DIOnomTemp -1)/(vts*Temp);
arg2 = model->DIOsaturationCurrentExp / model->DIOswEmissionCoeff * lnTRatio;
arg2_dT = model->DIOsaturationCurrentExp / model->DIOswEmissionCoeff / Temp;
here->DIOtSatSWCur = model->DIOsatSWCur * here->DIOpj * here->DIOm * exp(arg1 + arg2);
here->DIOtSatSWCur_dT = here->DIOtSatSWCur * (arg1_dT + arg2_dT);
arg1 = ((Temp / model->DIOnomTemp) - 1) * model->DIOactivationEnergy / vts;
arg1_dT = model->DIOactivationEnergy / (vts*model->DIOnomTemp)
- model->DIOactivationEnergy*(Temp/model->DIOnomTemp -1)/(vts*Temp);
arg2 = model->DIOsaturationCurrentExp / model->DIOswEmissionCoeff * log(Temp / model->DIOnomTemp);
arg2_dT = model->DIOsaturationCurrentExp / model->DIOswEmissionCoeff / Temp;
here->DIOtSatSWCur = here->DIOm * model->DIOsatSWCur * here->DIOpj * exp(arg1 + arg2);
here->DIOtSatSWCur_dT = here->DIOm * model->DIOsatSWCur * here->DIOpj * exp(arg1 + arg2) * (arg1_dT + arg2_dT);
arg1 = ((Temp/model->DIOnomTemp)-1) * model->DIOtunEGcorrectionFactor*model->DIOactivationEnergy / vtt;
arg1_dT = model->DIOtunEGcorrectionFactor*model->DIOactivationEnergy / (vtt*model->DIOnomTemp)
- model->DIOactivationEnergy*(Temp/model->DIOnomTemp -1)/(vtt*Temp);
arg2 = model->DIOtunSaturationCurrentExp / model->DIOtunEmissionCoeff * lnTRatio;
arg2_dT = model->DIOtunSaturationCurrentExp / model->DIOtunEmissionCoeff / Temp;
here->DIOtTunSatCur = model->DIOtunSatCur * here->DIOarea * here->DIOm * exp(arg1 + arg2);
here->DIOtTunSatCur_dT = here->DIOtTunSatCur * (arg1_dT + arg2_dT);
arg1 = ((Temp / model->DIOnomTemp) - 1) * model->DIOtunEGcorrectionFactor*model->DIOactivationEnergy / vtt;
arg1_dT = model->DIOtunEGcorrectionFactor*model->DIOactivationEnergy / (vtt*model->DIOnomTemp)
- model->DIOactivationEnergy*(Temp/model->DIOnomTemp -1)/(vtt*Temp);
arg2 = model->DIOtunSaturationCurrentExp / model->DIOtunEmissionCoeff * log(Temp / model->DIOnomTemp);
arg2_dT = model->DIOtunSaturationCurrentExp / model->DIOtunEmissionCoeff / Temp;
here->DIOtTunSatCur = here->DIOm * model->DIOtunSatCur * here->DIOarea * exp(arg1 + arg2);
here->DIOtTunSatCur_dT = here->DIOm * model->DIOtunSatCur * here->DIOarea * exp(arg1 + arg2) * (arg1_dT + arg2_dT);
here->DIOtTunSatSWCur = model->DIOtunSatSWCur * here->DIOpj * here->DIOm * exp(arg1 + arg2);
here->DIOtTunSatSWCur_dT = here->DIOtTunSatSWCur * (arg1_dT + arg2_dT);
arg1 = ((Temp / model->DIOnomTemp) - 1) * model->DIOtunEGcorrectionFactor*model->DIOactivationEnergy / vtt;
arg1_dT = model->DIOtunEGcorrectionFactor*model->DIOactivationEnergy / (vtt*model->DIOnomTemp)
- model->DIOactivationEnergy*(Temp/model->DIOnomTemp -1)/(vtt*Temp);
arg2 = model->DIOtunSaturationCurrentExp / model->DIOtunEmissionCoeff * log(Temp / model->DIOnomTemp);
arg2_dT = model->DIOtunSaturationCurrentExp / model->DIOtunEmissionCoeff / Temp;
here->DIOtTunSatSWCur = here->DIOm * model->DIOtunSatSWCur * here->DIOpj * exp(arg1 + arg2);
here->DIOtTunSatSWCur_dT = here->DIOm * model->DIOtunSatSWCur * here->DIOpj * exp(arg1 + arg2) * (arg1_dT + arg2_dT);
arg1 = ((Temp / model->DIOnomTemp) - 1) * model->DIOactivationEnergy / vtr;
arg1_dT = model->DIOactivationEnergy / (vtr*model->DIOnomTemp)
- model->DIOactivationEnergy*(Temp/model->DIOnomTemp -1)/(vtr*Temp);
arg2 = model->DIOsaturationCurrentExp / model->DIOrecEmissionCoeff * lnTRatio;
arg2_dT = model->DIOsaturationCurrentExp / model->DIOrecEmissionCoeff / Temp;
here->DIOtRecSatCur = model->DIOrecSatCur * here->DIOarea * here->DIOm * exp(arg1 + arg2);
here->DIOtRecSatCur_dT = here->DIOtRecSatCur * (arg1_dT + arg2_dT);
} else {
arg0 = egfet1 / (model->DIOemissionCoeff * vtnom);
arg1 = egfet / vte;
arg1_dT = (egfet_dT * vte - egfet * vte_dT) / (egfet*egfet);
arg2 = model->DIOsaturationCurrentExp / model->DIOemissionCoeff * lnTRatio;
arg2_dT = model->DIOsaturationCurrentExp / model->DIOemissionCoeff / Temp;
here->DIOtSatCur = model->DIOsatCur * here->DIOarea * here->DIOm * exp(arg0 - arg1 + arg2);
here->DIOtSatCur_dT = here->DIOtSatCur * (-arg1_dT + arg2_dT);
arg0 = egfet1 / (model->DIOswEmissionCoeff * vtnom);
arg1 = egfet / vts;
arg1_dT = (egfet_dT * vts - egfet * vts_dT) / (egfet*egfet);
arg2 = model->DIOsaturationCurrentExp / model->DIOswEmissionCoeff * lnTRatio;
arg2_dT = model->DIOsaturationCurrentExp / model->DIOswEmissionCoeff / Temp;
here->DIOtSatSWCur = model->DIOsatSWCur * here->DIOpj * here->DIOm * exp(arg0 - arg1 + arg2);
here->DIOtSatSWCur_dT = here->DIOtSatSWCur * (-arg1_dT + arg2_dT);
arg0 = model->DIOtunEGcorrectionFactor * egfet1 / (model->DIOtunEmissionCoeff * vtnom);
arg1 = model->DIOtunEGcorrectionFactor * egfet / vtt;
arg1_dT = model->DIOtunEGcorrectionFactor * (egfet_dT * vtt - egfet * vtt_dT) / (egfet*egfet);
arg2 = model->DIOtunSaturationCurrentExp / model->DIOtunEmissionCoeff * lnTRatio;
arg2_dT = model->DIOtunSaturationCurrentExp / model->DIOtunEmissionCoeff / Temp;
here->DIOtTunSatCur = model->DIOtunSatCur * here->DIOarea * here->DIOm * exp(arg0 - arg1 + arg2);
here->DIOtTunSatCur_dT = here->DIOtTunSatCur * (-arg1_dT + arg2_dT);
here->DIOtTunSatSWCur = model->DIOtunSatSWCur * here->DIOpj * here->DIOm * exp(arg0 - arg1 + arg2);
here->DIOtTunSatSWCur_dT = here->DIOtTunSatSWCur * (-arg1_dT + arg2_dT);
arg0 = egfet1 / (model->DIOrecEmissionCoeff * vtnom);
arg1 = egfet / vtr;
arg1_dT = (egfet_dT * vtr - egfet * vtr_dT) / (egfet*egfet);
arg2 = model->DIOsaturationCurrentExp / model->DIOrecEmissionCoeff * lnTRatio;
arg2_dT = model->DIOsaturationCurrentExp / model->DIOrecEmissionCoeff / Temp;
here->DIOtRecSatCur = model->DIOrecSatCur * here->DIOarea * here->DIOm * exp(arg0 - arg1 + arg2);
here->DIOtRecSatCur_dT = here->DIOtRecSatCur * (-arg1_dT + arg2_dT);
}
arg1 = ((Temp / model->DIOnomTemp) - 1) * model->DIOactivationEnergy / vtr;
arg1_dT = model->DIOactivationEnergy / (vtr*model->DIOnomTemp)
- model->DIOactivationEnergy*(Temp/model->DIOnomTemp -1)/(vtr*Temp);
arg2 = model->DIOsaturationCurrentExp / model->DIOrecEmissionCoeff * log(Temp / model->DIOnomTemp);
arg2_dT = model->DIOsaturationCurrentExp / model->DIOrecEmissionCoeff / Temp;
here->DIOtRecSatCur = here->DIOm * model->DIOrecSatCur * here->DIOarea * exp(arg1 + arg2);
here->DIOtRecSatCur_dT = here->DIOm * model->DIOrecSatCur * here->DIOarea * exp(arg1 + arg2) * (arg1_dT + arg2_dT);
xfc=log(1-model->DIOdepletionCapCoeff);
xfcs=log(1-model->DIOdepletionSWcapCoeff);
@ -196,8 +162,26 @@ void DIOtempUpdate(DIOmodel *inModel, DIOinstance *here, double Temp, CKTcircuit
here->DIOtDepSWCap=model->DIOdepletionSWcapCoeff*
here->DIOtJctSWPot;
/* and Vcrit */
double totalSatCur = here->DIOtSatCur + here->DIOtSatSWCur;
here->DIOtVcrit = vte * log(vte/(CONSTroot2*totalSatCur));
vte=model->DIOemissionCoeff*vt;
here->DIOtVcrit = vte * log(vte/(CONSTroot2*here->DIOtSatCur));
/* limit junction potential to max of 1/FC */
if(here->DIOtDepCap > 1.0) {
here->DIOtJctPot=1.0/model->DIOdepletionCapCoeff;
here->DIOtDepCap=model->DIOdepletionCapCoeff*here->DIOtJctPot;
SPfrontEnd->IFerrorf (ERR_WARNING,
"%s: junction potential VJ too large, limited to %f",
model->DIOmodName, here->DIOtJctPot);
}
/* limit sidewall junction potential to max of 1/FCS */
if(here->DIOtDepSWCap > 1.0) {
here->DIOtJctSWPot=1.0/model->DIOdepletionSWcapCoeff;
here->DIOtDepSWCap=model->DIOdepletionSWcapCoeff*here->DIOtJctSWPot;
SPfrontEnd->IFerrorf (ERR_WARNING,
"%s: junction potential VJS too large, limited to %f",
model->DIOmodName, here->DIOtJctSWPot);
}
/* and now to compute the breakdown voltage, again, using
* temperature adjusted basic parameters */
@ -210,11 +194,11 @@ void DIOtempUpdate(DIOmodel *inModel, DIOinstance *here, double Temp, CKTcircuit
if (model->DIOlevel == 1) {
cbv = here->DIOm * model->DIObreakdownCurrent;
} else { /* level=3 */
cbv = model->DIObreakdownCurrent * here->DIOarea * here->DIOm;
cbv = here->DIOm * model->DIObreakdownCurrent * here->DIOarea;
}
if (cbv < totalSatCur * tBreakdownVoltage/vt) {
if (cbv < here->DIOtSatCur * tBreakdownVoltage/vt) {
#ifdef TRACE
cbv=totalSatCur * tBreakdownVoltage/vt;
cbv=here->DIOtSatCur * tBreakdownVoltage/vt;
SPfrontEnd->IFerrorf (ERR_WARNING, "%s: breakdown current increased to %g to resolve", here->DIOname, cbv);
SPfrontEnd->IFerrorf (ERR_WARNING,
"incompatibility with specified saturation current");
@ -223,11 +207,11 @@ void DIOtempUpdate(DIOmodel *inModel, DIOinstance *here, double Temp, CKTcircuit
} else {
tol=ckt->CKTreltol*cbv;
xbv=tBreakdownVoltage-model->DIObrkdEmissionCoeff*vt*log(1+cbv/
totalSatCur);
(here->DIOtSatCur));
for(iter=0 ; iter < 25 ; iter++) {
xbv=tBreakdownVoltage-model->DIObrkdEmissionCoeff*vt*log(cbv/
totalSatCur+1-xbv/vt);
xcbv=totalSatCur *
(here->DIOtSatCur)+1-xbv/vt);
xcbv=here->DIOtSatCur *
(exp((tBreakdownVoltage-xbv)/(model->DIObrkdEmissionCoeff*vt))-1+xbv/vt);
if (fabs(xcbv-cbv) <= tol) goto matched;
}
@ -245,12 +229,12 @@ void DIOtempUpdate(DIOmodel *inModel, DIOinstance *here, double Temp, CKTcircuit
here->DIOtTransitTime = model->DIOtransitTime * factor;
/* Series resistance temperature adjust */
here->DIOtConductance = model->DIOconductance * here->DIOarea * here->DIOm;
here->DIOtConductance = here->DIOm * model->DIOconductance * here->DIOarea;
if(model->DIOresistGiven && model->DIOresist!=0.0) {
factor = 1.0 + (model->DIOresistTemp1) * dt
+ (model->DIOresistTemp2 * dt * dt);
here->DIOtConductance = model->DIOconductance * here->DIOarea * here->DIOm / factor;
here->DIOtConductance_dT = -model->DIOconductance * here->DIOarea * here->DIOm *
here->DIOtConductance = here->DIOm * model->DIOconductance * here->DIOarea / factor;
here->DIOtConductance_dT = here->DIOm * -model->DIOconductance * here->DIOarea *
(model->DIOresistTemp1 + model->DIOresistTemp2 * dt) / (factor*factor);
}

View File

@ -21,6 +21,7 @@ DIOtrunc(GENmodel *inModel, CKTcircuit *ckt, double *timeStep)
for( ; model != NULL; model = DIOnextModel(model)) {
for(here=DIOinstances(model);here!=NULL;here = DIOnextInstance(here)){
CKTterr(here->DIOcapCharge,ckt,timeStep);
CKTterr(here->DIOdiffCharge,ckt,timeStep);
}
}
return(OK);