Add optional switch for separate bottom and sidewall diode model - configuration is dependent from model parameter RSW

Further sidewall knee current parameter IKP is implemented.
This commit is contained in:
dwarning 2025-11-27 16:21:31 +01:00
parent f8d341b05a
commit 284d4308db
13 changed files with 544 additions and 114 deletions

View File

@ -55,6 +55,7 @@ IFparm DIOmPTable[] = { /* model parameters */
IOPU( "tnom",DIO_MOD_TNOM,IF_REAL, "Parameter measurement temperature"),
IOPUR("tref",DIO_MOD_TNOM,IF_REAL, "Parameter measurement temperature"),
IOP( "rs", DIO_MOD_RS, IF_REAL, "Ohmic resistance"),
IOP( "rsw", DIO_MOD_RSW, IF_REAL, "Ohmic resistance sidewall"),
IOP( "trs", DIO_MOD_TRS, IF_REAL, "Ohmic resistance 1st order temp. coeff."),
IOPR( "trs1", DIO_MOD_TRS, IF_REAL, "Ohmic resistance 1st order temp. coeff."),
IOP( "trs2", DIO_MOD_TRS2, IF_REAL, "Ohmic resistance 2nd order temp. coeff."),
@ -80,6 +81,7 @@ IFparm DIOmPTable[] = { /* model parameters */
IOP( "ikf", DIO_MOD_IKF, IF_REAL, "Forward Knee current"),
IOPR( "ik", DIO_MOD_IKF, IF_REAL, "Forward Knee current"),
IOP( "ikr", DIO_MOD_IKR, IF_REAL, "Reverse Knee current"),
IOP( "ikp", DIO_MOD_IKP, IF_REAL, "Forward Sw Knee current"),
IOP( "nbv", DIO_MOD_NBV, IF_REAL, "Breakdown Emission Coefficient"),
IOPR( "nz", DIO_MOD_NBV, IF_REAL, "Breakdown Emission Coefficient"),
IOP("area", DIO_MOD_AREA, IF_REAL, "Area factor"),

View File

@ -17,7 +17,7 @@ int
DIOacLoad(GENmodel *inModel, CKTcircuit *ckt)
{
DIOmodel *model = (DIOmodel*)inModel;
double gspr;
double gspr, gsprsw;
double geq;
double xceq;
DIOinstance *here;
@ -42,6 +42,23 @@ DIOacLoad(GENmodel *inModel, CKTcircuit *ckt)
*(here->DIOposPrimePosPtr ) -= gspr;
*(here->DIOposPrimeNegPtr ) -= geq;
*(here->DIOposPrimeNegPtr +1 ) -= xceq;
if (model->DIOresistSWGiven) {
gsprsw=here->DIOtConductanceSW;
geq= *(ckt->CKTstate0 + here->DIOconductSW);
xceq= *(ckt->CKTstate0 + here->DIOcapCurrentSW) * ckt->CKTomega;
*(here->DIOposPosPtr) += gsprsw;
*(here->DIOnegNegPtr) += geq;
*(here->DIOnegNegPtr + 1) += xceq;
*(here->DIOposSwPrimePosSwPrimePtr) += (geq + gsprsw);
*(here->DIOposSwPrimePosSwPrimePtr + 1) += xceq;
*(here->DIOposPosSwPrimePtr) -= gsprsw;
*(here->DIOnegPosSwPrimePtr) -= geq;
*(here->DIOnegPosSwPrimePtr + 1) -= xceq;
*(here->DIOposSwPrimePosPtr) -= gsprsw;
*(here->DIOposSwPrimeNegPtr) -= geq;
*(here->DIOposSwPrimeNegPtr + 1) -= xceq;
}
int selfheat = ((here->DIOtempNode > 0) && (here->DIOthermal) && (model->DIOrth0Given));
if (selfheat) {
double dIth_dVrs = here->DIOdIth_dVrs;
@ -60,6 +77,19 @@ DIOacLoad(GENmodel *inModel, CKTcircuit *ckt)
double xgcTt= *(ckt->CKTstate0 + here->DIOcqth) * ckt->CKTomega;
(*(here->DIOtempTempPtr + 1) += xgcTt);
if (model->DIOresistSWGiven) {
double dIth_dVrssw = here->DIOdIth_dVrs;
double dIth_dVdioSw = here->DIOdIth_dVdio;
double dIrssw_dT = here->DIOdIrs_dT;
double dIdioSw_dT = *(ckt->CKTstate0 + here->DIOdIdio_dT);
(*(here->DIOtempPosPtr) += -dIth_dVrssw);
(*(here->DIOtempPosSwPrimePtr) += -dIth_dVdioSw + dIth_dVrssw);
(*(here->DIOtempNegPtr) += dIth_dVdioSw);
(*(here->DIOposTempPtr) += dIrssw_dT);
(*(here->DIOposSwPrimeTempPtr) += dIdioSw_dT - dIrssw_dT);
(*(here->DIOnegTempPtr) += -dIdioSw_dT);
}
}
}
}

View File

@ -32,6 +32,12 @@ DIObindCSC (GENmodel *inModel, CKTcircuit *ckt)
CREATE_KLU_BINDING_TABLE(DIOposPosPtr, DIOposPosBinding, DIOposNode, DIOposNode);
CREATE_KLU_BINDING_TABLE(DIOnegNegPtr, DIOnegNegBinding, DIOnegNode, DIOnegNode);
CREATE_KLU_BINDING_TABLE(DIOposPrimePosPrimePtr, DIOposPrimePosPrimeBinding, DIOposPrimeNode, DIOposPrimeNode);
/* separate sidewall */
CREATE_KLU_BINDING_TABLE(DIOposPosSwPrimePtr,DIOposPosSwPrimeBinding,DIOposNode,DIOposSwPrimeNode);
CREATE_KLU_BINDING_TABLE(DIOnegPosSwPrimePtr,DIOnegPosSwPrimeBinding,DIOnegNode,DIOposSwPrimeNode);
CREATE_KLU_BINDING_TABLE(DIOposSwPrimePosPtr,DIOposSwPrimePosBinding,DIOposSwPrimeNode,DIOposNode);
CREATE_KLU_BINDING_TABLE(DIOposSwPrimeNegPtr,DIOposSwPrimeNegBinding,DIOposSwPrimeNode,DIOnegNode);
CREATE_KLU_BINDING_TABLE(DIOposSwPrimePosSwPrimePtr,DIOposSwPrimePosSwPrimeBinding,DIOposSwPrimeNode,DIOposSwPrimeNode);
if ((here->DIOtempNode > 0) && (here->DIOthermal) && (model->DIOrth0Given)) {
CREATE_KLU_BINDING_TABLE(DIOtempPosPtr, DIOtempPosBinding, DIOtempNode, DIOposNode);
CREATE_KLU_BINDING_TABLE(DIOtempPosPrimePtr, DIOtempPosPrimeBinding, DIOtempNode, DIOposPrimeNode);
@ -40,6 +46,9 @@ DIObindCSC (GENmodel *inModel, CKTcircuit *ckt)
CREATE_KLU_BINDING_TABLE(DIOposTempPtr, DIOposTempBinding, DIOposNode, DIOtempNode);
CREATE_KLU_BINDING_TABLE(DIOposPrimeTempPtr, DIOposPrimeTempBinding, DIOposPrimeNode, DIOtempNode);
CREATE_KLU_BINDING_TABLE(DIOnegTempPtr, DIOnegTempBinding, DIOnegNode, DIOtempNode);
/* separate sidewall */
CREATE_KLU_BINDING_TABLE(DIOtempPosSwPrimePtr, DIOtempPosSwPrimeBinding, DIOtempNode, DIOposSwPrimeNode);
CREATE_KLU_BINDING_TABLE(DIOposSwPrimeTempPtr, DIOposSwPrimeTempBinding, DIOposSwPrimeNode, DIOtempNode);
}
}
}
@ -68,6 +77,12 @@ DIObindCSCComplex (GENmodel *inModel, CKTcircuit *ckt)
CONVERT_KLU_BINDING_TABLE_TO_COMPLEX(DIOposPosPtr, DIOposPosBinding, DIOposNode, DIOposNode);
CONVERT_KLU_BINDING_TABLE_TO_COMPLEX(DIOnegNegPtr, DIOnegNegBinding, DIOnegNode, DIOnegNode);
CONVERT_KLU_BINDING_TABLE_TO_COMPLEX(DIOposPrimePosPrimePtr, DIOposPrimePosPrimeBinding, DIOposPrimeNode, DIOposPrimeNode);
/* separate sidewall */
CONVERT_KLU_BINDING_TABLE_TO_COMPLEX(DIOposPosSwPrimePtr,DIOposPosSwPrimeBinding,DIOposNode,DIOposSwPrimeNode);
CONVERT_KLU_BINDING_TABLE_TO_COMPLEX(DIOnegPosSwPrimePtr,DIOnegPosSwPrimeBinding,DIOnegNode,DIOposSwPrimeNode);
CONVERT_KLU_BINDING_TABLE_TO_COMPLEX(DIOposSwPrimePosPtr,DIOposSwPrimePosBinding,DIOposSwPrimeNode,DIOposNode);
CONVERT_KLU_BINDING_TABLE_TO_COMPLEX(DIOposSwPrimeNegPtr,DIOposSwPrimeNegBinding,DIOposSwPrimeNode,DIOnegNode);
CONVERT_KLU_BINDING_TABLE_TO_COMPLEX(DIOposSwPrimePosSwPrimePtr,DIOposSwPrimePosSwPrimeBinding,DIOposSwPrimeNode,DIOposSwPrimeNode);
if ((here->DIOtempNode > 0) && (here->DIOthermal) && (model->DIOrth0Given)) {
CONVERT_KLU_BINDING_TABLE_TO_COMPLEX(DIOtempPosPtr, DIOtempPosBinding, DIOtempNode, DIOposNode);
CONVERT_KLU_BINDING_TABLE_TO_COMPLEX(DIOtempPosPrimePtr, DIOtempPosPrimeBinding, DIOtempNode, DIOposPrimeNode);
@ -76,6 +91,9 @@ DIObindCSCComplex (GENmodel *inModel, CKTcircuit *ckt)
CONVERT_KLU_BINDING_TABLE_TO_COMPLEX(DIOposTempPtr, DIOposTempBinding, DIOposNode, DIOtempNode);
CONVERT_KLU_BINDING_TABLE_TO_COMPLEX(DIOposPrimeTempPtr, DIOposPrimeTempBinding, DIOposPrimeNode, DIOtempNode);
CONVERT_KLU_BINDING_TABLE_TO_COMPLEX(DIOnegTempPtr, DIOnegTempBinding, DIOnegNode, DIOtempNode);
/* separate sidewall */
CONVERT_KLU_BINDING_TABLE_TO_COMPLEX(DIOtempPosSwPrimePtr, DIOtempPosSwPrimeBinding, DIOtempNode, DIOposSwPrimeNode);
CONVERT_KLU_BINDING_TABLE_TO_COMPLEX(DIOposSwPrimeTempPtr, DIOposSwPrimeTempBinding, DIOposSwPrimeNode, DIOtempNode);
}
}
}
@ -104,6 +122,12 @@ DIObindCSCComplexToReal (GENmodel *inModel, CKTcircuit *ckt)
CONVERT_KLU_BINDING_TABLE_TO_REAL(DIOposPosPtr, DIOposPosBinding, DIOposNode, DIOposNode);
CONVERT_KLU_BINDING_TABLE_TO_REAL(DIOnegNegPtr, DIOnegNegBinding, DIOnegNode, DIOnegNode);
CONVERT_KLU_BINDING_TABLE_TO_REAL(DIOposPrimePosPrimePtr, DIOposPrimePosPrimeBinding, DIOposPrimeNode, DIOposPrimeNode);
/* separate sidewall */
CONVERT_KLU_BINDING_TABLE_TO_REAL(DIOposPosSwPrimePtr,DIOposPosSwPrimeBinding,DIOposNode,DIOposSwPrimeNode);
CONVERT_KLU_BINDING_TABLE_TO_REAL(DIOnegPosSwPrimePtr,DIOnegPosSwPrimeBinding,DIOnegNode,DIOposSwPrimeNode);
CONVERT_KLU_BINDING_TABLE_TO_REAL(DIOposSwPrimePosPtr,DIOposSwPrimePosBinding,DIOposSwPrimeNode,DIOposNode);
CONVERT_KLU_BINDING_TABLE_TO_REAL(DIOposSwPrimeNegPtr,DIOposSwPrimeNegBinding,DIOposSwPrimeNode,DIOnegNode);
CONVERT_KLU_BINDING_TABLE_TO_REAL(DIOposSwPrimePosSwPrimePtr,DIOposSwPrimePosSwPrimeBinding,DIOposSwPrimeNode,DIOposSwPrimeNode);
if ((here->DIOtempNode > 0) && (here->DIOthermal) && (model->DIOrth0Given)) {
CONVERT_KLU_BINDING_TABLE_TO_REAL(DIOtempPosPtr, DIOtempPosBinding, DIOtempNode, DIOposNode);
CONVERT_KLU_BINDING_TABLE_TO_REAL(DIOtempPosPrimePtr, DIOtempPosPrimeBinding, DIOtempNode, DIOposPrimeNode);
@ -112,6 +136,9 @@ DIObindCSCComplexToReal (GENmodel *inModel, CKTcircuit *ckt)
CONVERT_KLU_BINDING_TABLE_TO_REAL(DIOposTempPtr, DIOposTempBinding, DIOposNode, DIOtempNode);
CONVERT_KLU_BINDING_TABLE_TO_REAL(DIOposPrimeTempPtr, DIOposPrimeTempBinding, DIOposPrimeNode, DIOtempNode);
CONVERT_KLU_BINDING_TABLE_TO_REAL(DIOnegTempPtr, DIOnegTempBinding, DIOnegNode, DIOtempNode);
/* separate sidewall */
CONVERT_KLU_BINDING_TABLE_TO_REAL(DIOtempPosSwPrimePtr, DIOtempPosSwPrimeBinding, DIOtempNode, DIOposSwPrimeNode);
CONVERT_KLU_BINDING_TABLE_TO_REAL(DIOposSwPrimeTempPtr, DIOposSwPrimeTempBinding, DIOposSwPrimeNode, DIOtempNode);
}
}
}

View File

@ -19,7 +19,7 @@ DIOconvTest(GENmodel *inModel, CKTcircuit *ckt)
{
DIOmodel *model = (DIOmodel*)inModel;
DIOinstance *here;
double delvd,vd,cdhat,cd;
double delvd,vd,cdhat,cd,vdsw,cdhatsw=0.0,cdsw=0.0;
double tol;
double delTemp, deldelTemp;
/* loop through all the diode models */
@ -46,11 +46,23 @@ DIOconvTest(GENmodel *inModel, CKTcircuit *ckt)
deldelTemp = delTemp - *(ckt->CKTstate0 + here->DIOdeltemp);
cdhat= *(ckt->CKTstate0 + here->DIOcurrent) +
*(ckt->CKTstate0 + here->DIOconduct) * delvd +
*(ckt->CKTstate0 + here->DIOdIdio_dT) * deldelTemp;
*(ckt->CKTstate0 + here->DIOconduct) * delvd +
*(ckt->CKTstate0 + here->DIOdIdio_dT) * deldelTemp;
cd= *(ckt->CKTstate0 + here->DIOcurrent);
if (model->DIOresistSWGiven) {
vdsw = *(ckt->CKTrhsOld+here->DIOposSwPrimeNode)-
*(ckt->CKTrhsOld + here->DIOnegNode);
delvd=vdsw- *(ckt->CKTstate0 + here->DIOvoltageSW);
cdhatsw= *(ckt->CKTstate0 + here->DIOcurrentSW) +
*(ckt->CKTstate0 + here->DIOconductSW) * delvd +
*(ckt->CKTstate0 + here->DIOdIdioSW_dT) * deldelTemp;
cdsw= *(ckt->CKTstate0 + here->DIOcurrentSW);
}
/*
* check convergence
*/
@ -61,6 +73,15 @@ DIOconvTest(GENmodel *inModel, CKTcircuit *ckt)
ckt->CKTtroubleElt = (GENinstance *) here;
return(OK); /* don't need to check any more device */
}
if (model->DIOresistSWGiven) {
tol=ckt->CKTreltol*
MAX(fabs(cdhatsw),fabs(cdsw))+ckt->CKTabstol;
if (fabs(cdhatsw-cdsw) > tol) {
ckt->CKTnoncon++;
ckt->CKTtroubleElt = (GENinstance *) here;
return(OK); /* no reason to continue - we've failed... */
}
}
}
}
return(OK);

View File

@ -20,6 +20,9 @@ enum {
DIORSNOIZ = 0,
DIOIDNOIZ,
DIOFLNOIZ,
DIORSSWNOIZ,
DIOIDSWNOIZ,
DIOFLSWNOIZ,
DIOTOTNOIZ,
/* finally, the number of noise sources */
DIONSRCS
@ -40,6 +43,7 @@ typedef struct sDIOinstance {
const int DIOnegNode; /* number of negative node of diode */
const int DIOtempNode; /* number of the temperature node of the diode */
int DIOposPrimeNode; /* number of positive prime node of diode */
int DIOposSwPrimeNode; /* number of positive prime node of diode sidewall */
double *DIOposPosPrimePtr; /* pointer to sparse matrix at
* (positive,positive prime) */
@ -55,6 +59,17 @@ typedef struct sDIOinstance {
* (negative,negative) */
double *DIOposPrimePosPrimePtr; /* pointer to sparse matrix at
* (positive prime,positive prime) */
/* separate sidewall */
double *DIOposPosSwPrimePtr; /* pointer to sparse matrix at
* (positive,positive prime sidewall) */
double *DIOnegPosSwPrimePtr; /* pointer to sparse matrix at
* (negative,positive prime sidewall) */
double *DIOposSwPrimePosPtr; /* pointer to sparse matrix at
* (positive prime sidewall,positive) */
double *DIOposSwPrimeNegPtr; /* pointer to sparse matrix at
* (positive prime sidewall,negative) */
double *DIOposSwPrimePosSwPrimePtr; /* pointer to sparse matrix at
* (positive prime sidewall,positive prime sidewall) */
/* self heating */
double *DIOtempPosPtr;
@ -64,8 +79,12 @@ typedef struct sDIOinstance {
double *DIOposTempPtr;
double *DIOposPrimeTempPtr;
double *DIOnegTempPtr;
/* separate sidewall */
double *DIOtempPosSwPrimePtr;
double *DIOposSwPrimeTempPtr;
double DIOcap; /* stores the diode capacitance */
double DIOcapSW; /* stores the diode Sw capacitance */
double *DIOsens; /* stores the perturbed values of geq and ceq in ac
sensitivity analyis */
@ -114,6 +133,8 @@ typedef struct sDIOinstance {
double DIOtGradingCoeff; /* temperature adjusted grading coefficient (MJ) */
double DIOtConductance; /* temperature adjusted series conductance */
double DIOtConductance_dT; /* temperature adjusted series conductance temperature derivative */
double DIOtConductanceSW; /* temperature adjusted sw series conductance */
double DIOtConductanceSW_dT; /* temperature adjusted sw series conductance temperature derivative */
double DIOtDepCap; /* temperature adjusted transition point in */
/* the curve matching (Fc * Vj ) */
@ -129,6 +150,7 @@ typedef struct sDIOinstance {
double DIOtTunSatSWCur_dT; /* sidewall tunneling saturation current temperature derivative */
double DIOtVcrit; /* temperature adjusted V crit */
double DIOtVcritSW; /* temperature adjusted V crit sidewall*/
double DIOtF1; /* temperature adjusted f1 */
double DIOtBrkdwnV; /* temperature adjusted breakdown voltage */
@ -139,17 +161,21 @@ typedef struct sDIOinstance {
double DIOforwardKneeCurrent; /* Forward Knee current */
double DIOreverseKneeCurrent; /* Reverse Knee current */
double DIOforwardSWKneeCurrent; /* Forward Sw Knee current */
double DIOjunctionCap; /* geometry adjusted junction capacitance */
double DIOjunctionSWCap; /* geometry adjusted junction sidewall capacitance */
double DIOtRecSatCur; /* temperature adjusted recombination saturation current */
double DIOtRecSatCur_dT; /* temperature adjusted recombination saturation current */
double DIOdIth_dVrs;
double DIOdIth_dVrssw;
double DIOdIth_dVdio;
double DIOdIth_dT;
double DIOgcTt;
double DIOdIrs_dT;
double DIOdIrssw_dT;
double DIOdIdio_dT;
double DIOdIdioSW_dT;
double DIOcmetal; /* parasitic metal overlap capacitance */
double DIOcpoly; /* parasitic polysilicon overlap capacitance */
@ -194,6 +220,12 @@ typedef struct sDIOinstance {
BindElement *DIOposPosBinding ;
BindElement *DIOnegNegBinding ;
BindElement *DIOposPrimePosPrimeBinding ;
/* separate sidewall */
BindElement *DIOposPosSwPrimeBinding ;
BindElement *DIOnegPosSwPrimeBinding ;
BindElement *DIOposSwPrimePosBinding ;
BindElement *DIOposSwPrimeNegBinding ;
BindElement *DIOposSwPrimePosSwPrimeBinding ;
/* self heating */
BindElement *DIOtempPosBinding;
BindElement *DIOtempPosPrimeBinding;
@ -216,18 +248,24 @@ typedef struct sDIOinstance {
#define DIOvoltage DIOstate
#define DIOcurrent DIOstate+1
#define DIOconduct DIOstate+2
#define DIOcapCharge DIOstate+3
#define DIOcapCurrent DIOstate+4
#define DIOvoltageSW DIOstate+3
#define DIOcurrentSW DIOstate+4
#define DIOconductSW DIOstate+5
#define DIOcapCharge DIOstate+6
#define DIOcapCurrent DIOstate+7
#define DIOcapChargeSW DIOstate+8
#define DIOcapCurrentSW DIOstate+9
#define DIOqth DIOstate+5 /* thermal capacitor charge */
#define DIOcqth DIOstate+6 /* thermal capacitor current */
#define DIOqth DIOstate+10 /* thermal capacitor charge */
#define DIOcqth DIOstate+11 /* thermal capacitor current */
#define DIOdeltemp DIOstate+7 /* thermal voltage over rth0 */
#define DIOdIdio_dT DIOstate+8
#define DIOdeltemp DIOstate+12 /* thermal voltage over rth0 */
#define DIOdIdio_dT DIOstate+13
#define DIOdIdioSW_dT DIOstate+14
#define DIOnumStates 9
#define DIOnumStates 15
#define DIOsensxp DIOstate+9 /* charge sensitivities and their derivatives.
#define DIOsensxp DIOstate+12 /* charge sensitivities and their derivatives.
* +10 for the derivatives - pointer to the
* beginning of the array */
@ -252,6 +290,7 @@ typedef struct sDIOmodel { /* model structure for a diode */
unsigned DIOresistGiven : 1;
unsigned DIOresistTemp1Given : 1;
unsigned DIOresistTemp2Given : 1;
unsigned DIOresistSWGiven : 1;
unsigned DIOemissionCoeffGiven : 1;
unsigned DIOswEmissionCoeffGiven : 1;
unsigned DIObrkdEmissionCoeffGiven : 1;
@ -268,6 +307,7 @@ typedef struct sDIOmodel { /* model structure for a diode */
unsigned DIOgradingSWCoeffGiven : 1;
unsigned DIOforwardKneeCurrentGiven : 1;
unsigned DIOreverseKneeCurrentGiven : 1;
unsigned DIOforwardSWKneeCurrentGiven : 1;
unsigned DIOtlevGiven : 1;
unsigned DIOtlevcGiven : 1;
@ -324,6 +364,8 @@ typedef struct sDIOmodel { /* model structure for a diode */
double DIOresistTemp1; /* series resistance 1st order temp. coeff. */
double DIOresistTemp2; /* series resistance 2nd order temp. coeff. */
double DIOconductance; /* conductance corresponding to ohmic R */
double DIOresistSW; /* ohmic series resistance sidewall */
double DIOconductanceSW; /* conductance corresponding to ohmic R */
double DIOemissionCoeff; /* emission coefficient (N) */
double DIOswEmissionCoeff; /* Sidewall emission coefficient (NS) */
double DIObrkdEmissionCoeff; /* Breakdown emission coefficient (NBV) */
@ -340,6 +382,7 @@ typedef struct sDIOmodel { /* model structure for a diode */
double DIOgradingSWCoeff; /* Sidewall grading coefficient (mjsw) */
double DIOforwardKneeCurrent; /* Forward Knee current (IKF) */
double DIOreverseKneeCurrent; /* Reverse Knee current (IKR) */
double DIOforwardSWKneeCurrent; /* Forward Sw Knee current (IKP) */
int DIOtlev; /* Diode temperature equation selector */
int DIOtlevc; /* Diode temperature equation selector */
@ -428,6 +471,7 @@ enum {
DIO_MOD_LEVEL = 100,
DIO_MOD_IS,
DIO_MOD_RS,
DIO_MOD_RSW,
DIO_MOD_N,
DIO_MOD_TT,
DIO_MOD_CJO,
@ -451,6 +495,7 @@ enum {
DIO_MOD_MJSW,
DIO_MOD_IKF,
DIO_MOD_IKR,
DIO_MOD_IKP,
DIO_MOD_FCS,
DIO_MOD_TTT1,
DIO_MOD_TTT2,

View File

@ -24,10 +24,10 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
DIOinstance *here;
double arg;
double argsw;
double capd;
double capd, capdsw=0.0;
double cd, cdb, cdsw, cdb_dT, cdsw_dT;
double cdeq;
double cdhat;
double cdhat, cdhatsw=0.0;
double ceq;
double csat; /* area-scaled saturation current */
double csatsw; /* perimeter-scaled saturation current */
@ -37,34 +37,33 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
double czeroSW;
double czof2SW;
double sargSW;
double sqrt_ikr;
double sqrt_ikf;
double ikf_area_m;
double ikr_area_m;
double sqrt_ikx;
double delvd; /* change in diode voltage temporary */
double delvd, delvdsw=0.0; /* change in diode voltage temporary */
double evd;
double evrev;
double gd, gdb, gdsw, gen_fac, gen_fac_vd;
double t1, evd_rec, cdb_rec, gdb_rec, cdb_rec_dT;
double geq;
double gspr; /* area-scaled conductance */
double gsprsw; /* perim-scaled conductance */
double sarg;
#ifndef NOBYPASS
double tol; /* temporary for tolerence calculations */
#endif
double vd; /* current diode voltage */
double vd, vdsw=0.0; /* current diode voltage */
double vdtemp;
double vt; /* K t / Q */
double vte, vtesw, vtetun, vtebrk;
int Check_dio=0, Check_th;
int Check_dio=0, Check_dio_sw=0, Check_th;
int error;
int SenCond=0; /* sensitivity condition */
double diffcharge, deplcharge, deplchargeSW, diffcap, deplcap, deplcapSW;
double deldelTemp, delTemp, Temp;
double ceqqth=0.0, Ith=0.0, gcTt=0.0, vrs=0.0;
double ceqqth=0.0, Ith=0.0, gcTt=0.0, vrs=0.0, vrssw=0.0;
double dIdio_dT, dIth_dVdio=0.0, dIrs_dT=0.0, dIth_dVrs=0.0, dIth_dT=0.0;
double dIdioSw_dT=0.0, dIth_dVdioSw=0.0, dIth_dVrssw=0.0, dIrssw_dT=0.0;
double argsw_dT, csat_dT, csatsw_dT;
/* loop through all the diode models */
@ -101,8 +100,10 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
delTemp = 0.0;
vt = CONSTKoverQ * here->DIOtemp;
vte = model->DIOemissionCoeff * vt;
vtesw = model->DIOswEmissionCoeff * vt;
vtebrk = model->DIObrkdEmissionCoeff * vt;
gspr = here->DIOtConductance;
gsprsw = here->DIOtConductanceSW;
/*
* initialization
*/
@ -116,9 +117,11 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
if((ckt->CKTsenInfo->SENmode == TRANSEN)&&
(ckt->CKTmode & MODEINITTRAN)) {
vd = *(ckt->CKTstate1 + here->DIOvoltage);
if (model->DIOresistSWGiven) vdsw = *(ckt->CKTstate1 + here->DIOvoltageSW);
delTemp = *(ckt->CKTstate1 + here->DIOdeltemp);
} else{
vd = *(ckt->CKTstate0 + here->DIOvoltage);
if (model->DIOresistSWGiven) vdsw = *(ckt->CKTstate0 + here->DIOvoltageSW);
delTemp = *(ckt->CKTstate0 + here->DIOdeltemp);
}
@ -128,24 +131,28 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
goto next1;
}
Check_dio=1;
Check_dio=1; Check_dio_sw=1;
if(ckt->CKTmode & MODEINITSMSIG) {
vd= *(ckt->CKTstate0 + here->DIOvoltage);
if (model->DIOresistSWGiven) vdsw = *(ckt->CKTstate0 + here->DIOvoltageSW);
delTemp = *(ckt->CKTstate0 + here->DIOdeltemp);
} else if (ckt->CKTmode & MODEINITTRAN) {
vd= *(ckt->CKTstate1 + here->DIOvoltage);
if (model->DIOresistSWGiven) vdsw = *(ckt->CKTstate1 + here->DIOvoltageSW);
delTemp = *(ckt->CKTstate1 + here->DIOdeltemp);
} else if ( (ckt->CKTmode & MODEINITJCT) &&
(ckt->CKTmode & MODETRANOP) && (ckt->CKTmode & MODEUIC) ) {
vd=here->DIOinitCond;
if (model->DIOresistSWGiven) vdsw = here->DIOinitCond;
} else if ( (ckt->CKTmode & MODEINITJCT) && here->DIOoff) {
vd=0;
vd=vdsw=0;
delTemp = 0.0;
} else if ( ckt->CKTmode & MODEINITJCT) {
vd=here->DIOtVcrit;
vdsw=here->DIOtVcritSW;
delTemp = 0.0;
} else if ( ckt->CKTmode & MODEINITFIX && here->DIOoff) {
vd=0;
vd=vdsw=0;
delTemp = 0.0;
} else {
#ifndef PREDICTOR
@ -164,10 +171,17 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
*(ckt->CKTstate1 + here->DIOdIdio_dT);
*(ckt->CKTstate0+here->DIOqth) =
*(ckt->CKTstate1+here->DIOqth);
if (model->DIOresistSWGiven) {
vdsw = DEVpred(ckt,here->DIOvoltageSW);
*(ckt->CKTstate0 + here->DIOdIdioSW_dT) =
*(ckt->CKTstate1 + here->DIOdIdioSW_dT);
}
} else {
#endif /* PREDICTOR */
vd = *(ckt->CKTrhsOld+here->DIOposPrimeNode)-
*(ckt->CKTrhsOld + here->DIOnegNode);
if (model->DIOresistSWGiven) vdsw = *(ckt->CKTrhsOld+here->DIOposSwPrimeNode)-
*(ckt->CKTrhsOld + here->DIOnegNode);
if (selfheat)
delTemp = *(ckt->CKTrhsOld + here->DIOtempNode);
else
@ -185,6 +199,11 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
cdhat= *(ckt->CKTstate0 + here->DIOcurrent) +
*(ckt->CKTstate0 + here->DIOconduct) * delvd +
*(ckt->CKTstate0 + here->DIOdIdio_dT) * deldelTemp;
if (model->DIOresistSWGiven) {
delvdsw=vdsw - *(ckt->CKTstate0 + here->DIOvoltageSW);
cdhatsw = *(ckt->CKTstate0 + here->DIOconductSW) * delvdsw +
*(ckt->CKTstate0 + here->DIOdIdioSW_dT) * deldelTemp;
}
/*
* bypass if solution has not changed
*/
@ -192,7 +211,7 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
if ((!(ckt->CKTmode & MODEINITPRED)) && (ckt->CKTbypass)) {
tol=ckt->CKTvoltTol + ckt->CKTreltol*
MAX(fabs(vd),fabs(*(ckt->CKTstate0 +here->DIOvoltage)));
if (fabs(delvd) < tol){
if (fabs(delvd) < tol) {
tol=ckt->CKTreltol* MAX(fabs(cdhat),
fabs(*(ckt->CKTstate0 + here->DIOcurrent)))+
ckt->CKTabstol;
@ -202,12 +221,25 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
(fabs(deldelTemp) < (ckt->CKTreltol * MAX(fabs(delTemp),
fabs(*(ckt->CKTstate0+here->DIOdeltemp)))+
ckt->CKTvoltTol*1e4))) {
vd= *(ckt->CKTstate0 + here->DIOvoltage);
cd= *(ckt->CKTstate0 + here->DIOcurrent);
gd= *(ckt->CKTstate0 + here->DIOconduct);
delTemp = *(ckt->CKTstate0 + here->DIOdeltemp);
dIdio_dT= *(ckt->CKTstate0 + here->DIOdIdio_dT);
goto load;
if ((!model->DIOresistSWGiven) || (fabs(delvdsw) < ckt->CKTvoltTol + ckt->CKTreltol *
MAX(fabs(vdsw),fabs(*(ckt->CKTstate0+here->DIOvoltageSW))))) {
if ((!model->DIOresistSWGiven) || (fabs(cdhatsw- *(ckt->CKTstate0 + here->DIOcurrentSW))
< ckt->CKTreltol* MAX(fabs(cdhatsw),
fabs(*(ckt->CKTstate0 + here->DIOcurrentSW)))+ckt->CKTabstol)) {
vd= *(ckt->CKTstate0 + here->DIOvoltage);
cd= *(ckt->CKTstate0 + here->DIOcurrent);
gd= *(ckt->CKTstate0 + here->DIOconduct);
delTemp = *(ckt->CKTstate0 + here->DIOdeltemp);
dIdio_dT= *(ckt->CKTstate0 + here->DIOdIdio_dT);
if (model->DIOresistSWGiven) {
vdsw= *(ckt->CKTstate0 + here->DIOvoltageSW);
cdsw= *(ckt->CKTstate0 + here->DIOcurrentSW);
gdsw= *(ckt->CKTstate0 + here->DIOconductSW);
dIdioSw_dT= *(ckt->CKTstate0 + here->DIOdIdioSW_dT);
}
goto load;
}
}
}
}
}
@ -228,6 +260,20 @@ DIOload(GENmodel *inModel, CKTcircuit *ckt)
vd = DEVpnjlim(vd,*(ckt->CKTstate0 + here->DIOvoltage),
vte,here->DIOtVcrit,&Check_dio);
}
if (model->DIOresistSWGiven) {
if ( (model->DIObreakdownVoltageGiven) &&
(vdsw < MIN(0,-here->DIOtBrkdwnV+10*vtebrk))) {
vdtemp = -(vdsw+here->DIOtBrkdwnV);
vdtemp = DEVpnjlim(vdtemp,
-(*(ckt->CKTstate0 + here->DIOvoltageSW) +
here->DIOtBrkdwnV),vtebrk,
here->DIOtVcritSW,&Check_dio_sw);
vdsw = -(vdtemp+here->DIOtBrkdwnV);
} else {
vdsw = DEVpnjlim(vdsw,*(ckt->CKTstate0 + here->DIOvoltageSW),
vtesw,here->DIOtVcritSW,&Check_dio_sw);
}
}
if (selfheat)
delTemp = DEVlimitlog(delTemp,
*(ckt->CKTstate0 + here->DIOdeltemp), 100, &Check_th);
@ -253,47 +299,45 @@ next1:
csatsw = here->DIOtSatSWCur;
csatsw_dT = here->DIOtSatSWCur_dT;
gspr = here->DIOtConductance;
gsprsw = here->DIOtConductanceSW;
if (model->DIOsatSWCurGiven) { /* sidewall current */
if (model->DIOsatSWCurGiven) { /* sidewall current */
double vds;
if (model->DIOresistSWGiven)
vds = vdsw; /* sidewall voltage used */
else
vds = vd; /* common voltage used */
if (model->DIOswEmissionCoeffGiven) { /* current with own characteristic */
if (model->DIOswEmissionCoeffGiven) { /* with own characteristic */
vtesw = model->DIOswEmissionCoeff * vt;
if (vds >= -3*vtesw) { /* forward */
if (vd >= -3*vtesw) { /* forward */
evd = exp(vd/vtesw);
evd = exp(vds/vtesw);
cdsw = csatsw*(evd-1);
gdsw = csatsw*evd/vtesw;
cdsw_dT = csatsw_dT * (evd - 1) - csatsw * vd * evd / (vtesw * Temp);
cdsw_dT = csatsw_dT * (evd - 1) - csatsw * vds * evd / (vtesw * Temp);
} else if((!(model->DIObreakdownVoltageGiven)) ||
vd >= -here->DIOtBrkdwnV) { /* reverse */
} else if ((!(model->DIObreakdownVoltageGiven)) ||
vds >= -here->DIOtBrkdwnV) { /* reverse */
argsw = 3*vtesw/(vd*CONSTe);
argsw = 3*vtesw/(vds*CONSTe);
argsw = argsw * argsw * argsw;
argsw_dT = 3 * argsw / Temp;
cdsw = -csatsw*(1+argsw);
gdsw = csatsw*3*argsw/vd;
gdsw = csatsw*3*argsw/vds;
cdsw_dT = -csatsw_dT - (csatsw_dT*argsw + csatsw*argsw_dT);
} else { /* breakdown */
} else if (!model->DIOresistSWGiven){ /* breakdown, but not for separate sidewall diode */
double evrev_dT;
evrev = exp(-(here->DIOtBrkdwnV+vd)/vtebrk);
evrev_dT = (here->DIOtBrkdwnV+vd)*evrev/(vtebrk*Temp);
evrev = exp(-(here->DIOtBrkdwnV+vds)/vtebrk);
evrev_dT = (here->DIOtBrkdwnV+vds)*evrev/(vtebrk*Temp);
cdsw = -csatsw*evrev;
gdsw = csatsw*evrev/vtebrk;
cdsw_dT = -(csatsw_dT*evrev + csatsw*evrev_dT);
}
} else { /* merge saturation currents and use same characteristic as bottom diode */
csat = csat + csatsw;
csat_dT = csat_dT + csatsw_dT;
cdsw_dT = 0.0;
}
}
@ -302,12 +346,17 @@ next1:
* temperature dependent diode saturation current and derivative
*/
if (vd >= -3*vte) { /* bottom current forward */
if (vd >= -3*vte) { /* bottom and sidewall current forward with common voltage */
/* and with common characteristic */
evd = exp(vd/vte);
cdb = csat*(evd-1);
gdb = csat*evd/vte;
cdb_dT = csat_dT * (evd - 1) - csat * vd * evd / (vte * Temp);
if ((model->DIOsatSWCurGiven)&&(!model->DIOswEmissionCoeffGiven)) {
cdsw = csatsw*(evd-1);
gdsw = csatsw*evd/vte;
cdsw_dT = csatsw_dT * (evd - 1) - csatsw * vd * evd / (vte * Temp);
}
if (model->DIOrecSatCurGiven) { /* recombination current */
double vterec = model->DIOrecEmissionCoeff*vt;
evd_rec = exp(vd/(vterec));
@ -326,7 +375,7 @@ next1:
cdb_dT = cdb_dT + cdb_rec_dT*gen_fac;
}
} else if((!(model->DIObreakdownVoltageGiven)) ||
} else if ((!(model->DIObreakdownVoltageGiven)) ||
vd >= -here->DIOtBrkdwnV) { /* reverse */
double darg_dT;
@ -337,8 +386,14 @@ next1:
cdb = -csat*(1+arg);
gdb = csat*3*arg/vd;
cdb_dT = -csat_dT - (csat_dT*arg + csat*darg_dT);
if ((model->DIOsatSWCurGiven)&&(!model->DIOswEmissionCoeffGiven)) {
cdsw = -csatsw*(1+arg);
gdsw = csatsw*3*arg/vd;
cdsw_dT = -csatsw_dT - (csatsw_dT*arg + csatsw*darg_dT);
}
} else { /* breakdown */
double evrev_dT;
evrev = exp(-(here->DIOtBrkdwnV+vd)/vtebrk);
@ -346,6 +401,15 @@ next1:
cdb = -csat*evrev;
gdb = csat*evrev/vtebrk;
cdb_dT = -(csat_dT*evrev + csat*evrev_dT);
if ((model->DIOsatSWCurGiven)
&&(!model->DIOresistSWGiven) /* no breakdown for separate sidewall diode */
&&(!model->DIOswEmissionCoeffGiven)) {
evrev = exp(-(here->DIOtBrkdwnV+vdsw)/vtebrk);
evrev_dT = (here->DIOtBrkdwnV+vdsw)*evrev/(vtebrk*Temp);
cdsw = -csatsw*evrev;
gdsw = csatsw*evrev/vtebrk;
cdsw_dT = -(csatsw_dT*evrev + csatsw*evrev_dT);
}
}
@ -373,36 +437,46 @@ next1:
}
cd = cdb + cdsw;
gd = gdb + gdsw;
dIdio_dT = cdb_dT + cdsw_dT;
if (vd >= -3*vte) { /* limit forward */
if( (model->DIOforwardKneeCurrentGiven) && (cd > 1.0e-18) ) {
ikf_area_m = here->DIOforwardKneeCurrent;
sqrt_ikf = sqrt(cd/ikf_area_m);
gd = ((1+sqrt_ikf)*gd - cd*gd/(2*sqrt_ikf*ikf_area_m))/(1+2*sqrt_ikf + cd/ikf_area_m) + ckt->CKTgmin;
cd = cd/(1+sqrt_ikf) + ckt->CKTgmin*vd;
} else {
gd = gd + ckt->CKTgmin;
cd = cd + ckt->CKTgmin*vd;
if ( (model->DIOforwardKneeCurrentGiven) && (cdb > 1.0e-18) ) {
double ikf_area_m = here->DIOforwardKneeCurrent;
sqrt_ikx = sqrt(cdb/ikf_area_m);
gdb = ((1+sqrt_ikx)*gdb - cdb*gdb/(2*sqrt_ikx*ikf_area_m))/(1+2*sqrt_ikx + cdb/ikf_area_m);
cdb = cdb/(1+sqrt_ikx);
}
} else { /* limit reverse */
if( (model->DIOreverseKneeCurrentGiven) && (cd < -1.0e-18) ) {
ikr_area_m = here->DIOreverseKneeCurrent;
sqrt_ikr = sqrt(cd/(-ikr_area_m));
gd = ((1+sqrt_ikr)*gd + cd*gd/(2*sqrt_ikr*ikr_area_m))/(1+2*sqrt_ikr - cd/ikr_area_m) + ckt->CKTgmin;
cd = cd/(1+sqrt_ikr) + ckt->CKTgmin*vd;
} else {
gd = gd + ckt->CKTgmin;
cd = cd + ckt->CKTgmin*vd;
if ( (model->DIOreverseKneeCurrentGiven) && (cdb < -1.0e-18) ) {
double ikr_area_m = here->DIOreverseKneeCurrent;
sqrt_ikx = sqrt(cdb/(-ikr_area_m));
gdb = ((1+sqrt_ikx)*gdb + cdb*gdb/(2*sqrt_ikx*ikr_area_m))/(1+2*sqrt_ikx - cdb/ikr_area_m);
cdb = cdb/(1+sqrt_ikx);
}
}
if ( (model->DIOforwardSWKneeCurrentGiven) && (cdsw > 1.0e-18) ) {
double ikp_peri_m = here->DIOforwardSWKneeCurrent;
sqrt_ikx = sqrt(cdsw/ikp_peri_m);
gdsw = ((1+sqrt_ikx)*gdsw - cdsw*gdsw/(2*sqrt_ikx*ikp_peri_m))/(1+2*sqrt_ikx + cdsw/ikp_peri_m);
cdsw = cdsw/(1+sqrt_ikx);
}
if (!model->DIOresistSWGiven) {
cd = cdb + cdsw + ckt->CKTgmin*vd;
gd = gdb + gdsw + ckt->CKTgmin;
dIdio_dT = cdb_dT + cdsw_dT;
} else {
cd = cdb + ckt->CKTgmin*vd;
gd = gdb + ckt->CKTgmin;
cdsw = cdsw + ckt->CKTgmin*vdsw;
gdsw = gdsw + ckt->CKTgmin;
dIdio_dT = cdb_dT;
dIdioSw_dT = cdsw_dT;
}
if ((ckt->CKTmode & (MODEDCTRANCURVE | MODETRAN | MODEAC | MODEINITSMSIG)) ||
((ckt->CKTmode & MODETRANOP) && (ckt->CKTmode & MODEUIC))) {
/*
@ -421,28 +495,40 @@ next1:
deplcap = czof2*(here->DIOtF3+here->DIOtGradingCoeff*vd/here->DIOtJctPot);
}
czeroSW=here->DIOtJctSWCap;
if (vd < here->DIOtDepSWCap){
argSW=1-vd/here->DIOtJctSWPot;
double vdx;
if (model->DIOresistSWGiven)
vdx = vdsw;
else
vdx = vd;
if (vdx < here->DIOtDepSWCap){
argSW=1-vdx/here->DIOtJctSWPot;
sargSW=exp(-model->DIOgradingSWCoeff*log(argSW));
deplchargeSW = here->DIOtJctSWPot*czeroSW*(1-argSW*sargSW)/(1-model->DIOgradingSWCoeff);
deplcapSW = czeroSW*sargSW;
} else {
czof2SW=czeroSW/here->DIOtF2SW;
deplchargeSW = czeroSW*here->DIOtF1+czof2SW*(here->DIOtF3SW*(vd-here->DIOtDepSWCap)+
(model->DIOgradingSWCoeff/(here->DIOtJctSWPot+here->DIOtJctSWPot))*(vd*vd-here->DIOtDepSWCap*here->DIOtDepSWCap));
deplcapSW = czof2SW*(here->DIOtF3SW+model->DIOgradingSWCoeff*vd/here->DIOtJctSWPot);
deplchargeSW = czeroSW*here->DIOtF1+czof2SW*(here->DIOtF3SW*(vdx-here->DIOtDepSWCap)+
(model->DIOgradingSWCoeff/(here->DIOtJctSWPot+here->DIOtJctSWPot))*(vdx*vdx-here->DIOtDepSWCap*here->DIOtDepSWCap));
deplcapSW = czof2SW*(here->DIOtF3SW+model->DIOgradingSWCoeff*vdx/here->DIOtJctSWPot);
}
diffcharge = here->DIOtTransitTime*cd;
*(ckt->CKTstate0 + here->DIOcapCharge) =
diffcharge + deplcharge + deplchargeSW + (here->DIOcmetal + here->DIOcpoly)*vd;
diffcap = here->DIOtTransitTime*gd;
capd = diffcap + deplcap + deplcapSW + here->DIOcmetal + here->DIOcpoly;
here->DIOcap = capd;
if (!model->DIOresistSWGiven) {
*(ckt->CKTstate0 + here->DIOcapCharge) =
diffcharge + deplcharge + deplchargeSW + (here->DIOcmetal + here->DIOcpoly)*vd;
capd = diffcap + deplcap + deplcapSW + here->DIOcmetal + here->DIOcpoly;
here->DIOcap = capd;
} else {
*(ckt->CKTstate0 + here->DIOcapCharge) =
diffcharge + deplcharge + (here->DIOcmetal + here->DIOcpoly)*vd;
capd = diffcap + deplcap + here->DIOcmetal + here->DIOcpoly;
here->DIOcap = capd;
*(ckt->CKTstate0 + here->DIOcapChargeSW) =
deplcapSW;
capdsw = deplcapSW;
here->DIOcapSW = capdsw;
}
/*
* store small-signal parameters
*/
@ -450,11 +536,18 @@ next1:
(!(ckt->CKTmode & MODEUIC)) ) {
if (ckt->CKTmode & MODEINITSMSIG){
*(ckt->CKTstate0 + here->DIOcapCurrent) = capd;
if (model->DIOresistSWGiven) {
*(ckt->CKTstate0 + here->DIOcapCurrentSW) = capdsw;
}
if(SenCond){
*(ckt->CKTstate0 + here->DIOcurrent) = cd;
*(ckt->CKTstate0 + here->DIOconduct) = gd;
*(ckt->CKTstate0 + here->DIOdIdio_dT) = dIdio_dT;
if (model->DIOresistSWGiven) {
*(ckt->CKTstate0 + here->DIOcurrentSW) = cdsw;
*(ckt->CKTstate0 + here->DIOconductSW) = gdsw;
*(ckt->CKTstate0 + here->DIOdIdioSW_dT) = dIdioSw_dT;
}
#ifdef SENSDEBUG
printf("storing small signal parameters\n");
printf("cd = %.7e,vd = %.7e\n",cd,vd);
@ -469,6 +562,8 @@ next1:
*/
if(SenCond && (ckt->CKTsenInfo->SENmode == TRANSEN)){
*(ckt->CKTstate0 + here->DIOcurrent) = cd;
if (model->DIOresistSWGiven)
*(ckt->CKTstate0 + here->DIOcurrentSW) = cdsw;
#ifdef SENSDEBUG
printf("storing parameters for transient sensitivity\n"
);
@ -481,21 +576,29 @@ next1:
if (ckt->CKTmode & MODEINITTRAN) {
*(ckt->CKTstate1 + here->DIOcapCharge) =
*(ckt->CKTstate0 + here->DIOcapCharge);
if (model->DIOresistSWGiven)
*(ckt->CKTstate1 + here->DIOcapChargeSW) =
*(ckt->CKTstate0 + here->DIOcapChargeSW);
}
error = NIintegrate(ckt,&geq,&ceq,capd,here->DIOcapCharge);
if(error) return(error);
gd=gd+geq;
cd=cd+*(ckt->CKTstate0 + here->DIOcapCurrent);
if (model->DIOresistSWGiven) {
error = NIintegrate(ckt,&geq,&ceq,capdsw,here->DIOcapChargeSW);
if(error) return(error);
gdsw=gdsw+geq;
cdsw=cdsw+*(ckt->CKTstate0 + here->DIOcapCurrentSW);
}
if (ckt->CKTmode & MODEINITTRAN) {
*(ckt->CKTstate1 + here->DIOcapCurrent) =
*(ckt->CKTstate0 + here->DIOcapCurrent);
if (model->DIOresistSWGiven)
*(ckt->CKTstate1 + here->DIOcapCurrentSW) =
*(ckt->CKTstate0 + here->DIOcapCurrentSW);
}
if (selfheat)
{
if (ckt->CKTmode & MODEINITTRAN) {
*(ckt->CKTstate1 + here->DIOqth) =
*(ckt->CKTstate0 + here->DIOqth);
}
error = NIintegrate(ckt, &gcTt, &ceqqth, model->DIOcth0, here->DIOqth);
if (error) return(error);
if (ckt->CKTmode & MODEINITTRAN) {
@ -512,9 +615,16 @@ next1:
* check convergence
*/
if ( (!(ckt->CKTmode & MODEINITFIX)) || (!(here->DIOoff)) ) {
if ((Check_th == 1) || (Check_dio == 1)) {
ckt->CKTnoncon++;
ckt->CKTtroubleElt = (GENinstance *) here;
if (!model->DIOresistSWGiven) {
if ((Check_th == 1) || (Check_dio == 1)) {
ckt->CKTnoncon++;
ckt->CKTtroubleElt = (GENinstance *) here;
}
} else {
if ((Check_th == 1) || (Check_dio == 1) || (Check_dio_sw == 1)) {
ckt->CKTnoncon++;
ckt->CKTtroubleElt = (GENinstance *) here;
}
}
}
next2: *(ckt->CKTstate0 + here->DIOvoltage) = vd;
@ -522,7 +632,12 @@ next2: *(ckt->CKTstate0 + here->DIOvoltage) = vd;
*(ckt->CKTstate0 + here->DIOconduct) = gd;
*(ckt->CKTstate0 + here->DIOdeltemp) = delTemp;
*(ckt->CKTstate0 + here->DIOdIdio_dT) = dIdio_dT;
if (model->DIOresistSWGiven) {
*(ckt->CKTstate0 + here->DIOvoltageSW) = vdsw;
*(ckt->CKTstate0 + here->DIOcurrentSW) = cdsw;
*(ckt->CKTstate0 + here->DIOconductSW) = gdsw;
*(ckt->CKTstate0 + here->DIOdIdioSW_dT) = dIdioSw_dT;
}
if(SenCond) continue;
#ifndef NOBYPASS
@ -531,20 +646,37 @@ next2: *(ckt->CKTstate0 + here->DIOvoltage) = vd;
if (selfheat) {
double dIrs_dVrs, dIrs_dgspr, dIth_dIrs;
vrs = *(ckt->CKTrhsOld + here->DIOposNode) - *(ckt->CKTrhsOld + here->DIOposPrimeNode);
Ith = vd*cd + vrs*vrs*gspr; /* Diode dissipated power */
dIrs_dVrs = gspr;
dIrs_dgspr = vrs;
dIrs_dT = dIrs_dgspr * here->DIOtConductance_dT;
Ith = vd*cd + vrs*vrs*gspr; /* Diode dissipated power */
dIth_dVrs = vrs*gspr;
dIth_dIrs = vrs;
dIth_dVrs = dIth_dVrs + dIth_dIrs*dIrs_dVrs;
dIth_dT = dIth_dIrs*dIrs_dT + dIdio_dT*vd;
dIth_dVdio = cd + vd*gd;
here->DIOdIth_dVrs = dIth_dVrs;
here->DIOdIth_dVdio = dIth_dVdio;
here->DIOdIth_dT = dIth_dT;
here->DIOgcTt = gcTt;
here->DIOdIrs_dT = dIrs_dT;
here->DIOdIth_dVdio = dIth_dVdio;
here->DIOdIth_dT = dIth_dT;
if (model->DIOresistSWGiven) {
double dIrssw_dVrssw, dIrssw_dgsprsw, dIth_dIrssw;
vrssw = *(ckt->CKTrhsOld + here->DIOposNode) - *(ckt->CKTrhsOld + here->DIOposSwPrimeNode);
dIrssw_dVrssw = gsprsw;
dIrssw_dgsprsw = vrssw;
dIrssw_dT = dIrssw_dgsprsw * here->DIOtConductanceSW_dT;
Ith = Ith + vdsw*cdsw + vrssw*vrssw*gsprsw; /* Diode dissipated power */
dIth_dVrssw = vrssw*gsprsw;
dIth_dIrssw = vrssw;
dIth_dVrssw = dIth_dVrssw + dIth_dIrssw*dIrssw_dVrssw;
dIth_dT = dIth_dT + dIth_dIrssw*dIrssw_dT + dIdioSw_dT*vdsw;
dIth_dVdioSw = cdsw + vdsw*gdsw;
here->DIOdIth_dVrssw = dIth_dVrssw;
here->DIOdIth_dVdio = dIth_dVdioSw;
here->DIOdIth_dT = dIth_dT;
here->DIOdIrssw_dT = dIrssw_dT;
}
}
/*
* load current vector
@ -558,6 +690,17 @@ next2: *(ckt->CKTstate0 + here->DIOvoltage) = vd;
*(ckt->CKTrhs + here->DIOnegNode) += -dIdio_dT*delTemp;
*(ckt->CKTrhs + here->DIOtempNode) += Ith - dIth_dVdio*vd - dIth_dVrs*vrs - dIth_dT*delTemp - ceqqth;
}
if (model->DIOresistSWGiven) {
cdeq=cdsw-gdsw*vdsw;
*(ckt->CKTrhs + here->DIOnegNode) += cdeq;
*(ckt->CKTrhs + here->DIOposSwPrimeNode) -= cdeq;
if (selfheat) {
*(ckt->CKTrhs + here->DIOposNode) += dIrssw_dT*delTemp;
*(ckt->CKTrhs + here->DIOposSwPrimeNode) += dIdioSw_dT*delTemp - dIrssw_dT*delTemp;
*(ckt->CKTrhs + here->DIOnegNode) += -dIdioSw_dT*delTemp;
*(ckt->CKTrhs + here->DIOtempNode) += -dIth_dVdioSw*vdsw - dIth_dVrssw*vrssw;
}
}
/*
* load matrix
*/
@ -577,6 +720,24 @@ next2: *(ckt->CKTstate0 + here->DIOvoltage) = vd;
(*(here->DIOposPrimeTempPtr) += dIdio_dT - dIrs_dT);
(*(here->DIOnegTempPtr) += -dIdio_dT);
}
if (model->DIOresistSWGiven) {
*(here->DIOposPosPtr) += gsprsw;
*(here->DIOnegNegPtr) += gdsw;
*(here->DIOposSwPrimePosSwPrimePtr) += (gdsw + gsprsw);
*(here->DIOposPosSwPrimePtr) -= gsprsw;
*(here->DIOnegPosSwPrimePtr) -= gdsw;
*(here->DIOposSwPrimePosPtr) -= gsprsw;
*(here->DIOposSwPrimeNegPtr) -= gdsw;
if (selfheat) {
(*(here->DIOtempPosPtr) += -dIth_dVrssw);
(*(here->DIOtempPosSwPrimePtr) += -dIth_dVdioSw + dIth_dVrssw);
(*(here->DIOtempNegPtr) += dIth_dVdioSw);
(*(here->DIOposTempPtr) += dIrssw_dT);
(*(here->DIOposSwPrimeTempPtr) += dIdioSw_dT - dIrssw_dT);
(*(here->DIOnegTempPtr) += -dIdioSw_dT);
}
}
}
}
return(OK);

View File

@ -42,6 +42,9 @@ DIOmAsk (CKTcircuit *ckt, GENmodel *inModel, int which, IFvalue *value)
case DIO_MOD_RS:
value->rValue = model->DIOresist;
return(OK);
case DIO_MOD_RSW:
value->rValue = model->DIOresistSW;
return(OK);
case DIO_MOD_TRS:
value->rValue = model->DIOresistTemp1;
return(OK);
@ -93,6 +96,9 @@ DIOmAsk (CKTcircuit *ckt, GENmodel *inModel, int which, IFvalue *value)
case DIO_MOD_IKR:
value->rValue = model->DIOreverseKneeCurrent;
return(OK);
case DIO_MOD_IKP:
value->rValue = model->DIOforwardSWKneeCurrent;
return(OK);
case DIO_MOD_NBV:
value->rValue = model->DIObrkdEmissionCoeff;
return(OK);

View File

@ -40,6 +40,10 @@ DIOmParam(int param, IFvalue *value, GENmodel *inModel)
model->DIOresist = value->rValue;
model->DIOresistGiven = TRUE;
break;
case DIO_MOD_RSW:
model->DIOresistSW = value->rValue;
model->DIOresistSWGiven = TRUE;
break;
case DIO_MOD_TRS:
model->DIOresistTemp1 = value->rValue;
model->DIOresistTemp1Given = TRUE;
@ -108,6 +112,10 @@ DIOmParam(int param, IFvalue *value, GENmodel *inModel)
model->DIOreverseKneeCurrent = value->rValue;
model->DIOreverseKneeCurrentGiven = TRUE;
break;
case DIO_MOD_IKP:
model->DIOforwardSWKneeCurrent = value->rValue;
model->DIOforwardSWKneeCurrentGiven = TRUE;
break;
case DIO_MOD_NBV:
model->DIObrkdEmissionCoeff = value->rValue;
model->DIObrkdEmissionCoeffGiven = TRUE;

View File

@ -41,10 +41,13 @@ DIOnoise(int mode, int operation, GENmodel *genmodel, CKTcircuit *ckt,
static char *DIOnNames[DIONSRCS] = {
/* Note that we have to keep the order
consistent with thestrchr definitions in DIOdefs.h */
consistent with the strchr definitions in DIOdefs.h */
"_rs", /* noise due to rs */
"_id", /* noise due to id */
"_1overf", /* flicker (1/f) noise */
"_rsw", /* noise due to rsw */
"_idsw", /* noise due to id sw */
"_1overfsw", /* flicker (1/f) noise sw */
"" /* total diode noise */
};
@ -108,10 +111,36 @@ DIOnoise(int mode, int operation, GENmodel *genmodel, CKTcircuit *ckt,
noizDens[DIOTOTNOIZ] = noizDens[DIORSNOIZ] +
noizDens[DIOIDNOIZ] +
noizDens[DIOFLNOIZ];
if (model->DIOresistSWGiven) {
/* sidewall diode */
NevalSrcInstanceTemp(&noizDens[DIORSSWNOIZ],&lnNdens[DIORSSWNOIZ],
ckt, THERMNOISE, inst->DIOposSwPrimeNode, inst->DIOposNode,
inst->DIOtConductanceSW, dtemp);
NevalSrc(&noizDens[DIOIDSWNOIZ],&lnNdens[DIOIDSWNOIZ],
ckt, SHOTNOISE, inst->DIOposSwPrimeNode, inst->DIOnegNode,
*(ckt->CKTstate0 + inst->DIOcurrentSW));
NevalSrc(&noizDens[DIOFLSWNOIZ], NULL, ckt,
N_GAIN, inst->DIOposSwPrimeNode, inst->DIOnegNode,
(double) 0.0);
noizDens[DIOFLSWNOIZ] *= model->DIOfNcoef *
exp(model->DIOfNexp *
log(MAX(fabs(*(ckt->CKTstate0 + inst->DIOcurrentSW) / inst->DIOm), N_MINLOG))) /
data->freq * inst->DIOm;
lnNdens[DIOFLSWNOIZ] =
log(MAX(noizDens[DIOFLSWNOIZ], N_MINLOG));
noizDens[DIOTOTNOIZ] += noizDens[DIORSSWNOIZ] +
noizDens[DIOIDSWNOIZ] +
noizDens[DIOFLSWNOIZ];
}
lnNdens[DIOTOTNOIZ] =
log(MAX(noizDens[DIOTOTNOIZ], N_MINLOG));
*OnDens += noizDens[DIOTOTNOIZ];
*OnDens += noizDens[DIOTOTNOIZ];
if (data->delFreq == 0.0) {

View File

@ -18,7 +18,7 @@ int
DIOpzLoad(GENmodel *inModel, CKTcircuit *ckt, SPcomplex *s)
{
DIOmodel *model = (DIOmodel*)inModel;
double gspr;
double gspr, gsprsw;
double geq;
double xceq;
DIOinstance *here;
@ -43,6 +43,22 @@ DIOpzLoad(GENmodel *inModel, CKTcircuit *ckt, SPcomplex *s)
*(here->DIOposPrimePosPtr ) -= gspr;
*(here->DIOposPrimeNegPtr ) -= geq + xceq * s->real;
*(here->DIOposPrimeNegPtr +1 ) -= xceq * s->imag;
if (model->DIOresistSWGiven) {
gsprsw=here->DIOtConductanceSW;
geq= *(ckt->CKTstate0 + here->DIOconductSW);
xceq= *(ckt->CKTstate0 + here->DIOcapCurrentSW) * ckt->CKTomega;
*(here->DIOposPosPtr) += gsprsw;
*(here->DIOnegNegPtr) += geq + xceq * s->real;
*(here->DIOnegNegPtr + 1) += xceq * s->imag;
*(here->DIOposSwPrimePosSwPrimePtr) += geq + gsprsw + xceq * s->real;
*(here->DIOposSwPrimePosSwPrimePtr + 1) += xceq * s->imag;
*(here->DIOposPosSwPrimePtr) -= gsprsw;
*(here->DIOnegPosSwPrimePtr) -= geq;
*(here->DIOnegPosSwPrimePtr + 1) -= xceq;
*(here->DIOposSwPrimePosPtr) -= gsprsw;
*(here->DIOposSwPrimeNegPtr) -= geq + xceq * s->real;
*(here->DIOposSwPrimeNegPtr + 1) -= xceq * s->imag;
}
}
}
return(OK);

View File

@ -117,6 +117,13 @@ DIOsetup(SMPmatrix *matrix, GENmodel *inModel, CKTcircuit *ckt, int *states)
model->DIOmodName);
}
}
if(model->DIOforwardSWKneeCurrentGiven) {
if (model->DIOforwardSWKneeCurrent < ckt->CKTepsmin) {
model->DIOforwardSWKneeCurrentGiven = FALSE;
fprintf(stderr, "Warning: %s: IKP too small - model effect disabled!\n",
model->DIOmodName);
}
}
if(!model->DIObrkdEmissionCoeffGiven) {
model->DIObrkdEmissionCoeff = model->DIOemissionCoeff;
}
@ -238,6 +245,24 @@ DIOsetup(SMPmatrix *matrix, GENmodel *inModel, CKTcircuit *ckt, int *states)
} else {
model->DIOconductance = 1/model->DIOresist;
}
if((!model->DIOresistSWGiven) || (model->DIOresistSW==0)) {
if (newcompat.ps || newcompat.lt) {
double rsdiode = 0.;
/* to improve convergence (sometimes) */
if (cp_getvar("diode_rser", CP_REAL, &rsdiode, 0) && rsdiode > 0) {
model->DIOconductanceSW = 1./rsdiode;
model->DIOresistSW = rsdiode;
if (ft_ngdebug)
fprintf(stderr, "Diode sidewall series resistance in model %s set to %e Ohm\n", model->gen.GENmodName, rsdiode);
}
else
model->DIOconductanceSW = 0.0;
}
else
model->DIOconductanceSW = 0.0;
} else {
model->DIOconductanceSW = 1/model->DIOresistSW;
}
if (!model->DIOrth0Given) {
model->DIOrth0 = 0;
@ -329,6 +354,7 @@ DIOsetup(SMPmatrix *matrix, GENmodel *inModel, CKTcircuit *ckt, int *states)
}
here->DIOforwardKneeCurrent = model->DIOforwardKneeCurrent * here->DIOarea * here->DIOm;
here->DIOreverseKneeCurrent = model->DIOreverseKneeCurrent * here->DIOarea * here->DIOm;
here->DIOforwardSWKneeCurrent = model->DIOforwardSWKneeCurrent * here->DIOpj * here->DIOm;
here->DIOjunctionCap = model->DIOjunctionCap * here->DIOarea * here->DIOm;
here->DIOjunctionSWCap = model->DIOjunctionSWCap * here->DIOpj * here->DIOm;
@ -344,19 +370,41 @@ DIOsetup(SMPmatrix *matrix, GENmodel *inModel, CKTcircuit *ckt, int *states)
} else if(here->DIOposPrimeNode == 0) {
CKTnode *tmpNode;
IFuid tmpName;
CKTnode *tmpNode;
IFuid tmpName;
error = CKTmkVolt(ckt,&tmp,here->DIOname,"internal");
if(error) return(error);
here->DIOposPrimeNode = tmp->number;
if (ckt->CKTcopyNodesets) {
if (CKTinst2Node(ckt,here,1,&tmpNode,&tmpName)==OK) {
if (tmpNode->nsGiven) {
tmp->nodeset=tmpNode->nodeset;
tmp->nsGiven=tmpNode->nsGiven;
}
}
if (CKTinst2Node(ckt,here,1,&tmpNode,&tmpName)==OK) {
if (tmpNode->nsGiven) {
tmp->nodeset=tmpNode->nodeset;
tmp->nsGiven=tmpNode->nsGiven;
}
}
}
}
if(!model->DIOresistSWGiven) {
here->DIOposSwPrimeNode = here->DIOposPrimeNode;
} else if(here->DIOposSwPrimeNode == 0) {
CKTnode *tmpNode;
IFuid tmpName;
error = CKTmkVolt(ckt,&tmp,here->DIOname,"internal_sw");
if(error) return(error);
here->DIOposSwPrimeNode = tmp->number;
if (ckt->CKTcopyNodesets) {
if (CKTinst2Node(ckt,here,1,&tmpNode,&tmpName)==OK) {
if (tmpNode->nsGiven) {
tmp->nodeset=tmpNode->nodeset;
tmp->nsGiven=tmpNode->nsGiven;
}
}
}
}
@ -375,6 +423,14 @@ do { if((here->ptr = SMPmakeElt(matrix, here->first, here->second)) == NULL){\
TSTALLOC(DIOposPosPtr,DIOposNode,DIOposNode);
TSTALLOC(DIOnegNegPtr,DIOnegNode,DIOnegNode);
TSTALLOC(DIOposPrimePosPrimePtr,DIOposPrimeNode,DIOposPrimeNode);
if(model->DIOresistSWGiven) {
/* separate sidewall */
TSTALLOC(DIOposPosSwPrimePtr,DIOposNode,DIOposSwPrimeNode);
TSTALLOC(DIOnegPosSwPrimePtr,DIOnegNode,DIOposSwPrimeNode);
TSTALLOC(DIOposSwPrimePosPtr,DIOposSwPrimeNode,DIOposNode);
TSTALLOC(DIOposSwPrimeNegPtr,DIOposSwPrimeNode,DIOnegNode);
TSTALLOC(DIOposSwPrimePosSwPrimePtr,DIOposSwPrimeNode,DIOposSwPrimeNode);
}
if (selfheat) {
TSTALLOC(DIOtempPosPtr, DIOtempNode, DIOposNode);
@ -384,6 +440,11 @@ do { if((here->ptr = SMPmakeElt(matrix, here->first, here->second)) == NULL){\
TSTALLOC(DIOposTempPtr, DIOposNode, DIOtempNode);
TSTALLOC(DIOposPrimeTempPtr, DIOposPrimeNode, DIOtempNode);
TSTALLOC(DIOnegTempPtr, DIOnegNode, DIOtempNode);
if(model->DIOresistSWGiven) {
/* separate sidewall */
TSTALLOC(DIOtempPosSwPrimePtr, DIOtempNode, DIOposSwPrimeNode);
TSTALLOC(DIOposSwPrimeTempPtr, DIOposSwPrimeNode, DIOtempNode);
}
}
}
@ -410,6 +471,15 @@ DIOunsetup(
&& here->DIOposPrimeNode != here->DIOposNode)
CKTdltNNum(ckt, here->DIOposPrimeNode);
here->DIOposPrimeNode = 0;
if(model->DIOresistSWGiven) {
/* separate sidewall */
if (here->DIOposSwPrimeNode > 0
&& here->DIOposSwPrimeNode != here->DIOposNode)
CKTdltNNum(ckt, here->DIOposSwPrimeNode);
here->DIOposSwPrimeNode = 0;
}
}
}
return OK;

View File

@ -29,6 +29,7 @@ void DIOtempUpdate(DIOmodel *inModel, DIOinstance *here, double Temp, CKTcircuit
double dt;
double factor;
double tBreakdownVoltage;
double totalSatCur;
double egfet1,arg1,fact1,pbfact1,pbo,gmaold,pboSW,gmaSWold;
double fact2,pbfact,arg,egfet,gmanew,gmaSWnew;
@ -196,9 +197,14 @@ void DIOtempUpdate(DIOmodel *inModel, DIOinstance *here, double Temp, CKTcircuit
here->DIOtDepSWCap=model->DIOdepletionSWcapCoeff*
here->DIOtJctSWPot;
/* and Vcrit */
double totalSatCur = here->DIOtSatCur + here->DIOtSatSWCur;
here->DIOtVcrit = vte * log(vte/(CONSTroot2*totalSatCur));
totalSatCur = here->DIOtSatCur + here->DIOtSatSWCur;
if(model->DIOresistSWGiven) {
here->DIOtVcrit = vte * log(vte/(CONSTroot2*here->DIOtSatCur));
here->DIOtVcritSW = vts * log(vts/(CONSTroot2*here->DIOtSatSWCur));
} else {
here->DIOtVcrit = vte * log(vte/(CONSTroot2*totalSatCur));
here->DIOtVcritSW = vts * log(vts/(CONSTroot2*here->DIOtSatSWCur));
}
/* and now to compute the breakdown voltage, again, using
* temperature adjusted basic parameters */
if (model->DIObreakdownVoltageGiven){
@ -253,6 +259,14 @@ void DIOtempUpdate(DIOmodel *inModel, DIOinstance *here, double Temp, CKTcircuit
here->DIOtConductance_dT = -model->DIOconductance * here->DIOarea * here->DIOm *
(model->DIOresistTemp1 + model->DIOresistTemp2 * dt) / (factor*factor);
}
here->DIOtConductanceSW = model->DIOconductanceSW * here->DIOpj * here->DIOm;
if(model->DIOresistSWGiven && model->DIOresistSW!=0.0) {
factor = 1.0 + (model->DIOresistTemp1) * dt
+ (model->DIOresistTemp2 * dt * dt);
here->DIOtConductanceSW = model->DIOconductanceSW * here->DIOpj * here->DIOm / factor;
here->DIOtConductanceSW_dT = -model->DIOconductanceSW * here->DIOpj * here->DIOm *
(model->DIOresistTemp1 + model->DIOresistTemp2 * dt) / (factor*factor);
}
here->DIOtF2=exp((1+here->DIOtGradingCoeff)*xfc);
here->DIOtF3=1-model->DIOdepletionCapCoeff*

View File

@ -21,6 +21,7 @@ DIOtrunc(GENmodel *inModel, CKTcircuit *ckt, double *timeStep)
for( ; model != NULL; model = DIOnextModel(model)) {
for(here=DIOinstances(model);here!=NULL;here = DIOnextInstance(here)){
CKTterr(here->DIOcapCharge,ckt,timeStep);
if (model->DIOresistSWGiven) CKTterr(here->DIOcapChargeSW,ckt,timeStep);
}
}
return(OK);